TD 8: Pseudo-differential operators

Exercise 1.

1. Let $L=\sum_{|\alpha| \leq m} a_{\alpha}(x) \partial_{x}^{\alpha}$ be a differential operator of order $m \geq 0$ with smooth and fast decaying coefficients $a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{d}\right)$. Prove that for all $u \in \mathscr{S}\left(\mathbb{R}^{d}\right)$,

$$
(L u)(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} a(x, \xi) \widehat{u}(\xi) \mathrm{d} \xi, \quad x \in \mathbb{R}^{d},
$$

where the symbol a is defined by

$$
a(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x)(i \xi)^{\alpha}, \quad(x, \xi) \in \mathbb{R}^{2 d}
$$

2. For all $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ and $t \geq 0$, we set $e^{t \Delta} u_{0}$ as the mild solution at time t of the heat equation

$$
\left\{\begin{aligned}
\partial_{t} u-\Delta u & =0 \\
& \text { on }(0,+\infty) \times \mathbb{R}^{d} \\
u(0, \cdot)=u_{0} & \text { on } \mathbb{R}^{d} .
\end{aligned}\right.
$$

Prove that for all $t \geq 0$, the evolution operator $e^{t \Delta}$ is a pseudo-differential operator and give the expression of its symbol.
3. Let $m \in \mathbb{R}$ and $A \in \operatorname{Op}\left(S^{m}\right)$. Prove that there exists a unique $a \in S^{m}$ such that $\mathrm{Op}(a)=A$.

Exercise 2. Let $a \in S^{m}$ be a symbol of order $m \in \mathbb{R}$.

1. We denote by $\left[\mathrm{Op}(a), \partial_{x_{j}}\right]$ the commutator between the operator $\mathrm{Op}(a)$ and the partial derivative $\partial_{x_{j}}$ with respect to x_{j}. Prove that $\left[\mathrm{Op}(a), \partial_{x_{j}}\right]$ is also a pseudo-differential operator and compute its symbol as a function of a.
2. Same question with $\left[\mathrm{Op}(a), x_{j}\right]$, where x_{j} stands for the multiplication by x_{j}.

Exercise 3.

1. Let $m \in \mathbb{R}$ and $a \in S^{m}$. Prove that for all $s \in \mathbb{R}$, there exists a positive constant $c_{s}>0$ such that

$$
\forall u \in \mathscr{S}\left(\mathbb{R}^{d}\right), \quad\|\operatorname{Op}(a) u\|_{H^{s}} \leq c_{s}\|u\|_{H^{s+m}}
$$

Hint: Any operator in $\operatorname{Op}\left(S^{0}\right)$ is bounded in $L^{2}\left(\mathbb{R}^{d}\right)$.
2. Let $m_{1}, m_{2} \in \mathbb{R}$ and $a_{1} \in S^{m_{1}}, a_{2} \in S^{m_{2}}$. Check that

$$
\left[\operatorname{Op}\left(a_{1}\right), \operatorname{Op}\left(a_{2}\right)\right]-\operatorname{Op}\left(\frac{1}{i}\left\{a_{1}, a_{2}\right\}\right) \in \operatorname{Op}\left(S^{m_{1}+m_{2}-2}\right),
$$

where $\left\{a_{1}, a_{2}\right\}$ stands for the following Poisson bracket

$$
\left\{a_{1}, a_{2}\right\}=\nabla_{\xi} a_{1} \cdot \nabla_{x} a_{2}-\nabla_{x} a_{1} \cdot \nabla_{\xi} a_{2}
$$

EXERCISE 4. Let $m \in \mathbb{R}$ and $a \in S^{m}$.

1. Assume that there exists $b \in S^{-m}$ such that $\mathrm{Op}(a) \mathrm{Op}(b)-I \in \mathrm{Op}\left(S^{-\infty}\right)$. Prove that there exist $R>0$ and $c>0$ such that

$$
\begin{equation*}
\forall(x, \xi) \in \mathbb{R}^{2 d}, \quad|\xi| \geq R \Rightarrow|a(x, \xi)| \geq c\langle\xi\rangle^{m} \tag{1}
\end{equation*}
$$

