Sheet 2: Elliptic regularity and maximum principle

Exercise 1 (Control of the L^{∞} norm). Let Ω be an open bounded subset of \mathbb{R}^{d} of class C^{2}. Let $A \in C^{1}\left(\bar{\Omega}, S_{d}(\mathbb{R})\right)$ satisfying the following ellipticity condition

$$
\begin{equation*}
\exists \alpha>0, \forall(x, \xi) \in \Omega \times \mathbb{R}^{d}, \quad A(x) \xi \cdot \xi \geq \alpha|\xi|^{2} . \tag{1}
\end{equation*}
$$

Let $f \in L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$ be the weak solution of the following Dirichlet problem

$$
\left\{\begin{array}{rll}
-\operatorname{div}(A(x) \nabla u) & =f & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega .
\end{array}\right.
$$

1. In this question, we assume that $d \leq 3$. Show that there exists a constant $C \geq 0$ depending only on Ω and d such that

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right) . \tag{2}
\end{equation*}
$$

2. We assume that $\Omega=B(0, R)$ where $R>0$.
(a) Compute Δv when $v(x)=\psi(|x|)$ is a radial function.
(b) By considering the function $u(x)=\ln |\ln | x| |$ and the case $A(x)=\mathrm{I}_{d}$, discuss the validity of the estimate (2) when $d \geq 4$.
Note: One can prove (this is a bit technical) that when $d \geq 4$ and $f \in L^{p}(\Omega)$, where $p>d / 2$, there exists a positive constant $C>0$ only depending on d, Ω and p such that the following estimate, somehow analogous to (2), holds

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|f\|_{L^{p}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right) .
$$

Exercise 2 (Hölder regularity). The purpose is to show a gains of derivatives in Hölder spaces for the solution u to the Laplace equation $-\Delta u=f$, where $f \in C\left(\mathbb{R}^{3}\right)$ is a function with compact support. Let $G(x)=\frac{1}{4 \pi} \frac{1}{x \mid}$ be the Green function of the Laplacian in dimension 3. Let us recall that the function $u=G * f$ is a weak solution of the Poisson equation $-\Delta u=f$ in \mathbb{R}^{3}. We assume that $f \in C^{\alpha}\left(\mathbb{R}^{3}\right)$ for a given $\alpha \in(0,1)$, and we set

$$
[f]_{\dot{C}^{\alpha}\left(\mathbb{R}^{3}\right)}=\sup _{x \neq z \in \mathbb{R}^{3}} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<+\infty .
$$

Let K be a compact of \mathbb{R}^{3}. We first want to prove that $u, \nabla u \in C^{\alpha}(K)$ and that there exists a positive constant $c_{1}>0$ only depending on K, d, α and on the support of f such that

$$
\begin{equation*}
[u]_{\dot{C}^{\alpha}(K)}+[\nabla u]_{\dot{C}^{\alpha}(K)} \leq c_{1}[f]_{\dot{C}^{\alpha}\left(\mathbb{R}^{3}\right)} . \tag{3}
\end{equation*}
$$

1. Show that $u \in C^{\alpha}(K)$ and that the estimate (3) holds for u.
2. By introducing a cut-off function ω_{ε} of the forme $\omega_{\varepsilon}(x)=\theta\left(\varepsilon^{-1}|x|\right)$ and considering the approximation $u_{\varepsilon}=\left(G \omega_{\varepsilon}\right) * f$, prove that $\nabla u \in C^{\alpha}(K)$ and that the estimate (3) holds for the function ∇u.
Note: By using similar techniques, one can prove that for all $\delta \in(0, \alpha)$, we have $\nabla^{2} u \in C^{\delta}(K)$ and also that there exists a positive constant $c_{2}>0$ depending only on K, d, α, δ and the support of the function f such that

$$
\left[\nabla^{2} u\right]_{\dot{C}^{\delta}(K)} \leq c_{2}[f]_{\dot{C}^{\alpha}\left(\mathbb{R}^{3}\right)}
$$

Exercise 3 (A non-linear equation). Let Ω be a bounded subset of \mathbb{R}^{d} and $b: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a 1-Lipschitz function. Prove that the equation

$$
\left\{\begin{aligned}
-\Delta u+u & =b(\nabla u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

has a unique solution $u \in H_{0}^{1}(\Omega)$. Assuming moreover that $b \in C^{\infty}\left(\mathbb{R}^{d}\right)$, check that this solution u belongs to $C^{\infty}(\Omega)$.

EXERCISE 4 (Strong maximum principle). Let Ω be a bounded open subset of \mathbb{R}^{d} with smooth boundary and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfying $\Delta u \leq 0$ on Ω. Proof by hand that

$$
\min _{\bar{\Omega}} u=\min _{\partial \Omega} u .
$$

Hint: Assume first that $\Delta u<0$.
Exercise 5 (Weak maximum principle for weak solutions). Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set.

