Sheet 0: Sobolev spaces and elliptic problems in one dimension

EXERCISE 1. Let $\Omega = (0, 1)$.

1. Prove that the following continuous embeddings hold

$$W^{1,1}(\Omega) \hookrightarrow C^0(\bar{\Omega})$$
 and $W^{1,p}(\Omega) \hookrightarrow C^{0,1-1/p}(\bar{\Omega})$ when $p \in (1,\infty]$,

with the convention $1/\infty = 0$.

2. Prove that for all $1 \le p < \infty$, the space $W_0^{1,p}(\Omega)$ is given by

$$W_0^{1,p}(\Omega) = \left\{ u \in W^{1,p}(\Omega) : u(0) = u(1) = 0 \right\}.$$

EXERCISE 2. Let $0 < \alpha < 1$ and p > 1 be positive real numbers. Show that there exists a positive constant $C_{\alpha,p} > 0$ such that for all $u \in C_0^{\infty}(\mathbb{R})$,

$$\left(\iint_{\mathbb{R}\times\mathbb{R}}\left(\frac{|u(x)-u(y)|}{|x-y|^{\alpha}}\right)^{p} \frac{\mathrm{d}x\mathrm{d}y}{|x-y|}\right)^{1/p} \leq C_{\alpha,p} \|u\|_{L^{p}(\mathbb{R})}^{1-\alpha} \|\nabla u\|_{L^{p}(\mathbb{R})}^{\alpha}.$$

Hint: Consider the two regions $\{|x - y| > R\}$ and $\{|x - y| \le R\}$, where R > 0 is to be chosen.

EXERCISE 3. Let $\Omega = (0, 1)$. Establish the following Poincaré inequality

$$\forall f \in H_0^1(\Omega), \quad \|f\|_{L^2(\Omega)} \le \frac{1}{\pi} \|f'\|_{L^2(\Omega)},$$

and prove that the constant $1/\pi$ is optimal. *Hint*: Use Fourier series.

EXERCISE 4. Let $\Omega = (0, 1)$. We consider $f \in L^2(\Omega)$ and $\alpha \in L^{\infty}(\Omega)$ satisfying $0 < \alpha_{\min} \leq \alpha(x)$ a.e. in Ω .

1. By using the Riesz representation theorem, prove that there exists a unique $u \in H_0^1(\Omega)$ satisfying

$$-(\alpha u')' + u = f \quad \text{in } \mathcal{D}'(\Omega).$$

When in addition $\alpha \in C^{\infty}(\Omega)$, check that $u \in H^2(\Omega)$ and that the above equality holds in $L^2(\Omega)$. What about the case $\alpha = 1$?

2. We consider moreover $\beta \in C^1(\Omega)$ a function satisfying $\beta' \leq 2$ on Ω . By using the Lax-Milgram theorem, prove that there exists a unique $u \in H_0^1(\Omega)$ satisfying

$$-(\alpha u')' + \beta u' + u = f \quad \text{in } \mathcal{D}'(\Omega).$$

EXERCISE 5. Let $\Omega = (-1, 1)$. We consider $f \in C^0(\overline{\Omega})$ and g a function defined on $\partial\Omega$. Solve explicitly in $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ the following elliptic problem with Neumann boundary conditions

$$\begin{cases} -u'' = f & \text{on } \Omega, \\ \frac{\partial u}{\partial n} = g & \text{on } \partial \Omega \end{cases}$$

Can the Lax-Milgram theorem be used to study the above boundary value equation ?

EXERCISE 6. Let $\Omega = (0,1)$. We consider $f \in L^2(\Omega)$ and $\phi : \mathbb{R} \to \mathbb{R}_+$ a strictly convex C^1 function. The purpose is to prove with a variational method that there exists a unique function $u \in H^2(\Omega) \cap H^1_0(\Omega)$ satisfying

$$-u'' + \phi'(u) = f$$
 in $L^2(\Omega)$. (1)

- 1. Preliminaries: Let H be a real Hilbert space and $J : H \to \mathbb{R}$ be a continuous convex functional. We assume that J is coercive, that is, $J(x) \to +\infty$ when $||x|| \to +\infty$. Prove then that there exists x_{\star} in H such that $J(x_{\star}) = \inf_{x \in H} J(x)$.
- 2. In this question, we prove that there exists a unique $u \in H_0^1(\Omega)$ such that

$$\forall v \in H_0^1(\Omega), \quad \int_0^1 (u'(x)v'(x) + \phi'(u(x))v(x) - f(x)v(x)) \, \mathrm{d}x = 0.$$
(2)

To that end, we introduce the functional $J: H_0^1(\Omega) \to \mathbb{R}$ defined for all $v \in H_0^1(\Omega)$ by

$$J(v) = \int_0^1 \left(\frac{1}{2}|v'(x)|^2 + \phi(v(x)) - f(x)v(x)\right) \,\mathrm{d}x$$

- a) Check that the functional J is well-defined, strictly convex and coercive.
- b) Prove that the functional J is differentiable on $H_0^1(\Omega)$ and give the expression of its derivative.
- c) Deduce from the preliminary question that the variational problem (2) admits a unique solution $u \in H_0^1(\Omega)$.
- 3. Prove that the unique function $u \in H_0^1(\Omega)$ satisfying (2) belongs to $H^2(\Omega)$ and is also the unique function that satisfies (1).
- 4. When the function f is moreover continuous on [0, 1], check that $u \in C^2(\overline{\Omega})$ is a strong solution of (1), that is

$$\forall x \in [0, 1], \quad -u''(x) + \phi'(u(x)) = f(x).$$

EXERCISE 7. Let $\Omega = (0, 1)$. Prove that there exists a unique function $u \in C^{\infty}(\overline{\Omega})$ satisfying

$$\begin{cases} -u'' + u = \cos(u), \\ u(0) = u(1) = 0. \end{cases}$$

Hint: Use the Banach-Picard fixed point theorem on the space $L^2(\Omega)$.