TD 11: REVIEWS

EXERCISE 1. We consider the vector space $E = C^{\infty}([0,1],\mathbb{R})$ equipped with the following metric

$$d(f,g) = \sum_{k \ge 0} \frac{1}{2^k} \min\left(1, \|f^{(k)} - g^{(k)}\|_{\infty}\right).$$

- 1. Check that E is a Fréchet space.
- 2. Prove that any closed and bounded subset of E is compact.
- 3. Can the topology of E be defined by a norm ?

EXERCISE 2. For all $n \ge 0$, we set e^n the sequence which every term is zero, except the n^{th} which is 1. Recall that $c_0(\mathbb{N})$ denotes the subspace of $l^{\infty}(\mathbb{N})$ of sequences that converge to zero. Let

$$S = \left\{ \varphi \in c_0(\mathbb{N})^* : \sum_{n=0}^{+\infty} \varphi(e^n) = 0 \right\}.$$

- 1. Justify that S is well-defined and show that S is strongly closed in $c_0(\mathbb{N})^*$.
- 2. Show that S is weakly closed in $c_0(\mathbb{N})^*$, i.e. closed for the $\sigma(c_0(\mathbb{N})^*, c_0(\mathbb{N})^{**})$ -topology.
- 3. Show that S is not weakly-* closed in $c_0(\mathbb{N})^*$, i.e. not closed for the $\sigma(c_0(\mathbb{N})^*, c_0(\mathbb{N}))$ -topology.

EXERCISE 3 (Banach limit).

1. Let $s : \ell^{\infty}(\mathbb{N}) \to \ell^{\infty}(\mathbb{N})$ be the shift operator, defined by $s(x)_i = x_{i+1}$ for all $i \in \mathbb{N}$ and $x \in \ell^{\infty}(\mathbb{N})$. Prove the existence of a continuous linear function $\Lambda \in (\ell^{\infty}(\mathbb{N}))'$ satisfying $\Lambda \circ s = \Lambda$ and

$$\forall u \in \ell^{\infty}(\mathbb{N}), \quad \liminf_{n \to +\infty} u_n \leq \Lambda(u) \leq \limsup_{n \to +\infty} u_n.$$

Such a linear form Λ is called Banach limit.

Hint: Consider the vector space of bounded sequences that converge in the sense of Cesàro.

- 2. Deduce that there exists a function $\mu : \mathcal{P}(\mathbb{N}) \to \mathbb{R}_+$ which satisfies
 - (i) $\mu(\mathbb{N}) = 1$,
 - (*ii*) μ is finitely additive: $\forall A, B \subset \mathbb{N}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$,
 - (*iii*) μ is left-invariant: $\forall k \in \mathbb{N}$ and $A \subset \mathbb{N}$, $\mu(k+A) = \mu(A)$.

EXERCISE 4. Let *H* be a real Hilbert space and $J : H \to \mathbb{R}$ be a continuous convex functional. We assume that *J* is coercive, that is, $J(x) \to +\infty$ when $||x|| \to +\infty$. Prove then that there exists x_{\star} in *H* such that $J(x_{\star}) = \inf_{x \in H} J(x)$.

EXERCISE 5. Let $T: L^2[0,1] \to L^2[0,1]$ be the operator defined by

$$(Tf)(x) = \int_0^1 e^{-|x-y|} f(y) \,\mathrm{d}y.$$

- 1. Prove that T is well-defined, selfadjoint, compact and that $||T|| \leq 1$.
- 2. Let g = Tf, where $f \in C^0[0, 1]$. Check that g is in $C^2[0, 1]$ and satisfies

$$g'' - g = -2f$$
, $g(0) = g'(0)$, $g(1) = -g'(1)$.

- 3. Reciprocally, let $g \in C^2[0, 1]$ satisfying g(0) = g'(0) and g(1) = g'(1). We set f = (g g'')/2. Check that g = Tf.
- 4. Prove that $\operatorname{Im} T$ is dense in $L^2[0,1]$. Is 0 an eigenvalue of T?
- 5. Let $f \in C^0[0,1]$ and g = Tf. Check that

$$2\langle Tf, f \rangle_{L^2} = |g(0)|^2 + |g(1)|^2 + \int_0^1 |g(x)|^2 \,\mathrm{d}x + \int_0^1 |g'(x)|^2 \,\mathrm{d}x.$$

Deduce that $2\langle Tf, f \rangle_{L^2} \ge ||Tf||_{L^2}^2$.

- 6. Prove that $\sigma(T) \subset [0, 1]$.
- 7. For all $\lambda \in (0, 1]$, we set $a_{\lambda} = \sqrt{(2 \lambda)/\lambda}$. Check that

$$\lambda \in \sigma(T) \cap (0,1] \iff (1-a_{\lambda}^2) \sin a_{\lambda} + 2a_{\lambda} \cos a_{\lambda} = 0.$$

8. Deduce that $\sigma(T) = \{0\} \cup \{\lambda_n : n \ge 0\}$, with

$$\frac{2}{1 + (\pi/2 + n\pi)^2} < \lambda_n < \frac{2}{1 + (n\pi)^2}.$$

EXERCISE 6. Prove that there is no distribution $T \in \mathcal{D}'(\mathbb{R})$ such that

$$T(\varphi) = \int_{\mathbb{R}} \exp\left(\frac{1}{x^2}\right) \varphi(x) \, \mathrm{d}x, \quad \varphi \in C_0^{\infty}(\mathbb{R} \setminus \{0\}).$$

Hint: Construct a sequence $(\varphi_n)_n$ converging to zero in $C_0^{\infty}(\mathbb{R})$ such that each φ_n is supported in $\{1/n \leq |x| \leq 2/n\}$ and $(T(\varphi_n))_n$ converges to $+\infty$.