Sheet 2: Elliptic regularity and maximum principle

EXERCISE 1 (Control of the L^{∞} norm). Let Ω be an open bounded subset of \mathbb{R}^d of class C^2 . Let $A \in C^1(\overline{\Omega}, S_d(\mathbb{R}))$ satisfying the following ellipticity condition

(1)
$$\exists \alpha > 0, \forall (x,\xi) \in \Omega \times \mathbb{R}^d, \quad A(x)\xi \cdot \xi \ge \alpha |\xi|^2.$$

Let $f \in L^2(\Omega)$ and $u \in H^1_0(\Omega)$ be the weak solution of the following Dirichlet problem

$$\begin{cases} -\operatorname{div}(A(x)\nabla u) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

1. In this question, we assume that $d \leq 3$. Show that there exists a constant $C \geq 0$ depending only on Ω and d such that

(2)
$$\|u\|_{L^{\infty}(\Omega)} \le C(\|f\|_{L^{2}(\Omega)} + \|u\|_{L^{2}(\Omega)}).$$

- 2. We assume that $\Omega = B(0, R)$ where R > 0.
 - (a) Compute Δv when $v(x) = \psi(|x|)$ is a radial function.
 - (b) By considering the function $u(x) = \ln |\ln |x||$ and the case $A(x) = I_d$, discuss the validity of the estimate (2) when $d \ge 4$.

Note: One can prove (this is a bit technical) that when $d \ge 4$ and $f \in L^p(\Omega)$, where p > d/2, there exists a positive constant C > 0 only depending on d, Ω and p such that the following estimate, somehow analogous to (2), holds

$$||u||_{L^{\infty}(\Omega)} \le C(||f||_{L^{p}(\Omega)} + ||u||_{L^{2}(\Omega)}).$$

EXERCISE 2 (Hölder regularity). The purpose is to show a gains of derivatives in Hölder spaces for the solution u to the Laplace equation $-\Delta u = f$, where $f \in C(\mathbb{R}^3)$ is a function with compact support. Let $G(x) = \frac{1}{4\pi} \frac{1}{|x|}$ be the Green function of the Laplacian in dimension 3. Let us recall that the function u = G * f is a weak solution of the Poisson equation $-\Delta u = f$ in \mathbb{R}^3 . We assume that $f \in C^{\alpha}(\mathbb{R}^3)$ for a given $\alpha \in (0, 1)$, and we set

$$[f]_{\dot{C}^{\alpha}(\mathbb{R}^3)} = \sup_{x \neq z \in \mathbb{R}^3} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty.$$

Let K be a compact of \mathbb{R}^3 . We first want to prove that $u, \nabla u \in C^{\alpha}(K)$ and that there exists a positive constant $c_1 > 0$ only depending on K, d, α and on the support of f such that

(3)
$$[u]_{\dot{C}^{\alpha}(K)} + [\nabla u]_{\dot{C}^{\alpha}(K)} \le c_1[f]_{\dot{C}^{\alpha}(\mathbb{R}^3)}.$$

1. Show that $u \in C^{\alpha}(K)$ and that the estimate (3) holds for u.

2. By introducing a cut-off function ω_{ε} of the forme $\omega_{\varepsilon}(x) = \theta(\varepsilon^{-1}|x|)$ and considering the approximation $u_{\varepsilon} = (G\omega_{\varepsilon}) * f$, prove that $\nabla u \in C^{\alpha}(K)$ and that the estimate (3) holds for the function ∇u .

Note: By using similar techniques, one can prove that for all $\delta \in (0, \alpha)$, we have $\nabla^2 u \in C^{\delta}(K)$ and also that there exists a positive constant $c_2 > 0$ depending only on K, d, α , δ and the support of the function f such that

$$[\nabla^2 u]_{\dot{C}^{\delta}(K)} \le c_2[f]_{\dot{C}^{\alpha}(\mathbb{R}^3)}.$$

EXERCISE 3 (A non-linear equation). Let Ω be a bounded subset of \mathbb{R}^d and $b : \mathbb{R}^d \to \mathbb{R}$ be a 1-Lipschitz function. Prove that the equation

$$\begin{cases} -\Delta u + u = b(\nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

has a unique solution $u \in H_0^1(\Omega)$. Assuming moreover that $b \in C^{\infty}(\mathbb{R}^d)$, check that this solution u belongs to $C^{\infty}(\Omega)$.

EXERCISE 4 (Strong maximum principle). Let Ω be a bounded open subset of \mathbb{R}^d with smooth boundary and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $\Delta u \leq 0$ on Ω . Proof by hand that

$$\min_{\overline{\Omega}} u = \min_{\partial \Omega} u$$

Hint: Assume first that $\Delta u < 0$.

