TD 3: HAHN-BANACH THEOREMS

EXERCISE 1 (Hahn-Banach Theorem without the axiom of choice).

- 1. Let (E, d_E) and (F, d_F) be metric spaces, (F, d_F) being complete, $D \subset E$ be a dense subset and $f: (D, d_E) \to (f, d_F)$ be a uniformly continuous function. Then, there exists a unique continuous function $F: (E, d_E) \to (F, d_F)$ such that $F_{|D} = f$. Moreover, prove that the function F is uniformly continuous.
- 2. Let *E* be a real separable Banach space and *p* be a continuous seminorm on *E*. Let *M* be a linear subspace of *E* and $\varphi : M \to \mathbb{R}$ be a linear functional which is dominated by *p*. Without using the axiom of choice, prove that φ can be extended to a linear functional $E \to \mathbb{R}$ which remains dominated by *p*.

EXERCISE 2 (Separation in Hilbert spaces without the Hahn-Banach theorem). In this exercise, the use of the axiom of choice is prohibited. Let H be an Hilbert space.

1. Let $C \subset H$ be a convex, closed and non-empty set. Prove that any $v \notin C$ can be strictly separated by C by a closed hyperplane, *i.e.* there exists $v_0 \in H$ such that

$$\forall u \in C, \quad \langle v_0, u \rangle < \langle v_0, v \rangle.$$

2. Let $C_1, C_2 \subset H$ be convex, closed and non-empty disjoint sets, C_1 being moreover compact. Prove that C_1 and C_2 can be strictly separated by a closed hyperplane, *i.e.* there exists $u_0 \in H$ such that

$$\sup_{u \in C_1} \langle u_0, u \rangle < \inf_{u \in C_2} \langle u_0, u \rangle$$

EXERCISE 3 (First uses of the Hahn-Banach theorem). Let E be a normed vector space.

1. Let G be a vector subspace of E and $g: G \to \mathbb{R}$ be a continuous linear form. Recall why there exists a continuous linear form f over E that extends g, and such that

$$||f||_{E^*} = ||g||_{G^*}.$$

When E is an Hilbert space, prove that this extension is unique.

- 2. Assume that $E = \ell^1(\mathbb{N})$. Give the example of a continuous linear form of norm 1, defined on a strict vector subspace of E, which admits an infinite number of linear continuous extensions of norm 1 over E.
- 3. Assume that E is a Banach space.
 - (a) Prove that for all $x \in E$,

$$||x|| = \max_{f \in E^* : ||f||_{E^*} \le 1} |f(x)|.$$

(b) Let B be a subset of E such that

$$\forall f \in E^*, \quad \sup_{x \in B} f(x) < +\infty.$$

Prove that B is bounded.

EXERCISE 4 (Convex sets that cannot be separated). Let H be the Hilbert space $L^2([-1,1])$. For every $\alpha \in \mathbb{R}$, let $C_{\alpha} \subset H$ be the subset of continuous functions $u : [-1,1] \to \mathbb{R}$ such that $u(0) = \alpha$. Prove that C_{α} is a convex dense subset of H. Deduce that, if $\alpha \neq \beta$, then C_{α} and C_{β} are convex disjoint subsets that cannot be separated by a continuous linear form.

EXERCISE 5 (Banach limit).

1. Let $s : \ell^{\infty}(\mathbb{N}) \to \ell^{\infty}(\mathbb{N})$ be the shift operator, defined by $s(x)_i = x_{i+1}$ for all $i \in \mathbb{N}$ and $x \in \ell^{\infty}(\mathbb{N})$. Prove the existence of a continuous linear function $\Lambda \in (\ell^{\infty}(\mathbb{N}))'$ satisfying $\Lambda \circ s = \Lambda$ and

$$\forall u \in \ell^{\infty}(\mathbb{N}), \quad \liminf_{n \to +\infty} u_n \le \Lambda(u) \le \limsup_{n \to +\infty} u_n.$$

Such a linear form Λ is called Banach limit.

Hint: Consider the vector space of bounded sequences that converge in the sense of Cesàro.

- 2. Deduce that there exists a function $\mu: \mathcal{P}(\mathbb{N}) \to \mathbb{R}_+$ which satisfies
 - (i) $\mu(\mathbb{N}) = 1$,
 - (*ii*) μ is finitely additive: $\forall A, B \subset \mathbb{N}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$,
 - (*iii*) μ is left-invariant: $\forall k \in \mathbb{N}$ and $A \subset \mathbb{N}$, $\mu(k+A) = \mu(A)$.

EXERCISE 6 (Finite-dimensional case).

- 1. Let $C \subset \mathbb{R}^d$ be a convex set such that $C \neq \mathbb{R}^d$, and $x_0 \notin C$. Prove that there exists an affine hyperplane that separates C and $\{x_0\}$.
- 2. Does this result hold in an infinite dimensional space ?

EXERCISE 7 (Convex hull). Let *E* be a locally convex topological vector space (abbreviated l.c.t.v.s. in the following). One says that *H* is a closed half-space if there exists a $\varphi \in E^*$ and $a \in \mathbb{R}$ such that $H = \{u \in E \mid \varphi(u) \leq a\}$.

- 1. If C is a convex subset of E, show that its closure \overline{C} is also convex.
- 2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces containing A.
- 3. Deduce that $\overline{co(A)}$ is the intersection of the closed half-spaces containing A for any subset A of E, where co(A) denotes the convex hull of the set A, that is, the smallest convex set that contains A.

EXERCISE 8 (Density criterion).

- 1. Let *E* be a real normed vector space and $F \subset E$ be a vector subspace such that $\overline{F} \neq E$. Prove that there exists $\varphi \in E' \setminus \{0\}$ such that $\varphi(u) = 0$ for all $u \in F$.
- 2. Application: Let $(a_n)_n$ be a sequence in $]1, +\infty[$ that diverges to $+\infty$. Prove that the set

$$W = \operatorname{span}\Big\{x \in [0,1] \mapsto \frac{1}{x - a_n} : n \ge 0\Big\},$$

is dense in the space $\mathcal{C}^0([0,1])$ equipped with the norm $\|\cdot\|_{\infty}$.

Hint: While considering a continuous linear form that vanishes on W, introduce a generating function.