TD 3: Elliptic regularity and maximum principles

EXERCISE 1 (Control of the L^{∞} norm). Let Ω be an open bounded subset of \mathbb{R}^d of class C^2 . Let $A \in C^1(\overline{\Omega}, S_d(\mathbb{R}))$ satisfying the following ellipticity condition

(1)
$$\exists \alpha > 0, \forall (x, \xi) \in \Omega \times \mathbb{R}^d, \quad A(x)\xi \cdot \xi \ge \alpha |\xi|^2.$$

Let $f \in L^2(\Omega)$ and $u \in H^1_0(\Omega)$ be the weak solution of the following Dirichlet problem

$$\begin{cases}
-\operatorname{div}(A(x)\nabla u) = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$

1. In this question, we assume that $d \leq 3$. Show that there exists a constant $C \geq 0$ depending only on Ω and d such that

(2)
$$||u||_{L^{\infty}(\Omega)} \le C(||f||_{L^{2}(\Omega)} + ||u||_{L^{2}(\Omega)}).$$

- 2. We assume that $\Omega = B(0, R)$ where R > 0.
 - (a) Compute Δv when $v(x) = \psi(|x|)$ is a radial function.
 - (b) By considering the function $u(x) = \ln |\ln |x||$ and the case $A(x) = I_d$, discuss the validity of the estimate (2) when $d \ge 4$.

Remark: One can prove (this is a bit technical) that when $d \geq 4$ and $f \in L^p(\Omega)$, where p > d/2, there exists a positive constant C > 0 only depending on d, Ω and p such that the following estimate, somehow analogous to (2), holds

$$||u||_{L^{\infty}(\Omega)} \le C(||f||_{L^{p}(\Omega)} + ||u||_{L^{2}(\Omega)}).$$

EXERCISE 2 (Hölder regularity). The purpose of this exercise is to show a gain of derivatives in Hölder spaces for the solution u to the Poisson equation $-\Delta u = \rho$, where $\rho \in C^0(\mathbb{R}^3)$ is a function with compact support. Let G be the Green function of the Laplacian in dimension 3. Let us recall that the function

$$u(x) = (G * \rho)(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\rho(y)}{|x - y|} dy,$$

is solution of the Poisson equation in \mathbb{R}^3 . We assume that $\rho \in C^{\alpha}(\mathbb{R}^3)$ for a given $\alpha \in (0,1)$, and we set

$$[\rho]_{\dot{C}^{\alpha}(\mathbb{R}^{3})} = \sup_{x \neq z \in \mathbb{R}^{3}} \frac{|\rho(x) - \rho(y)|}{|x - y|^{\alpha}} < +\infty.$$

Let K be a compact of \mathbb{R}^3 . We want to prove that $u, \nabla u \in C^{\alpha}(K)$ and that there exists a positive constant c > 0 only depending on K, d, α and on the support of ρ such that

$$[u]_{\dot{C}^{\alpha}(K)} + [\nabla u]_{\dot{C}^{\alpha}(K)} \le c[\rho]_{\dot{C}^{\alpha}(\mathbb{R}^3)}.$$

- 1. Show that $u \in C^{\alpha}(K)$ and that the estimate (3) holds for u.
- 2. By introducing a cut-off function ω_{ε} of the form $\omega_{\varepsilon}(x) = \theta(\varepsilon^{-1}|x|)$ and considering the approximation $u_{\varepsilon} = (G\omega_{\varepsilon}) * \rho$, prove that $\nabla u \in C^{\alpha}(K)$ and that the estimate (3) holds for the function ∇u .

Remark: By using similar techniques, one can prove that for all $\delta \in (0, \alpha)$, we have $\nabla^2 u \in C^{\delta}(K)$ and also that there exists a positive constant c' > 0 depending only on K, d, α , δ and the support of the function ρ such that

$$[\nabla^2 u]_{\dot{C}^{\delta}(K)} \le c'[\rho]_{\dot{C}^{\alpha}(\mathbb{R}^3)}.$$

EXERCISE 3 (Weak maximum principle). Let Ω be a bounded open subset of \mathbb{R}^d with smooth boundary and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $\Delta u \leq 0$ on Ω . Proof by hand that

$$\min_{\overline{\Omega}} u = \min_{\partial \Omega} u.$$

Hint: Assume first that $\Delta u < 0$.

EXERCISE 4 (Weak maximum principle for weak solutions). Let $\Omega \subset \mathbb{R}^d$ be a bounded open set. We consider the following operator $L = -\operatorname{div}(A(x)\nabla \cdot)$, where $A \in L^{\infty}(\Omega, M_d(\mathbb{R}))$ satisfies the following ellipticity assumption

$$\exists \alpha > 0, \forall (x, \xi) \in \Omega \times \mathbb{R}^d, \quad A(x)\xi \cdot \xi \ge \alpha |\xi|^2.$$

We want to prove that if $u \in H_0^1(\Omega)$ is a weak solution of the equation $Lu \leq 0$, then $u \leq 0$ a.e. in the set Ω .

- 1. Prove that there exists a non-negative function $G \in C^1(\mathbb{R})$ with bounded derivative such that G' > 0 on $(0, +\infty)$ and G' = 0 on $(-\infty, 0]$.
- 2. Check that we have

$$\int_{\Omega} |\nabla u(x)|^2 (G' \circ u)(x) \, \mathrm{d}x \le 0.$$

3. Conclude.

EXERCISE 5 (No solution). Let L > 0. We aim at proving that when $L \gg 1$ is large enough, there is no smooth solution u satisfying $-u'' = e^u$ in (0, L) and u(0) = u(L) = 0. We assume by contradiction that such a solution $u \in C^0[0, L] \cap C^2(0, L)$ exists.

- 1. Given $\varepsilon > 0$, we consider the function $w = u + \varepsilon$. Give the equation satisfied by this new function w.
- 2. We consider the family of functions $(v_{\lambda})_{\lambda \geq 0}$ defined on [0, L] by $v_{\lambda}(x) = \lambda \sin(\pi x/L)$. Give the equations satisfied by these functions.
- 3. Prove that when $L \gg 1$ is large enough, the function w is a sub-solution of the equation established in the above question. Check moreover that when $0 < \lambda \ll 1$ is sufficiently small, then $v_{\lambda} < w$ on [0, L].
- 4. Let us now start increasing λ until the graphs of v_{λ} and w touch at some point

$$\lambda_0 = \sup \{ \lambda \ge 0 : \forall x \in [0, L], \ v_{\lambda}(x) < w(x) \}.$$

By considering the function $p = v_{\lambda_0} - w$ and using the weak maximum principle, obtain a contradiction.