EXERCISE 5 (Weak maximum principle for weak solutions). Let $\Omega \subset \mathbb{R}^d$ be a bounded open set.

- 1. Let $G \in C^1(\mathbb{R})$ a function with bounded derivative satisfying G(0) = 0.
 - a) Check that for all $u \in H^1(\Omega)$, we have $G \circ u \in L^2(\Omega)$.
 - b) Prove that $G \circ u \in H^1(\Omega)$ and that for all $1 \leq j \leq n$,

$$\partial_{x_i}(G \circ u) = (G' \circ u)\partial_{x_i}u.$$

2. We consider the following operator $L = -\operatorname{div}(A(x)\nabla u)$, where $A \in L^{\infty}(\Omega, M_d(\mathbb{R}))$ satisfies the following ellipticity assumption

$$\exists \alpha > 0, \forall (x,\xi) \in \Omega \times \mathbb{R}^d, \quad A(x)\xi \cdot \xi \ge \alpha |\xi|^2.$$

We want to prove that if $u \in H_0^1(\Omega)$ is a weak solution of the equation $Lu \leq 0$, then $u \leq 0$ a.e. in Ω .

- (a) Prove that there exists a non-negative function $G \in C^1(\mathbb{R})$ with bounded derivative such that G' > 0 on $(0, +\infty)$ and G' = 0 on $(-\infty, 0]$.
- (b) By considering $\langle Lu, G \circ u \rangle_{L^2(\Omega)}$, prove that

$$\int_{\Omega} |\nabla u(x)|^2 (G' \circ u)(x) \, \mathrm{d}x \le 0.$$

(c) Conclude.

EXERCISE 6 (Estimates on the gradient). Let Ω be an open bounded subset of \mathbb{R}^d . Let A be a symmetric definite positive $d \times d$ matrix and $f \in \operatorname{Lip}(\overline{\Omega})$. We will establish gradient estimates for solutions u to the equation Lu = f with Dirichlet homogeneous boundary condition, where L is the elliptic operator $Lu = -\operatorname{div}(A\nabla u)$, under the assumption that there exists a function $\psi \in \operatorname{Lip}(\Omega) \cap C^2(\Omega)$ such that $L\psi \ge f$ in Ω and $\psi = 0$ on $\partial\Omega$. For simplicity, we will consider the case where the function f is constant.

1. Let $\omega \subset \Omega$ and $u, v \in C^2(\omega) \cap C(\bar{\omega})$ satisfying $Lu \leq Lv$ in ω . Show that

$$\sup_{\overline{\omega}}(u-v) \le \sup_{\partial\omega}(u-v).$$

2. Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfying Lu = f in Ω .

(a) Prove that

$$\sup\left\{\frac{|u(x)-u(y)|}{|x-y|}: x, y \in \Omega, x \neq y\right\} = \sup\left\{\frac{|u(x)-u(y)|}{|x-y|}: x \in \Omega, y \in \partial\Omega\right\}.$$

Hint: given $x_1, x_2 \in \Omega$ with $\tau = x_2 - x_1 \neq 0$, compare u and $u_\tau \colon x \mapsto u(x + \tau)$ in $\omega = \Omega \cap (-\tau + \Omega)$.

- (b) We assume furthermore that u = 0 on $\partial \Omega$. Show that $\operatorname{Lip}(u) \leq \operatorname{Lip}(\psi)$.
- 3. A ψ as above is called a *barrier function*. Construct a barrier function in the case $\Omega = B(0, 1)$. *Hint*: consider $\psi(x) = -\gamma |x|^2/2 + C$ for some given constants $\gamma > 0$ and $C \in \mathbb{R}$.

EXERCISE 7. (Localization) Let Ω be an open subset of \mathbb{R}^d . We consider $A \in L^{\infty}_{\text{loc}}(\Omega, M_d(\mathbb{R}))$, $b \in L^{\infty}_{\text{loc}}(\Omega, \mathbb{R}^d)$ and $c \in L^{\infty}_{\text{loc}}(\Omega)$ and L the operator defined by

$$Lu = -\operatorname{div}(A(x)\nabla u) + b \cdot \nabla u + cu.$$

Assume that A satisfies the following ellipticity assumption

$$\exists \alpha > 0, \forall (x,\xi) \in \Omega \times \mathbb{R}^d, \quad A(x)\xi \cdot \xi \ge \alpha |\xi|^2.$$

Let Ω' and Ω'' be open subsets of Ω satisfying $\overline{\Omega'} \subset \Omega''$ and $\overline{\Omega''} \subset \Omega$. Prove that there exists a positive constant C > 0 such that for all $u \in H^1_{loc}(\Omega)$,

$$\|\nabla u\|_{L^{2}(\Omega')} \leq C(\|Lu\|_{H^{-1}(\Omega'')} + \|u\|_{L^{2}(\Omega'')}).$$