TD 3: ElLIPTIC REGULARITY AND MAXIMUM PRINCIPLES

Exercise 1 (Control of the L^{∞} norm). Let Ω be an open bounded subset of \mathbb{R}^{d} of class C^{2}. Let $A \in C^{1}\left(\bar{\Omega}, S_{d}(\mathbb{R})\right)$ satisfying the following ellipticity condition

$$
\begin{equation*}
\exists \alpha>0, \forall(x, \xi) \in \Omega \times \mathbb{R}^{d}, \quad A(x) \xi \cdot \xi \geq \alpha|\xi|^{2} . \tag{1}
\end{equation*}
$$

Let $f \in L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$ be the weak solution of the following Dirichlet problem

$$
\left\{\begin{array}{rll}
-\operatorname{div}(A(x) \nabla u) & =f & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega .
\end{array}\right.
$$

1. In this question, we assume that $d \leq 3$. Show that there exists a constant $C \geq 0$ depending only on Ω and d such that

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right) . \tag{2}
\end{equation*}
$$

2. We assume that $\Omega=B(0, R)$ where $R>0$.
(a) Compute Δv when $v(x)=\psi(|x|)$ is a radial function.
(b) By considering the function $u(x)=\ln |\ln | x| |$ and the case $A(x)=\mathrm{I}_{d}$, discuss the validity of the estimate (2) when $d \geq 4$.
Remark: One can prove (this is a bit technical) that when $d \geq 4$ and $f \in L^{p}(\Omega)$, where $p>d / 2$, there exists a positive constant $C>0$ only depending on d, Ω and p such that the following estimate, somehow analogous to (2), holds

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|f\|_{L^{p}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right) .
$$

Exercise 2 (Hölder regularity). The purpose of this exercise is to show a gain of derivatives in Hölder spaces for the solution u to the Poisson equation $-\Delta u=\rho$, where $\rho \in C^{0}\left(\mathbb{R}^{3}\right)$ is a function with compact support. Let G be the Green function of the Laplacian in dimension 3. Let us recall that the function

$$
u(x)=(G * \rho)(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\rho(y)}{|x-y|} \mathrm{d} y,
$$

is solution of the Poisson equation in \mathbb{R}^{3}. We assume that $\rho \in C^{\alpha}\left(\mathbb{R}^{3}\right)$ for a given $\alpha \in(0,1)$, and we set

$$
[\rho]_{\dot{C}^{\alpha}\left(\mathbb{R}^{3}\right)}=\sup _{x \neq z \in \mathbb{R}^{3}} \frac{|\rho(x)-\rho(y)|}{|x-y|^{\alpha}}<+\infty .
$$

Let K be a compact of \mathbb{R}^{3}. We want to prove that $u, \nabla u \in C^{\alpha}(K)$ and that there exists a positive constant $c>0$ only depending on K, d, α and on the support of ρ such that

$$
\begin{equation*}
[u]_{\dot{C}^{\alpha}(K)}+[\nabla u]_{\dot{C}^{\alpha}(K)} \leq c[\rho]_{\dot{C}^{\alpha}\left(\mathbb{R}^{3}\right)} . \tag{3}
\end{equation*}
$$

1. Show that $u \in C^{\alpha}(K)$ and that the estimate (3) holds for u.
2. By introducing a cut-off function ω_{ε} of the form $\omega_{\varepsilon}(x)=\theta\left(\varepsilon^{-1}|x|\right)$ and considering the approximation $u_{\varepsilon}=\left(G \omega_{\varepsilon}\right) * \rho$, prove that $\nabla u \in C^{\alpha}(K)$ and that the estimate (3) holds for the function ∇u.
Remark: By using similar techniques, one can prove that for all $\delta \in(0, \alpha)$, we have $\nabla^{2} u \in C^{\delta}(K)$ and also that there exists a positive constant $c^{\prime}>0$ depending only on K, d, α, δ and the support of the function ρ such that

$$
\left[\nabla^{2} u\right]_{\dot{C}^{\delta}(K)} \leq c^{\prime}[\rho]_{\dot{C}^{\alpha}\left(\mathbb{R}^{3}\right)} .
$$

Exercise 3 (Weak maximum principle). Let Ω be a bounded open subset of \mathbb{R}^{d} with smooth boundary and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfying $\Delta u \leq 0$ on Ω. Proof by hand that

$$
\min _{\bar{\Omega}} u=\min _{\partial \Omega} u .
$$

Hint: Assume first that $\Delta u<0$.
EXERCISE 4 (Weak maximum principle for weak solutions). Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set. We consider the following operator $L=-\operatorname{div}(A(x) \nabla \cdot)$, where $A \in L^{\infty}\left(\Omega, M_{d}(\mathbb{R})\right)$ satisfies the following ellipticity assumption

$$
\exists \alpha>0, \forall(x, \xi) \in \Omega \times \mathbb{R}^{d}, \quad A(x) \xi \cdot \xi \geq \alpha|\xi|^{2} .
$$

We want to prove that if $u \in H_{0}^{1}(\Omega)$ is a weak solution of the equation $L u \leq 0$, then $u \leq 0$ a.e. in the set Ω.

1. Prove that there exists a non-negative function $G \in C^{1}(\mathbb{R})$ with bounded derivative such that $G^{\prime}>0$ on $(0,+\infty)$ and $G^{\prime}=0$ on $(-\infty, 0]$.
2. Check that we have

$$
\int_{\Omega}|\nabla u(x)|^{2}\left(G^{\prime} \circ u\right)(x) \mathrm{d} x \leq 0 .
$$

3. Conclude.

Exercise 5 (No solution). Let $L>0$. We aim at proving that when $L \gg 1$ is large enough, there is no smooth solution u satisfying $-u^{\prime \prime}=e^{u}$ in $(0, L)$ and $u(0)=u(L)=0$. We assume by contradiction that such a solution $u \in C^{0}[0, L] \cap C^{2}(0, L)$ exists.

1. Given $\varepsilon>0$, we consider the function $w=u+\varepsilon$. Give the equation satisfied by this new function w.
2. We consider the family of functions $\left(v_{\lambda}\right)_{\lambda \geq 0}$ defined on $[0, L]$ by $v_{\lambda}(x)=\lambda \sin (\pi x / L)$. Give the equations satisfied by these functions.
3. Prove that when $L \gg 1$ is large enough, the function w is a sub-solution of the equation established in the above question. Check moreover that when $0<\lambda \ll 1$ is sufficiently small, then $v_{\lambda}<w$ on $[0, L]$.
4. Let us now start increasing λ until the graphs of v_{λ} and w touch at some point

$$
\lambda_{0}=\sup \left\{\lambda \geq 0: \forall x \in[0, L], v_{\lambda}(x)<w(x)\right\} .
$$

By considering the function $p=v_{\lambda_{0}}-w$ and using the weak maximum principle, obtain a contradiction.

