TD 1: First elliptic equations

Exercise 1. Let $\Omega=(0,1)$. Establish the following Poincaré inequality

$$
\forall f \in H_{0}^{1}(\Omega), \quad\|f\|_{L^{2}(\Omega)} \leq \frac{1}{\pi}\left\|f^{\prime}\right\|_{L^{2}(\Omega)},
$$

and prove that the constant $1 / \pi$ is optimal.
Hint: Use Fourier series.
Exercise 2. Let $\Omega=(0,1)$. The purpose of this exercice is to prove with a variational method that given a function $f \in L^{2}(\Omega)$, there exists a unique function $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
-u^{\prime \prime}+\sinh (u)=f \quad \text { in } L^{2}(\Omega) . \tag{1}
\end{equation*}
$$

1. Preliminaries: Let H be a real Hilbert space and $J: H \rightarrow \mathbb{R}$ be a continuous convex functional. We assume that J is coercive, that is, $J(x) \rightarrow+\infty$ when $\|x\| \rightarrow+\infty$. Prove then that there exists x_{\star} in H such that $J\left(x_{\star}\right)=\inf _{x \in H} J(x)$.
2. In this question, we prove that there exists a unique $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega), \quad \int_{0}^{1}\left(u^{\prime}(x) v^{\prime}(x)+\sinh (u(x)) v(x)-f(x) v(x)\right) \mathrm{d} x=0 . \tag{2}
\end{equation*}
$$

To that end, we introduce the functional $J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined for all $v \in H_{0}^{1}(\Omega)$ by

$$
J(v)=\int_{0}^{1}\left(\frac{1}{2}\left|v^{\prime}(x)\right|^{2}+\cosh (v(x))-f(x) v(x)\right) \mathrm{d} x .
$$

a) Check that the functional J is well-defined, strictly convex and coercive.
b) Prove that the functional J is differentiable on $H_{0}^{1}(\Omega)$ and give the expression of its derivative.
c) Deduce from the preliminary question that the variational problem (2) admits a unique solution $u \in H_{0}^{1}(\Omega)$.
3. Prove that the unique function $u \in H_{0}^{1}(\Omega)$ satisfying (2) belongs to $H^{2}(\Omega)$ and is also the unique function that satisfies (1).
4. When the function f is continuous on $[0,1]$, check that $u \in C^{2}(\bar{\Omega})$ is a strong solution of (1), in the sense that

$$
\forall x \in[0,1], \quad-u^{\prime \prime}(x)+\sinh (u(x))=f(x) .
$$

Exercise 3. Let $\Omega=(0,1)$. We aim at proving that there exists a unique $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ satisfying

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\cos (u) \\
u(0)=u(1)=0
\end{array}\right.
$$

1. Given $v \in L^{2}(\Omega)$, check that the following problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\cos (v), \\
u(0)=u(1)=0,
\end{array}\right.
$$

admits a unique solution $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$.
Hint: Use Riesz' representation theorem in $H_{0}^{1}(\Omega)$.
2. Conclude by using the Banach-Picard fixed point theorem on the space $L^{2}(\Omega)$.

ExERCISE 4. Let ρ be a compactly supported C^{∞} function on \mathbb{R}^{3}. We are looking for a function $u \in C^{2}\left(\mathbb{R}^{3}\right)$ satisfying

$$
\begin{equation*}
-\Delta u=\rho, \tag{3}
\end{equation*}
$$

under the following decreasing conditions at infinity

$$
\begin{equation*}
x \mapsto|x| u(x) \text { is bounded, } \quad x \mapsto|x|^{2} \nabla u(x) \text { is bounded. } \tag{4}
\end{equation*}
$$

1. Check that the function $x \mapsto 1 /|x|$ is of class C^{2} on $\mathbb{R}^{3} \backslash\{0\}$ and compute its Laplacian.
2. Let Ω be a smooth open subset of \mathbb{R}^{3}. We denote by $n(x)$ the unit normal vector exiting at $x \in \partial \Omega$ and $\mathrm{d} \sigma$ the measure surface on $\partial \Omega$. We consider two functions u, v of class C^{2} on $\bar{\Omega}$. By using Stokes' formula, prove Green's formula for the Laplacian:

$$
\int_{\Omega}(v \Delta u-u \Delta v) \mathrm{d} x=\int_{\partial \Omega}\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) \mathrm{d} \sigma(x) .
$$

3. For $0<\alpha<\beta$, we define the following sphere and annulus

$$
S_{\alpha}=\left\{x \in \mathbb{R}^{3}:|x|=\alpha\right\} \quad \text { and } \quad A_{\alpha, \beta}=\left\{x \in \mathbb{R}^{3}: \alpha \leq|x| \leq \beta\right\} .
$$

Let $0<\varepsilon<R$. We consider $u \in C^{2}\left(\mathbb{R}^{3}\right)$ satisfying (4). For all $x \in \mathbb{R}^{3}$, prove the following identity

$$
\frac{1}{\varepsilon^{2}} \int_{S_{\varepsilon}} u(x+y) \mathrm{d} \sigma(y)=\int_{A_{\varepsilon, R}} \frac{(-\Delta u)(x+y)}{|y|} \mathrm{d} y+\mathcal{O}\left(\frac{1}{R}\right)+\mathcal{O}(\varepsilon) .
$$

4. Prove that the unique solution of (3) satisfying (4) is given for all $x \in \mathbb{R}^{3}$ by

$$
u(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\rho(y)}{|x-y|} \mathrm{d} y .
$$

5. Let $p \in[1,3)$. Check that there exists a constant C_{p} independent of ρ, such that

$$
\|\nabla u\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq C_{p}\|\rho\|_{L^{p}\left(\mathbb{R}^{3}\right)}^{p / 3}\|\rho\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}^{1-p / 3} .
$$

Hint: Consider the domains $\{|x-y| \leq r\}$ and $\{|x-y|>r\}$, and optimize with respect to r.
6. Prove the following formula:

$$
\|\nabla u\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(x) \rho(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y .
$$

