TD 2: LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES AND FRÉCHET SPACES

In the following, "locally convex topological vector space" will be abbreviated as l.c.t.v.s.

EXERCISE 1. Let *E* be a locally convex topological vector space whose topology is induced by a (separating) countable family of semi-norms $(p_n)_{n \in \mathbb{N}}$. We define

$$d(x,y) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \frac{p_n(x-y)}{1+p_n(x-y)}, \quad x,y \in E.$$

Let us prove that the topology induced by d and the topology induced by the family of seminorms $(p_n)_{n \in \mathbb{N}}$ coincide.

- 1. Show that $g: [0, \infty) \to \mathbb{R}$ defined by $g(t) = \frac{t}{1+t}$ is an increasing sub-additive function and give its image. Deduce that d is a translation invariant distance on E.
- 2. Give a basis of neighbourhoods of 0_E for the topology induced by the family of semi-norms, and show that every neighbourhood of 0_E contains an open ball for the distance d.
- 3. Show that every open ball for the distance d centered on 0_E contains a neighbourhood of 0_E for the topology induced by the family of semi-norms.
- 4. Conclude.

More generally, let us consider a continuous bounded function $g: [0, +\infty) \to \mathbb{R}_+$ and

$$d_g(x,y) = \sum_{n=0}^{+\infty} \frac{1}{2^n} g(p_n(x-y)), \quad x, y \in E$$

5. Under what condition on g does d_g defines a distance on E whose topology coincide with the one induced by the family of seminorms $(p_n)_{n \in \mathbb{N}}$?

EXERCISE 2. Let X and Y be l.c.t.v.s. We consider $(p_{\alpha})_{\alpha \in A}$ (resp. $(q_{\beta})_{\beta \in B}$) a countable family of continuous semi-norms which is separating and generates the topology of X (resp. of Y). Let $T: X \to Y$ be a linear map. Prove that T is continuous if and only if for all $\beta \in B$, there exists a finite set $I \subset A$ and a positive constant c > 0 such that for all $u \in X$,

$$q_{\beta}(Tu) \le c \sum_{\alpha \in I} p_{\alpha}(u).$$

EXERCISE 3 (Space of continuous functions). Let U be an open subset of \mathbb{R}^d and $(K_n)_n$ be an exhaustive sequence of compacts of U.

1. Prove that $C^0(U)$ is a Fréchet space for the distance

$$d(f,g) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \min(1, p_n(f-g)),$$

defined by the semi norms $p_n(f) = \sup_{x \in K_n} |f(x)|$.

- 2. Recall that a subset $B \subset C^0(U)$ is said to be bounded if for any neighborhood V of 0, there exists $\lambda > 0$ such that $\lambda B \subset V$. Prove that if B is a subset of equibounded functions of $C^0(U)$, that is $\sup_{f \in B} ||f||_{\infty} < \infty$, then B is bounded.
- 3. Let us consider $(f_n)_n$ a sequence of continuous function on U such that $f_n : U \to [0, n]$ with $f_n = 0$ on K_n and $f_n = n$ on $U \setminus K_{n+1}$. Show that $\bigcup_n \{f_n\}$ is a bounded subset of $C^0(U)$.
- 4. Prove that the space $C^0(\mathbb{R})$ is not locally bounded, that is, the origin does not have a bounded neighborhood.

EXERCISE 4 (Space of C^{∞} functions). We consider the vector space $E = C^{\infty}([0,1],\mathbb{R})$ equipped with the following metric

$$d(f,g) = \sum_{k \ge 0} \frac{1}{2^k} \min\left(1, \|f^{(k)} - g^{(k)}\|_{\infty}\right).$$

- 1. Check that E is a Fréchet space.
- 2. Prove that any closed and bounded (cf the previous exercise) subset of E is compact.
- 3. Can the topology of E be defined by a norm ?

EXERCISE 5 (L^p spaces with $0). Let <math>p \in (0, 1)$ and L^p be the set of real-valued measurable functions u defined over [0, 1], modulo almost everywhere vanishing functions, for which the following quantity is finite:

$$||u||_p = \left(\int_0^1 |u(x)|^p \,\mathrm{d}x\right)^{\frac{1}{p}}.$$

- 1. Show that L^p is a vector space and that $d(u, v) = ||u v||_p^p$ is a distance. Prove that (L^p, d) is complete.
- 2. Let $f \in L^p$ and $n \ge 1$ be a positive integer. Prove that there exist some points $0 = x_0 < x_1 < \ldots < x_n = 1$ such that for all $i = 0, \ldots, n 1$,

$$\int_{x_i}^{x_{i+1}} |f|^p \, \mathrm{d}x = \frac{1}{n} \int_0^1 |f|^p \, \mathrm{d}x.$$

3. Prove that the only convex open domain in L^p containing $u \equiv 0$ is L^p itself. Deduce that the space L^p is not locally convex.

Hint: Introduce the functions $g_i^n = nf \mathbb{1}_{[x_i, x_{i+1}]}$.

4. Bonus: Show that the (topological) dual space of L^p reduces to $\{0\}$.