TD 5 : FONCTIONS DIFFÉRENTIABLES

EXERCICE 1.

- 1. Soient E et F deux \mathbb{R} -espaces vectoriels normés de dimension finie et $f: E \to F$ une fonction différentiable, a et h des éléments de E. Quelle est la nature de df? de df_a ? de $df_a(h)$?
- 2. Soit $f: \mathbb{R}^n \to \mathbb{R}$. On suppose qu'il existe une constante M > 0 telle que pour tout $x \in \mathbb{R}^n$, $|f(x)| \leq M||x||^2$. Montrer que f est différentiable en 0 et que $\mathrm{d} f_0 = 0$.
- 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable. Dériver les fonctions u(x) = f(x, -x) et g(x, y) = f(y, x).
- 4. Soit $L \in \mathcal{L}(\mathbb{R}^n)$. Montrer que $x \mapsto \langle x, L(x) \rangle$ est différentiable et calculer sa différentielle.
- 5. Montrer que les polynômes de $\mathbb{R}[X_1,\ldots,X_n]$ vus comme fonctions sur \mathbb{R}^n sont de classe C^1 .

EXERCICE 2. Soient E, F_1 et F_2 des espaces vectoriels normés réels de dimension finie. Soit f: $E \to F_1 \times F_2$ une application dont on note f_1 et f_2 les applications coordonnées. Pour tout $a \in E$, montrer que l'application f est différentiable en a si et seulement si les applications f_1 et f_2 le sont et que dans ce cas, $df_a = (d(f_1)_a, d(f_2)_a)$.

EXERCICE 3. Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et $f: E \to \mathbb{R}$ une application différentiable.

- 1. Comment se traduit sur ∇f le fait que f est C^1 ?
- 2. Soient de plus $\phi: E \to E$, $u: \mathbb{R} \to \mathbb{R}$ et $\gamma: \mathbb{R} \to E$ des applications différentiables. Trouver une formule pour le gradient des composées $f \circ \phi$, $u \circ f$ et $f \circ \gamma$ (en admettant l'existence d'adjoints dans E).
- 3. Justifier que le gradient, s'il est non nul, est la direction de la plus grande pente, c'est-à-dire que parmi les chemins C^1 $\gamma: [-1,1] \to E$ tels que $\|\gamma'\| = 1$ et $\gamma(0) = a$, on a $(f \circ \gamma)'(0)$ maximal si et seulement si $\gamma'(0)$ est dans le sens et la direction de $\nabla f(a)$).
- 4. Soient a et $b \in \mathbb{R}^3 \setminus \{0\}$. Différentier puis calculer le gradient de la fonction définie sur $\mathbb{R}^3 \setminus \operatorname{Vect}(a)$ par $f(x) = \log(\|a \wedge x\|^2)e^{-\langle b, x \rangle}$.

EXERCICE 4. Montrer que les applications suivantes sont différentiables et calculer leurs différentielles :

1.
$$\theta_{M}: \begin{cases} \operatorname{GL}_{n}(\mathbb{R}) \to \mathbb{R} \\ A \mapsto \operatorname{Tr}(\operatorname{MA}^{-1}) \quad \text{pour } \operatorname{M} \in \operatorname{M}_{n}(\mathbb{R}). \end{cases}$$
3. $\psi: \begin{cases} M_{n}(\mathbb{R}) \to \mathbb{R} \\ A \mapsto \operatorname{det}(A). \end{cases}$
2. $\xi_{p}: \begin{cases} M_{n}(\mathbb{R}) \to \mathbb{R} \\ A \mapsto \operatorname{Tr}(A^{p}) \quad \text{pour } p \in \mathbb{N}. \end{cases}$
4. $\phi: \begin{cases} M_{n}(\mathbb{R}) \times \mathbb{R}^{n} \to \mathbb{R}^{n} \\ (A, X) \mapsto AX. \end{cases}$

EXERCICE 5.

- 1. Soit E un espace vectoriel réel de dimension finie. Une norme sur E considérée comme une application de E dans \mathbb{R} peut-elle être différentiable en 0?
- 2. Soit $N_p(x) = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ la norme p sur \mathbb{R}^n . Pour $p = 1, 2, \infty$, déterminer les points de différentiabilité de N_p . Indication : observer l'allure des boules.

EXERCICE 6. Soit $(V, \langle \cdot, \cdot \rangle)$ un espace euclidien. On définit l'application :

$$J: \begin{cases} V \setminus \{0\} & \to V \setminus \{0\} \\ x & \mapsto \frac{x}{\langle x, x \rangle}. \end{cases}$$

- 1. Montrer que J est bijective et trouver l'ensemble de ses points fixes.
- 2. Montrer que J est différentiable et calculer sa différentielle.
- 3. Montrer que pour tout x de $V \setminus \{0\}$, l'application $\mathrm{d}J_x$ est un multiple d'une application orthogonale (on dit que J est une application conforme.)

EXERCICE 7. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ différentiable et homogène de degré k, i.e.

$$\forall x \in \mathbb{R}^n, \forall t > 0, \quad f(tx) = t^k f(x).$$

- 1. Calculer $df_x(x)$.
- 2. Montrer que l'application $\mathrm{d}f:\mathbb{R}^n\to L(\mathbb{R}^n,\mathbb{R}^p)$ est homogène de degré k-1.

EXERCICE 8. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une fonction de classe C^1 . Montrer qu'il existe un ouvert U dense dans \mathbb{R}^n tel que le rang de $\mathrm{d} f_x$ soit localement constant sur U.

EXERCICE 9. Soit E un espace vectoriel normé de dimension finie supérieure ou égale à 2.

1. Soit f une fonction de classe C^1 définie sur l'ensemble $K := \{x \in E : 0 < ||x|| < R\}$ (à valeurs dans n'importe quel evn F de dimension finie), et vérifiant

$$\exists k > 0, \forall x \in K, \quad \|\mathrm{d}f_x\| \le k.$$

Montrer que la fonction f est k-lipschitzienne.

2. Montrer que si f est une application de classe C^1 définie sur un voisinage épointé de 0, et dont la limite de la différentielle en 0 existe dans $\mathcal{L}_c(E,F)$ et vaut L, alors la fonction f se prolonge en une application \tilde{f} différentiable en 0 et telle que $d\tilde{f}_0 = L$.

EXERCICE 10. Soit g une application différentiable de $E \to E$, où E est un espace vectoriel normé de dimension finie, telle que pour tout $x \in E$, $\|dg_x\| \le k$ avec 0 < k < 1. Montrer que $f = \mathrm{Id} + g$ est injective, puis que l'image inverse $f^{-1}(B)$ d'une partie bornée B est bornée.