TD 11: Reviews

Exercise 1. We consider the vector space $E=C^{\infty}([0,1], \mathbb{R})$ equipped with the following metric

$$
d(f, g)=\sum_{k \geq 0} \frac{1}{2^{k}} \min \left(1,\left\|f^{(k)}-g^{(k)}\right\|_{\infty}\right) .
$$

1. Check that E is a Fréchet space.
2. Prove that any closed and bounded subset of E is compact.
3. Can the topology of E be defined by a norm ?

Exercise 2. For all $n \geq 0$, we set e^{n} the sequence which every term is zero, except the $n^{\text {th }}$ which is 1 . Recall that $c_{0}(\mathbb{N})$ denotes the subspace of $l^{\infty}(\mathbb{N})$ of sequences that converge to zero. Let

$$
S=\left\{\varphi \in c_{0}(\mathbb{N})^{*}: \sum_{n=0}^{+\infty} \varphi\left(e^{n}\right)=0\right\}
$$

1. Justify that S is well-defined and show that S is strongly closed in $c_{0}(\mathbb{N})^{*}$.
2. Show that S is weakly closed in $c_{0}(\mathbb{N})^{*}$, i.e. closed for the $\sigma\left(c_{0}(\mathbb{N})^{*}, c_{0}(\mathbb{N})^{* *}\right)$-topology.
3. Show that S is not weakly-* closed in $c_{0}(\mathbb{N})^{*}$, i.e. not closed for the $\sigma\left(c_{0}(\mathbb{N})^{*}, c_{0}(\mathbb{N})\right.$)-topology.

Exercise 3 (Banach limit).

1. Let $s: \ell^{\infty}(\mathbb{N}) \rightarrow \ell^{\infty}(\mathbb{N})$ be the shift operator, defined by $s(x)_{i}=x_{i+1}$ for all $i \in \mathbb{N}$ and $x \in \ell^{\infty}(\mathbb{N})$. Prove the existence of a continuous linear function $\Lambda \in\left(\ell^{\infty}(\mathbb{N})\right)^{\prime}$ satisfying $\Lambda \circ s=\Lambda$ and

$$
\forall u \in \ell^{\infty}(\mathbb{N}), \quad \liminf _{n \rightarrow+\infty} u_{n} \leq \Lambda(u) \leq \limsup _{n \rightarrow+\infty} u_{n}
$$

Such a linear form Λ is called Banach limit.
Hint: Consider the vector space of bounded sequences that converge in the sense of Cesàro.
2. Deduce that there exists a function $\mu: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{R}_{+}$which satisfies
(i) $\mu(\mathbb{N})=1$,
(ii) μ is finitely additive: $\forall A, B \subset \mathbb{N}$ with $A \cap B=\emptyset, \mu(A \cup B)=\mu(A)+\mu(B)$,
(iii) μ is left-invariant: $\forall k \in \mathbb{N}$ and $A \subset \mathbb{N}, \mu(k+A)=\mu(A)$.

Exercise 4. Let H be a real Hilbert space and $J: H \rightarrow \mathbb{R}$ be a continuous convex functional. We assume that J is coercive, that is, $J(x) \rightarrow+\infty$ when $\|x\| \rightarrow+\infty$. Prove then that there exists x_{\star} in H such that $J\left(x_{\star}\right)=\inf _{x \in H} J(x)$.

Exercise 5. Let $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be the operator defined by

$$
(T f)(x)=\int_{0}^{1} e^{-|x-y|} f(y) \mathrm{d} y .
$$

1. Prove that T is well-defined, selfadjoint, compact and that $\|T\| \leq 1$.
2. Let $g=T f$, where $f \in C^{0}[0,1]$. Check that g is in $C^{2}[0,1]$ and satisfies

$$
g^{\prime \prime}-g=-2 f, \quad g(0)=g^{\prime}(0), \quad g(1)=-g^{\prime}(1) .
$$

3. Reciprocally, let $g \in C^{2}[0,1]$ satisfying $g(0)=g^{\prime}(0)$ and $g(1)=g^{\prime}(1)$. We set $f=\left(g-g^{\prime \prime}\right) / 2$. Check that $g=T f$.
4. Prove that $\operatorname{Im} T$ is dense in $L^{2}[0,1]$. Is 0 an eigenvalue of T ?
5. Let $f \in C^{0}[0,1]$ and $g=T f$. Check that

$$
2\langle T f, f\rangle_{L^{2}}=|g(0)|^{2}+|g(1)|^{2}+\int_{0}^{1}|g(x)|^{2} \mathrm{~d} x+\int_{0}^{1}\left|g^{\prime}(x)\right|^{2} \mathrm{~d} x .
$$

Deduce that $2\langle T f, f\rangle_{L^{2}} \geq\|T f\|_{L^{2}}^{2}$.
6. Prove that $\sigma(T) \subset[0,1]$.
7. For all $\lambda \in(0,1]$, we set $a_{\lambda}=\sqrt{(2-\lambda) / \lambda}$. Check that

$$
\lambda \in \sigma(T) \cap(0,1] \Longleftrightarrow\left(1-a_{\lambda}^{2}\right) \sin a_{\lambda}+2 a_{\lambda} \cos a_{\lambda}=0
$$

8. Deduce that $\sigma(T)=\{0\} \cup\left\{\lambda_{n}: n \geq 0\right\}$, with

$$
\frac{2}{1+(\pi / 2+n \pi)^{2}}<\lambda_{n}<\frac{2}{1+(n \pi)^{2}} .
$$

Exercise 6. Prove that there is no distribution $T \in \mathscr{D}^{\prime}(\mathbb{R})$ such that

$$
T(\varphi)=\int_{\mathbb{R}} \exp \left(\frac{1}{x^{2}}\right) \varphi(x) \mathrm{d} x, \quad \varphi \in C_{0}^{\infty}(\mathbb{R} \backslash\{0\}) .
$$

Hint: Construct a sequence $\left(\varphi_{n}\right)_{n}$ converging to zero in $C_{0}^{\infty}(\mathbb{R})$ such that each φ_{n} is supported in $\{1 / n \leq|x| \leq 2 / n\}$ and $\left(T\left(\varphi_{n}\right)\right)_{n}$ converges to $+\infty$.

