TD 10: Fourier transform and tempered distributions

EXERCISE 1. Let $A \in S_n^{++}(\mathbb{R})$ be a definite positive real matrix. Prove that the function u defined on \mathbb{R}^n by $u(x) = e^{-\langle Ax, x \rangle}$ belongs to the Schwartz space $\mathscr{S}(\mathbb{R}^n)$ and that its Fourier transform is given by

$$\forall \xi \in \mathbb{R}^n, \quad \widehat{u}(\xi) = \sqrt{\frac{\pi^n}{\det A}} e^{-\frac{1}{4} \langle A^{-1}\xi, \xi \rangle}.$$

Application: Compute the Fourier transform of the following Gaussian function

$$f_{\varepsilon}(x) = e^{-\varepsilon |x|^2}, \quad \varepsilon > 0, \ x \in \mathbb{R}^d.$$

Hint: Begin by considering the case n = 1, and diagonalize the matrix A to treat the general case.

EXERCISE 2.

- 1. Let $A \subset \mathbb{R}^n$ be a measurable subset with finite measure. Prove that $\widehat{\mathbb{1}}_A$ belongs to $L^2(\mathbb{R}^n)$ but not to $L^1(\mathbb{R}^n)$.
- 2. Are there two functions $f, g \in \mathscr{S}(\mathbb{R}^n)$ not being identically equal to zero and satisfying the relation f * g = 0? Same question for some functions f et g with compact supports.
- 3. Prove that the equation f * f = f has no non trivial solution in $L^1(\mathbb{R}^n)$, but has an infinite number of solutions in $L^2(\mathbb{R}^n)$.

EXERCISE 3. By computing the Fourier transform of the functions $f = \mathbb{1}_{[-1/2,1/2]}$ and f * f, show that

$$\int_{\mathbb{R}} \left(\frac{\sin t}{t} \right)^2 \mathrm{d}t = \pi$$

EXERCISE 4. Let $I \subset \mathbb{R}$ be an interval and ρ be a weight function, meaning that ρ is measurable, positive, and satisfies

$$\forall n \in \mathbb{N}, \quad \int_{I} |x|^{n} \rho(x) \, \mathrm{d}x < +\infty.$$

Assume that there exists a > 0 such that

$$\int_{I} e^{a|x|} \rho(x) \, \mathrm{d}x < +\infty$$

Let us denote by $L^2(I, \rho)$ the space of square integrable functions with respect to the measure $\rho \, dx$.

1. Prove that there exists an orthonormal family of polynomials $(P_n)_{n\geq 0}$ such that deg $P_n = n$ for all $n \geq 0$.

The aim is now to prove that $(P_n)_{n\geq 0}$ is a Hilbert basis of $L^2(I, \rho)$.

2. Let $f \in L^2(I, \rho)$. Check that the function φ defined by

$$\varphi(x) = \begin{cases} f(x)\rho(x) & \text{if } x \in I, \\ 0 & \text{if } x \notin I, \end{cases}$$

belongs to $L^1(\mathbb{R})$. Prove that its Fourier transform $\widehat{\varphi}$ can be extended to an holomorphic function F on the strip

$$B_a = \left\{ z \in \mathbb{C} : |\operatorname{Im} z| < a/2 \right\}.$$

3. Assume that the function $f \in L^2(I, \rho)$ is orthogonal to any monomial. By computing the derivatives of the function F at 0, prove that f is identically equal to zero and conclude.

EXERCISE 5 (Heisenberg's uncertainty principle). Prove that for all $f \in \mathscr{S}(\mathbb{R}^n)$ and $j \in \{1, \ldots, n\}$,

$$\inf_{a \in \mathbb{R}} \left\| (x_j - a) f \right\|_{L^2(\mathbb{R}^n)}^2 \inf_{b \in \mathbb{R}} \left\| (\xi_j - b) \widehat{f} \right\|_{L^2(\mathbb{R}^n)}^2 \ge \frac{(2\pi)^n}{4} \| f \|_{L^2(\mathbb{R}^n)}^2,$$

When is this inequality an equality ?

EXERCISE 6. Let us consider the interval I = [-1, 1] and the following subspace of $L^2(I)$

$$\mathrm{BL}^{2}(I) = \left\{ u \in L^{2}(\mathbb{R}) : \widehat{u} = 0 \text{ almost everywhere on } \mathbb{R} \setminus I \right\}.$$

- 1. Prove that $\mathrm{BL}^2(I)$ is a Hilbert space.
- 2. Check that $\mathrm{BL}^2(I) \subset C^0_{\to 0}(\mathbb{R})$ and that the corresponding embedding is continuous.
- 3. Let us consider the continuous extension of $x \mapsto \sin x/x$, denoted sinc.
 - (a) Prove that the family $(\pi^{-1/2}\tau_{2\pi k}\operatorname{sinc})_{k\in\mathbb{Z}}$ is a Hilbert basis of $\operatorname{BL}^2(I)$.
 - (b) Prove (sampling theorem) that any element $u \in BL^2(I)$ can be decomposed as follows

$$u(x) = \sum_{k \in \mathbb{Z}} u(2\pi k) \operatorname{sinc}(x - 2\pi k),$$

the convergence being uniform in \mathbb{R} , and also holds in $L^2(\mathbb{R})$.

