TD 6 : DIFFÉRENTIATION ET DÉRIVÉES PARTIELLES

Exercice 1.

- a) Soient $f(x,y) = \frac{x^3}{x^2+y^2}$, $g(x,y) = \frac{x^3y}{x^4+y^2}$ et $h(x,y) = \frac{xy^3}{x^4+y^2}$. Ces fonctions se prolongent-elles en (0,0) par continuité? Y admettent-elles des dérivées directionnelles? Sont-elles différentiables? de classe C^1 ?
- b) Donner un exemple d'application $f: \mathbb{R}^n \to \mathbb{R}$ admettant des dérivées directionnelles en 0 mais qui n'est même pas continue en 0.

EXERCICE 2. Donner l'expression de la différentielle de l'application déterminant det : $M_n(\mathbb{R}) \to \mathbb{R}$ en utilisant la notion de dérivée partielle.

EXERCICE 3. Soit $\alpha > 0$. Étudier, en fonction de α , la continuité puis la différentiabilité à l'origine de l'application $f : \mathbb{R}^2 \to \mathbb{R}$ définie par f(0,0) = 0 et pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$,

$$f(x,y) = \frac{|xy|^{\alpha}}{\sqrt{x^2 + 3y^2}}.$$

Exercice 4.

- a) Soit E un espace vectoriel réel de dimension finie. Une norme sur E considérée comme une application de E dans \mathbb{R} peut-elle être différentiable en 0?
- b) Soit E un espace euclidien et N la norme euclidienne sur E. Montrer que N est différentiable sur E privé de l'origine et donner sa dérivée.
- c) Soit $N_p(x) = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ la norme p sur \mathbb{R}^n . Pour $p=1,2,\infty$, déterminer les points de différentiabilité de N_p . Déterminer les dérivées directionnelles de N_p là où elles sont définies. Indication : observer l'allure des boules.

EXERCICE 5. Soient I et J deux intervalles de \mathbb{R} , avec I ouvert et J compact, et $f: I \times J \to \mathbb{R}$ une fonction continue admettant une dérivée partielle en la première variable continue sur $I \times J$. On considère $a, b: I \to \mathbb{R}$ deux applications dérivables et $F: I \to \mathbb{R}$ la fonction définie par

$$F(x) = \int_{a(x)}^{b(x)} f(x,t) dt.$$

Montrer que F est dérivable sur I et donner l'expression de sa dérivée.

EXERCICE 6. Pour tous $a, b \in \mathbb{R}$ vérifiant $ab \neq 1$, exprimer la quantité $\arctan a + \arctan b$ en fonction de $\arctan\left(\frac{a+b}{1-ab}\right)$.

EXERCICE 7. On pose, pour $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$:

$$f(x,y) = x^2 + y^2 - 2x^2y - \frac{4x^6y^2}{(x^4 + y^2)^2},$$

avec f(0,0) = 0.

- a) Étudier la continuité de f sur \mathbb{R}^2 .
- b) On fixe θ et on pose $g_{\theta}(r) = f(r\cos(\theta), r\sin(\theta))$. Montrer que g_{θ} admet un minimum local strict en r = 0.
- c) Le point (0,0) est il un minimum local?

EXERCICE 8. Déterminer les applications $f \in C^1(\mathbb{R}^2, \mathbb{R})$ vérifiant

$$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = a,$$

avec $a \in \mathbb{R}$. On utilisera le changement de variables u = x + y et v = x - y.

EXERCICE 9. Soit $f: U \to \mathbb{R}$ une fonction de classe C^1 , où U est un ouvert connexe de \mathbb{R}^n . Montrer que les trois propriétés suivantes sont équivalentes :

- a) La fonction f est convexe.
- b) Pour tout $(x, y) \in U^2$, $f(y) \ge \langle \nabla f(x), y x \rangle + f(x)$.
- c) La fonction f peut s'écrire comme supremum d'une famille de fonctions affines.

Si f est convexe, montrer que ses points critiques dans U sont des minima globaux, et que l'ensemble de ces points critiques est convexe.

EXERCICE 10. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 .

- a) Montrer que la fonction $F: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto \begin{cases} \frac{f(x) f(y)}{x y} & \text{si } x \neq y, \\ f'(x) & \text{sinon}, \end{cases}$ est continue.
- b) Montrer que si f est de classe C^2 , alors F est de classe C^1 .

Exercice 11. Montrer que le système

$$\begin{cases} x = \frac{1}{4}\sin(x+y) \\ y = 1 + \frac{2}{3}\arctan(x-y), \end{cases}$$

admet une unique solution dans \mathbb{R}^2 .

EXERCICE 12. En utilisant le théorème de différentiabilité des suites de fonctions, montrer que l'application exponentielle exp : $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ est de classe C^1 .