TD 1 : TOPOLOGIE DES ESPACES MÉTRIQUES

EXERCICE 1. Lesquelles des fonctions suivantes donnent une métrique sur \mathbb{R} ?

a) $d(x,y) = (x-y)^2$,

c) $d(x,y) = |x-y|^{1/2}$,

b) $d(x,y) = |x - 2y|^2$,

d) $d(x,y) = |x^2 - y^2|$.

EXERCICE 2. Montrer que dans tout espace métrique les boules fermées sont fermées.

EXERCICE 3. Montrer que dans le monde des espaces métriques, l'adhérence de $B(x, \rho)$ peut être différente de $BF(x, \rho)$. Qu'en est-il dans le monde des espaces vectoriels normés?

EXERCICE 4. Soient (E,d) et (F,δ) des espaces métriques et $f:E\to F$ une application. Montrer que f est continue si et seulement si $f(\overline{A})\subset \overline{f(A)}$ pour toute partie A de E.

EXERCICE 5. Soient (E,d) et (F,δ) des espaces métriques et $f:E\to F$ une application continue.

- a) Soit $A \subset E$. Si A est ouvert, f(A) est-il ouvert? Si A est fermé, f(A) est-il fermé? Si $f^{-1}(A)$ est ouvert, A est-il ouvert?
- b) Soit $B \subset F$. Montrer que $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$. Que dire de l'inclusion réciproque?
- c) Soit $B \subset F$. Montrer que $f^{-1}(\mathring{B}) \subset \widehat{f^{-1}(B)}$. Que dire de l'inclusion réciproque?

EXERCICE 6 (Métrique SNCF). On note d la distance usuelle de \mathbb{R}^2 . Pour x, y les vecteurs du plan \mathbb{R}^2 nous définissons d'(x, y) = d(x, y) si x, y sont colinéaires et d'(x, y) = d(x, 0) + d(0, y) sinon.

- a) Montrer que d' définit une métrique
- b) Décrire les boules ouvertes de (\mathbb{R}^2, d') .
- c) Quelles sont l'adhérence du haut demi-plan $H = \{(x,y) \in \mathbb{R}^2 : y > 0\}$ et l'intérieur de l'axe des ordonnées Y?
- d) En quels points de \mathbb{R}^2 la rotation de centre 0 et les translations sont-elles continues?

EXERCICE 7. Soit (E, d) un espace métrique. On dit que la distance d est ultramétrique si pour tous $x, y, z \in E$,

$$d(x, z) \le \max (d(x, y), d(y, z))$$
.

- a) Si d est une distance, montrer qu'elle est ultramétrique si et seulement si pour tout $\varepsilon > 0$, la relation R_{ε} définie par $xR_{\varepsilon}y \iff d(x,y) < \varepsilon$ est une relation d'équivalence.
- b) Montrer que dans un espace ultramétrique, tout triangle est isocèle.
- c) Montrer que dans un espace ultramétrique, tout point dans une boule en est le centre : $\forall a \in B(x,\rho), B(x,\rho) = B(a,\rho)$. De même pour les boules fermées. Que dire de deux boules d'intersection non vide?

- d) Montrer que les boules ouvertes sont fermées et que les boules fermées de rayon strictement positif sont ouvertes. Quelle est la frontière d'une boule ouverte?
- e) Connaissez-vous des exemples de distances ultramétriques?

EXERCICE 8. Soit E le \mathbb{R} -espace vectoriel des fonctions C^{∞} de [0,1] dans \mathbb{R} . On pose

$$d(f,g) = \sum_{k \in \mathbb{N}} \frac{1}{2^{k+1}} \min \left(1, \sup_{x \in [0,1]} \left| f^{(k)}(x) - g^{(k)}(x) \right| \right).$$

- a) Montrer qu'il s'agit d'une distance.
- b) Montrer que $f_n \xrightarrow[n \to \infty]{} f$, si et seulement si pour chaque $k \geq 0$, la suite $(f_n^{(k)})$ converge uniformément vers $f^{(k)}$.

EXERCICE 9. On munit $C = [0,1]^{\mathbb{N}}$ de $d((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sum_{n \in \mathbb{N}} 2^{-n} |x_n - y_n|$.

- a) Montrer que d est une distance sur C.
- b) On fixe $n_0 \in \mathbb{N}$. Montrer que l'application $p_{n_0}: (C, d) \to (\mathbb{R}, |.|)$ définie par $p_{n_0}((x_n)_{n \in \mathbb{N}}) = x_{n_0}$ est continue.
- c) Soit (E, d) un espace métrique et $f: E \to C$. Montrer que f est continue si et seulement si $p_n \circ f$ est continue pour tout $n \in \mathbb{N}$.
- d) On note $\Omega = \{(x_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} \ x_n \in \{0,1\}\}$. Montrer que Ω est fermé dans C.

EXERCICE 10. Montrer que si $f:(E,d_E) \to (F,d_F)$ est une application continue entre deux espaces métriques, alors le graphe de f est fermé dans $E \times F$ pour la distance $d_{E \times F}$ donnée par

$$d_{E\times F}((x_1,y_1),(x_2,y_2)) = \max(d_E(x_1,x_2),d_F(y_1,y_2)), \quad (x_1,y_1),(x_2,y_2) \in E\times F.$$

Qu'en est-il de la réciproque?

EXERCICE 11. Soit (E, d) un espace métrique, et F une partie non vide de E. Pour $x \in E$, on pose $d_F(x) = \inf_{y \in F} d(x, y)$.

- a) Montrer que $d_F(x) = 0$ si et seulement si $x \in \overline{F}$.
- b) Montrer que d_F est une fonction 1-Lipschitzienne de E dans \mathbb{R} .
- c) Montrer que tout fermé de E est l'ensemble des zéros d'un fonction continue $f: E \to \mathbb{R}$.
- d) Lemme d'Urysohn : soient A et B deux fermés disjoints de E. Montrer qu'il existe une fonction continue $f: E \to [0,1]$ telle que $A = f^{-1}(\{0\})$ et $B = f^{-1}(\{1\})$.
- e) Soit $A \subset E$ un fermé. Montrer qu'il existe une fonction continue $f: E \to \mathbb{R}$ vérifiant pour tout $x \in E$:
 - $-x \in A \iff f(x) > 0$
 - $-x \in \partial A \iff f(x) = 0.$