Sheet 1: Weak formulation of elliptic equations

Exercise 1 (Ellipticity). For each of the following linear differential operator L, give the symbol, the principal symbol of L, and discuss the ellipticity and uniform ellipticity.

1. $L u(x)=-\sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u, \quad x \in \Omega \subset \mathbb{R}^{d}$,
2. $L f(x, v)=v \cdot \nabla_{x} f+F(x) \cdot \nabla_{v} f, \quad x, v \in \mathbb{R}^{d}, F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$,
3. $L u(t, x)=\partial_{t} u-\Delta u, \quad t>0, x \in \mathbb{R}^{d}$,
4. $L u(t, x)=\partial_{t} u-i \Delta u, \quad t>0, x \in \mathbb{R}^{d}$.

Exercise 2 (Faber-Krahn inequality). Let Ω be an open bounded subset of \mathbb{R}^{d} with $d \geq 3$ and $V \in L^{\infty}(\Omega)$ such that $V \geq 0$. We consider the problem

$$
\left\{\begin{align*}
-\Delta u & =V u & & \text { in } \Omega, \tag{1}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

1. Give the definition of a weak solution to (1).
2. Can you apply the Lax-Milgram theorem here?
3. Let $r>\frac{d}{2}$. Show that there is a constant $c_{d}>0$ depending on d only such that, if (1) has a non-trivial weak solution, then

$$
|\Omega|^{\frac{2}{d}-\frac{1}{r}}\|V\|_{L^{r}(\Omega)} \geq c_{d}
$$

Hint: Use the following Sobolev inequality

$$
\|u\|_{L^{2^{*}}(\Omega)} \leq M_{d}\|\nabla u\|_{L^{2}(\Omega)}, \quad \frac{1}{2^{*}}=\frac{1}{2}-\frac{1}{d},
$$

which holds for all $u \in H_{0}^{1}(\Omega)$, where M_{d} depends on d only.
4. What do you obtain in the particular case $V=\lambda=\mathrm{cst}$?

Exercise 3 (Dirichlet problem). Let Ω be an open bounded subset of $\mathbb{R}^{d}, f \in L^{2}(\Omega)$ and $F \in$ $L^{2}(\Omega)^{d}$. Show that the following elliptic problem with Dirichlet boundary condition

$$
\left\{\begin{aligned}
-\Delta u & =f-\operatorname{div} F & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

has a unique weak solution $u \in H_{0}^{1}(\Omega)$.
EXERCISE 4 (Neumann problem). Let Ω be an open bounded subset of \mathbb{R}^{d} with smooth boundary, the exterior unit normal being denoted by n, and $f \in L^{2}(\Omega)$. Show that, for all $\mu>0$, the elliptic problem with Neumann boundary condition

$$
\left\{\begin{align*}
-\Delta u+\mu u=f & \text { in } \Omega, \tag{2}\\
\frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega,
\end{align*}\right.
$$

has a unique weak solution $u \in H^{1}(\Omega)$. In the case $\mu=0$, give a necessary condition on $\int_{\Omega} f$ to the existence of a weak solution to (2).

EXERCISE 5 (Fourier condition). Let $\Omega \subset \mathbb{R}^{d}$ be an open bounded set with smooth boundary, $f \in L^{2}(\Omega), g \in L^{2}(\partial \Omega)$ and $\lambda>0$. We consider the following elliptic problem with Fourier boundary condition

$$
\left\{\begin{align*}
-\Delta u=f & & \text { in } \Omega \tag{3}\\
\lambda u+\frac{\partial u}{\partial n}=g & & \text { on } \partial \Omega .
\end{align*}\right.
$$

1. Give the variational formulation of the problem (3).
2. Prove that there exists a positive constant $C_{\Omega}>0$ only depending on Ω such that for all $u \in H^{1}(\Omega)$,

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq C_{\Omega}\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\lambda\left\|\gamma_{0} u\right\|_{L^{2}(\partial \Omega)}^{2}\right),
$$

where γ_{0} denotes the trace operator $\gamma_{0}: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$.
3. Prove that (3) has a unique weak solution.
4. * Is this weak solution a strong solution ?

Exercise 6 (System of equations). Let Ω be an open bounded subset of $\mathbb{R}^{d}, f, g \in L^{2}(\Omega)$ and A, B, C, D be four matrices in $\mathcal{M}_{d}(\mathbb{R})$. We analyse the following system of equations with Dirichlet boundary counditions

$$
\left\{\begin{aligned}
-\operatorname{div}(A \nabla u)-\operatorname{div}(B \nabla v) & =f & & \text { in } \Omega, \\
-\operatorname{div}(C \nabla u)-\operatorname{div}(D \nabla v) & =g & & \text { in } \Omega, \\
u & =0, & & \text { on } \partial \Omega, \\
v & =0, & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

We assume that the Legendre-Hadamard ellipticity condition holds:

$$
\exists \theta>0, \forall \xi \in \mathbb{R}^{d}, \forall \eta \in \mathbb{R}^{2}, \quad \sum_{i, j=1}^{2}\left(\mathcal{A}_{i j} \xi \cdot \xi\right) \eta_{i} \eta_{j} \geq \theta|\xi|^{2}|\eta|^{2} \quad \text { where } \quad \mathcal{A}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) .
$$

1. Check that A and D are uniformly elliptic.
2. Show that the functional $a(U, V):=\int_{\Omega} \sum_{i, j=1}^{2} \mathcal{A}_{i j} \nabla U_{i} \cdot \nabla V_{j} \mathrm{~d} x$ is continuous and coercive on $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. Hint: Use Bessel-Parseval theorem after extending U and V by 0 outside Ω.
3. Conclude.

Exercise 7 (Resolution by minimization). Let $\Omega \subset \mathbb{R}^{3}$ be open, bounded with smooth boundary. The purpose is to prove that the following elliptic problem has a non-trivial weak solution

$$
\left\{\begin{aligned}
-\Delta u=u^{3} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

1. Prove that there exists a solution to the following minimization problem

$$
\begin{equation*}
\inf \left\{\|\nabla v\|_{L^{2}(\Omega)}: v \in H_{0}^{1}(\Omega),\|v\|_{L^{4}(\Omega)}=1\right\} \tag{4}
\end{equation*}
$$

Recall: Since $d=3$ here, the continuous embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ holds for all $1 \leq q \leq 6$, and is moreover compact when $1 \leq q<6$.
2. Prove that if the function $v \in H_{0}^{1}(\Omega)$ solves (4), there exists a positive constant $\lambda>0$ such that $-\Delta v=\lambda v^{3}$ weakly in Ω.
3. Conclude.

