TD 6: Maximum principles and stability of steady states
Exercise 1. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set, $T>0$ be a final time and $Q_{T}=(0, T] \times \Omega$. We consider the following differential operator

$$
L=-\sum_{i, j=1}^{d} a^{i, j}(t, x) \partial_{x_{i}} \partial_{x_{j}}+\sum_{i=1}^{n} b^{i}(t, x) \partial_{x_{i}}+c(t, x), \quad(t, x) \in Q_{T},
$$

the coefficients $a^{i, j}, b^{i}$ and c being bounded on $\overline{Q_{T}}$, with moreover $a^{i, j}=a^{j, i}$. We assume that the operator $\partial_{t}+L$ is uniformly parabolic, that is,

$$
\exists \theta>0, \forall(t, x) \in Q_{T}, \forall \xi \in \mathbb{R}^{d}, \quad \sum_{i, j=1}^{d} a^{i, j}(t, x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}
$$

State as many maximum principles as you can for the parabolic operator $\partial_{t}+L$.
EXERCISE 2. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set, $T>0$ be a positive time and $Q_{T}=(0, T] \times \Omega$. We also consider $f \in C^{1}(\mathbb{R})$ a smooth function. Let $u, v \in C^{2}\left(Q_{T}\right) \cap C^{0}\left(\overline{Q_{T}}\right)$ be two functions satisfying

$$
\left\{\begin{aligned}
\partial_{t} v-\Delta v-f(v) & \leq \partial_{t} u-\Delta u-f(u) & & \text { in } Q_{T} \\
v & \leq u & & \text { on } \Gamma_{T} .
\end{aligned}\right.
$$

Prove that $v \leq u$ on Q_{T}.
Application: Consider $u \in C^{2}\left(Q_{T}\right) \cap C^{0}\left(\overline{Q_{T}}\right)$ a solution of the equation

$$
\left\{\begin{aligned}
\partial_{t} u-\Delta u & =u(1-u)(u-a) & & \text { in } Q_{T}, \\
u & =0 & & \text { on }(0, T] \times \partial \Omega, \\
u(0, \cdot) & =u_{0} & & \text { in } \Omega,
\end{aligned}\right.
$$

where $0<a<1$ is a positive constant and u_{0} is a smooth initial datum satisfying $0 \leq u_{0} \leq 1$ in Ω. Prove that the function u is bounded as follows

$$
\forall(t, x) \in Q_{T}, \quad 0 \leq u(t, x) \leq 1
$$

Can you be more precise when assuming $0 \leq u_{0}<a$ in Ω ?
Exercise 3. Let $L>0$. Prove that there exists a critical length $L_{c}>0$ such that the equation

$$
\left\{\begin{align*}
q^{\prime \prime}+q(1-q) & =0 \quad x \in(0, L) \tag{1}\\
q(0)=q(L) & =0
\end{align*}\right.
$$

has a non-trivial non-negative solution if and only if $L>L_{c}$.
Hint: The function $H\left(q_{1}, q_{2}\right)=q_{1}^{2} / 2+q_{2}^{2} / 2-q_{1}^{3} / 3$ is a Lyapunov function for this equation.

Exercise 4. Let $0<L<\pi$ be a length, $u_{0} \in L^{2}(0, L)$ be an initial datum such that $0 \leq u_{0} \leq 1$ a.e. and u be the solution of the Fisher-KPP equation

$$
\left\{\begin{align*}
\partial_{t} u-\partial_{x x} u & =u(1-u), & & t>0, x \in(0, L), \tag{2}\\
u(t, 0)=u(t, L) & =0, & & t>0, \\
u(0, x) & =u_{0}(x), & & x \in(0, L),
\end{align*}\right.
$$

1. Prove the following estimate

$$
\forall t \geq 0, \quad\|u(t)\|_{L^{2}(0, L)} \leq e^{\left(1-\pi^{2} / L^{2}\right) t}\left\|u_{0}\right\|_{L^{2}(0, L)}
$$

and deduce that $u(t) \rightarrow 0$ in $L^{2}(0, L)$ as $t \rightarrow+\infty$.
2. We now aim at proving that $u(t, x) \rightarrow 0$ as $t \rightarrow+\infty$ for all $x \in[0, L]$.
(a) Find a subsolution \underline{u} of the equation (2).
(b) We consider \bar{u} the solution of the equation

$$
\left\{\begin{aligned}
\partial_{t} \bar{u}-\partial_{x x} \bar{u} & =\bar{u} & & t>0, x \in(0, L), \\
\bar{u}(t, 0)=\bar{u}(t, L) & =0 & & t>0, \\
\bar{u}(0, x) & =u_{0}(x) & & x \in(0, L),
\end{aligned}\right.
$$

Check that \bar{u} is a supersolution of the equation (2).
(c) Prove that $\bar{u}(t, x) \rightarrow 0$ for all $x \in[0, L]$ as $t \rightarrow+\infty$ and conclude.

Exercise 5. We still consider the Fisher-KPP equation (2). Assuming this time that $L>\pi$, we aim at proving that there exists a supersolution \bar{u} of the equation (2) such that $u(t, x) \leq \bar{u}(t, x)$ for all $t \geq 0$ and $x \in(0, L)$, and satisfying $\bar{u}(t, x) \rightarrow_{t \rightarrow+\infty} q(x)$ for all $x \in[0, L]$, where q is the non-trivial non-negative steady state given by Exercice 3 .

1. Let \bar{u} be the solution of the equation

$$
\left\{\begin{aligned}
\partial_{t} \bar{u}-\partial_{x x} \bar{u} & =\bar{u}(1-\bar{u}), & & t>0, x \in(0, L), \\
\bar{u}(t, 0)=\bar{u}(t, L) & =0, & & t>0, \\
\bar{u}(0, x) & =M, & & x \in(0, L),
\end{aligned}\right.
$$

with $M=\max \left(1, \sup _{(0, L)} u_{0}\right)$. Prove that \bar{u} is a supersolution of the equation (2) which dominates the function u.
2. By comparing $\bar{u}(t+h, x)$ and $\bar{u}(t, x)$, prove that for all $x \in[0, L]$, the limit $w(x)=$ $\lim _{t \rightarrow+\infty} \bar{u}(t, x)$ exists and satisfies the estimate $0 \leq w(x) \leq M$.
3. Admit that w is a solution of the equation (1). Deduce then that $w=q$ and conclude.

Remark: One can also prove that there exists a subsolution \underline{u} converging pointwise to q and bounding the function u from below. As a consequence, $u(t, x) \rightarrow_{t \rightarrow+\infty} q(x)$ for all $x \in[0, L]$.