1. Let $G \in C^{1}(\mathbb{R})$ a function with bounded derivative satisfying $G(0)=0$.
a) Check that for all $u \in H^{1}(\Omega)$, we have $G \circ u \in L^{2}(\Omega)$.
b) Prove that $G \circ u \in H^{1}(\Omega)$ and that for all $1 \leq j \leq n$,

$$
\partial_{x_{j}}(G \circ u)=\left(G^{\prime} \circ u\right) \partial_{x_{j}} u .
$$

2. We consider the following operator $L=-\operatorname{div}(A(x) \nabla u)$, where $A \in L^{\infty}\left(\Omega, M_{d}(\mathbb{R})\right)$ satisfies the following ellipticity assumption

$$
\exists \alpha>0, \forall(x, \xi) \in \Omega \times \mathbb{R}^{d}, \quad A(x) \xi \cdot \xi \geq \alpha|\xi|^{2}
$$

We want to prove that if $u \in H_{0}^{1}(\Omega)$ is a weak solution of the equation $L u \leq 0$, then $u \leq 0$ a.e. in Ω.
(a) Prove that there exists a non-negative function $G \in C^{1}(\mathbb{R})$ with bounded derivative such that $G^{\prime}>0$ on $(0,+\infty)$ and $G^{\prime}=0$ on $(-\infty, 0]$.
(b) By considering $\langle L u, G \circ u\rangle_{L^{2}(\Omega)}$, prove that

$$
\int_{\Omega}|\nabla u(x)|^{2}\left(G^{\prime} \circ u\right)(x) \mathrm{d} x \leq 0
$$

(c) Conclude.

ExErcise 6 (Estimates on the gradient). Let Ω be an open bounded subset of \mathbb{R}^{d}. Let A be a symmetric definite positive $d \times d$ matrix and $f \in \operatorname{Lip}(\bar{\Omega})$. We will establish gradient estimates for solutions u to the equation $L u=f$ with Dirichlet homogeneous boundary condition, where L is the elliptic operator $L u=-\operatorname{div}(A \nabla u)$, under the assumption that there exists a function $\psi \in \operatorname{Lip}(\Omega) \cap C^{2}(\Omega)$ such that $L \psi \geq f$ in Ω and $\psi=0$ on $\partial \Omega$. For simplicity, we will consider the case where the function f is constant.

1. Let $\omega \subset \Omega$ and $u, v \in C^{2}(\omega) \cap C(\bar{\omega})$ satisfying $L u \leq L v$ in ω. Show that

$$
\sup _{\bar{\omega}}(u-v) \leq \sup _{\partial \omega}(u-v) .
$$

2. Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfying $L u=f$ in Ω.
(a) Prove that

$$
\sup \left\{\frac{|u(x)-u(y)|}{|x-y|}: x, y \in \Omega, x \neq y\right\}=\sup \left\{\frac{|u(x)-u(y)|}{|x-y|}: x \in \Omega, y \in \partial \Omega\right\} .
$$

Hint: given $x_{1}, x_{2} \in \Omega$ with $\tau=x_{2}-x_{1} \neq 0$, compare u and $u_{\tau}: x \mapsto u(x+\tau)$ in $\omega=\Omega \cap(-\tau+\Omega)$.
(b) We assume furthermore that $u=0$ on $\partial \Omega$. Show that $\operatorname{Lip}(u) \leq \operatorname{Lip}(\psi)$.
3. A ψ as above is called a barrier function. Construct a barrier function in the case $\Omega=B(0,1)$. Hint: consider $\psi(x)=-\gamma|x|^{2} / 2+C$ for some given constants $\gamma>0$ and $C \in \mathbb{R}$.

ExErcise 7. (Localization) Let Ω be an open subset of \mathbb{R}^{d}. We consider $A \in L_{\text {loc }}^{\infty}\left(\Omega, M_{d}(\mathbb{R})\right)$, $b \in L_{\mathrm{loc}}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ and $c \in L_{\mathrm{loc}}^{\infty}(\Omega)$ and L the operator defined by

$$
L u=-\operatorname{div}(A(x) \nabla u)+b \cdot \nabla u+c u .
$$

Assume that A satisfies the following ellipticity assumption

$$
\exists \alpha>0, \forall(x, \xi) \in \Omega \times \mathbb{R}^{d}, \quad A(x) \xi \cdot \xi \geq \alpha|\xi|^{2}
$$

Let Ω^{\prime} and $\Omega^{\prime \prime}$ be open subsets of Ω satisfying $\overline{\Omega^{\prime}} \subset \Omega^{\prime \prime}$ and $\overline{\Omega^{\prime \prime}} \subset \Omega$. Prove that there exists a positive constant $C>0$ such that for all $u \in H_{\mathrm{loc}}^{1}(\Omega)$,

$$
\|\nabla u\|_{L^{2}\left(\Omega^{\prime}\right)} \leq C\left(\|L u\|_{H^{-1}\left(\Omega^{\prime \prime}\right)}+\|u\|_{L^{2}\left(\Omega^{\prime \prime}\right)}\right) .
$$