EXERCISE 7. Prove that the following distributions are tempered and compute their Fourier transform:

- 1. δ_0 3. H (Heaviside), 5. |x| in \mathbb{R} .
- 2. 1, 4. p. v.(1/x),

Indication : p. v.(1/x) is an odd distribution, so its Fourier transform is also odd.

EXERCISE 8. The aim of this exercice is to compute the Fourier transform of the following tempered distribution on \mathbb{R}^2

$$\langle T, \varphi \rangle_{\mathscr{S}', \mathscr{S}} = \int_{\mathbb{R}} \varphi(x, x) \, \mathrm{d}x, \quad \varphi \in \mathscr{S}(\mathbb{R}^2).$$

1. Let $\psi \in \mathscr{S}(\mathbb{R}^2)$. Prove that

$$\langle \widehat{T}, \psi \rangle_{\mathscr{S}',\mathscr{S}} = \lim_{\varepsilon \to 0^+} I_{\varepsilon}$$
 où $I_{\varepsilon} = \int_{\mathbb{R}} e^{-\varepsilon x^2} \widehat{\psi}(x, x) \, \mathrm{d}x.$

2. By using the expression of $\widehat{\psi}(x, x)$, show that

$$I_{\varepsilon} = 2\sqrt{\pi} \int_{\mathbb{R}^2} e^{-\zeta^2} \psi(\xi, 2\sqrt{\varepsilon}\zeta - \xi) \,\mathrm{d}\xi \,\mathrm{d}\zeta.$$

3. Deduce the expression of \hat{T} .

EXERCISE 9. Given some real number $s \in \mathbb{R}$, we define the Sobolev space $H^{s}(\mathbb{R}^{d})$ by

$$H^{s}(\mathbb{R}^{d}) = \left\{ u \in \mathscr{S}'(\mathbb{R}^{d}) : \langle \xi \rangle^{s} \widehat{u} \in L^{2}(\mathbb{R}^{d}) \right\},\$$

equipped with the following scalar product

$$\langle u, v \rangle_{H^s} = \int_{\mathbb{R}^d} \langle \xi \rangle^{2s} \widehat{u}(\xi) \overline{\widehat{v}(\xi)} \, \mathrm{d}\xi, \quad u, v \in H^s(\mathbb{R}^d).$$

- 1. Show that $H^{s_1}(\mathbb{R}^d)$ embeds continuously into $H^{s_2}(\mathbb{R}^d)$ for $s_1 \geq s_2$.
- 2. Check that $\delta_0 \in H^s(\mathbb{R}^d)$ for s < -d/2.
- 3. When $s \in \mathbb{N}^*$ is a nonnegative integer, the Sobolev space is also given by

$$H^{s}(\mathbb{R}^{d}) = \left\{ u \in L^{2}(\mathbb{R}^{n}) : \forall |\alpha| \leq s, \, \partial^{\alpha} u \in L^{2}(\mathbb{R}^{d}) \right\}.$$

4. Prove that there exists a positive constant c > 0 such that for all $u \in \mathcal{S}(\mathbb{R}^3)$,

$$\|u\|_{L^{\infty}(\mathbb{R}^3)} \le c \, \|u\|_{H^1(\mathbb{R}^3)}^{1/2} \|u\|_{H^2(\mathbb{R}^3)}^{1/2}$$

Hint: Considering R > 0, use the following decomposition

$$\|\widehat{u}\|_{L^1(\mathbb{R}^3)} = \int_{|\xi| \le R} \langle \xi \rangle |\widehat{u}(\xi)| \frac{\mathrm{d}\xi}{\langle \xi \rangle} + \int_{|\xi| > R} \langle \xi \rangle^2 |\widehat{u}(\xi)| \frac{\mathrm{d}\xi}{\langle \xi \rangle^2}.$$

- 5. (a) Prove that if s > d/2, the space $H^s(\mathbb{R}^d)$ embeds continuously to $C^0_{\to 0}(\mathbb{R}^d)$, the space of continuous functions u on \mathbb{R}^d satisfying $u(x) \to 0$ as $|x| \to +\infty$.
 - (b) State an analogous result in the case where s > d/2 + k for some $k \in \mathbb{N}$. Deduce that $\bigcap_{s \in \mathbb{R}} H^s(\mathbb{R}^d) \subset C^{\infty}(\mathbb{R}^d)$.

EXERCISE 10. Let us consider the function

$$\gamma_0: \varphi(x', x_d) \in C_0^\infty(\mathbb{R}^d) \mapsto \varphi(x', x_d = 0) \in C_0^\infty(\mathbb{R}^{d-1}).$$

Prove that for all s > 1/2, the function γ_0 can be uniquely extended as an application mapping $H^s(\mathbb{R}^d)$ to $H^{s-1/2}(\mathbb{R}^{d-1})$.

Hint: For all $\varphi \in C_0^{\infty}(\mathbb{R}^d)$, begin by computing the Fourier transform of the function $\gamma_0 \phi$.