TD 7: Compact operators

- **EXERCISE** 1. Let H be a Hilbert space.
 - 1. Prove that $\mathcal{K}(H)$ is closed in $\mathcal{L}(H)$.
 - 2. Let $T \in \mathcal{K}(H)$ and $S \in \mathcal{L}(H)$. Prove that the operators TS and ST are also compact.

EXERCISE 2. Let H be a Hilbert space and $T: H \to H$ be linear and continuous.

1. Prove that the following assertions are equivalent

- (i) T is compact.
- (*ii*) For any sequence $(x_n)_n$ that weakly converges in H, the sequence $(Tx_n)_n$ strongly converges in H.
- (*iii*) T is the limit in $\mathcal{L}(H)$ of finite rank operators.
- 2. We now assume that H is infinite-dimensional and that T is compact. Is the operator T right or left invertible ? Application: Study the compactness of the shift operator $T : I^2(\mathbb{N}) \to I^2(\mathbb{N})$ defined for all

Application: Study the compactness of the shift operator $T : l^2(\mathbb{N}) \to l^2(\mathbb{N})$ defined for all $x = (x_n)_n \in l^2(\mathbb{N})$ by $(Tx)_0 = 0$ and $(Tx)_n = x_{n-1}$ for all $n \ge 1$.

3. When T is compact, prove that T^* is also a compact operator.

EXERCISE 3. Let $(\lambda_n)_n$ a sequence of complex numbers, and $T: l^2(\mathbb{N}) \to l^2(\mathbb{N})$ be the operator defined by

$$T((x_n)_n) = (\lambda_n x_n)_n, \quad (x_n)_n \in l^2(\mathbb{N}).$$

- 1. Check that the operator T is well-defined and bounded on $l^2(\mathbb{N})$ if and only if the sequence $(\lambda_n)_n$ is bounded.
- 2. Prove that the operator T is compact if and only if the sequence $(\lambda_n)_n$ converges to 0.

EXERCISE 4. Let $T: L^2(0,1) \to L^2(0,1)$ be the Volterra operator defined by

$$(Tf)(x) = \int_0^x f(y) \, \mathrm{d}y, \quad f \in L^2(0,1), \, x \in [0,1].$$

- 1. Check that $Tf \in C^0[0,1]$ for all $f \in L^2(0,1)$.
- 2. Prove that the operator T is compact.
- 3. Compute the adjoint of the operator T.
- 4. Deduce that the operator TT^* is the following

$$(TT^*f)(x) = \int_0^1 \min(x, y) f(y) \, \mathrm{d}y, \quad f \in L^2(0, 1), \, x \in [0, 1].$$

- 5. Justify that the operator TT^* is compact, selfadjoint and non-negative.
- 6. Prove that the set of eigenvalues of the operator T^*T is given by

$$\left\{\frac{1}{(n\pi + \pi/2)^2} : n \ge 0\right\}.$$

7. Deduce the value of the norm of the operator T.