Hint: Begin by checking that ab-1 $\in S^{-1}$.
2. Let us now assume that the symbol a satisfies the condition (1). We aim at proving that there exists a symbol $b \in S^{-m}$ such that $\operatorname{Op}(a) \operatorname{Op}(b)-I \in \operatorname{Op}\left(S^{-\infty}\right)$. The operator $\operatorname{Op}(b)$ is called a parametrix of the operator $\operatorname{Op}(a)$. To that end, we will construct a sequence of symbols $\left(b_{j}\right)_{j}$ such that $b_{j} \in S^{-m-j}$ and

$$
\forall n \geq 0, \quad a \sharp\left(b_{0}+\cdots+b_{n}\right)-1 \in S^{-n-1} .
$$

(a) Let $F \in C^{\infty}(\mathbb{C})$ such that $F(z)=1 / z$ when $|z| \geq c$. We set

$$
b_{0}(x, \xi)=\frac{1}{\langle\xi\rangle^{m}} F\left(a(x, \xi)\langle\xi\rangle^{-m}\right), \quad(x, \xi) \in \mathbb{R}^{2 d} .
$$

Prove that $b_{0} \in S^{-m}$ and that $a \sharp b_{0}-1 \in S^{-1}$.
(b) Construct then the other symbols b_{j} and conclude by using Borel's summation lemma.
(c) Check that we also have $\operatorname{Op}(b) \operatorname{Op}(a)-I \in \operatorname{Op}\left(S^{-\infty}\right)$.
(d) Application: Prove that for all $s, t \in \mathbb{R}$, there exist some positive constants $a_{s}, b_{s, t}>0$ such that

$$
\begin{equation*}
\forall u \in \mathscr{S}\left(\mathbb{R}^{d}\right), \quad\|u\|_{H^{s+m}} \leq a_{s}\|\operatorname{Op}(a) u\|_{H^{s}}+b_{s, t}\|u\|_{H^{t}} \tag{2}
\end{equation*}
$$

Exercise 5. Let $m \in \mathbb{R}$ and $a \in S^{m}$ be a symbol satisfying that there exist $c, R>0$ such that

$$
\forall(x, \xi) \in \mathbb{R}^{2 d}, \quad|\xi| \geq R \Rightarrow \operatorname{Re} a(x, \xi) \geq c\langle\xi\rangle^{m} .
$$

1. Prove that there exists $r \in S^{m-1}$ such that

$$
\forall u \in \mathscr{S}\left(\mathbb{R}^{d}\right), \quad \operatorname{Re}\langle\operatorname{Op}(a) u, u\rangle_{L^{2}}=\langle\operatorname{Op}(\operatorname{Re} a) u, u\rangle_{L^{2}}+\langle\operatorname{Op}(r) u, u\rangle
$$

2. Prove that for all $\tilde{r} \in S^{m-1}$, there exists a positive constant $c>0$ such that

$$
\forall u \in \mathscr{S}\left(\mathbb{R}^{d}\right), \quad\left|\langle\mathrm{Op}(\tilde{r}) u, u\rangle_{L^{2}}\right| \leq c\|u\|_{H^{(m-1) / 2}}^{2}
$$

3. Prove that there exists $b \in S^{m / 2}$ which is elliptic in the sense that (1) holds with $m / 2$, and such that $\operatorname{Op}(\operatorname{Re} a)-\operatorname{Op}(b)^{*} \operatorname{Op}(b) \in \operatorname{Op}\left(S^{m-1}\right)$.
4. Check that there exist $c_{0}, c_{1}>0$ such that

$$
\forall u \in \mathscr{S}\left(\mathbb{R}^{d}\right), \quad \operatorname{Re}\langle\operatorname{Op}(a) u, u\rangle_{L^{2}}+c_{1}\|u\|_{H^{(m-1) / 2}}^{2} \geq c_{0}\|u\|_{H^{m / 2}}^{2}
$$

Hint: Use the estimate (2) with the operator $\mathrm{Op}(b)$.
5. Prove finally that for all $s \in \mathbb{R}$, there exist some positive constants $a_{s}, b_{s}>0$ such that

$$
\forall u \in \mathscr{S}\left(\mathbb{R}^{d}\right), \quad \operatorname{Re}\langle\operatorname{Op}(a) u, u\rangle_{L^{2}}+a_{s}\|u\|_{H^{s}}^{2} \geq b_{s}\|u\|_{H^{m / 2}}^{2} .
$$

Hint: When $s<(m-1) / 2$, use Young's inequality with the exponents $p=2(m-2 s) /(m-2 s-1)$ and $q=2(m-2 s)$.

