Sheet 3: Heat equation

Exercise 1 (Heat kernel). Let $d \geq 1$ and $E_{d} \in \mathscr{S}^{\prime}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{d}\right)$ be the tempered distribution defined by

$$
E_{d}(t, x)=\frac{1}{(2 \pi t)^{d / 2}} e^{-\frac{|x|^{2}}{2 t}} \mathbf{1}_{] 0,+\infty[}(t)
$$

Prove that E_{d} is a fundamental solution of the heat operator, that is, satisfies

$$
\left(\partial_{t}-\frac{1}{2} \Delta\right) E_{d}=\delta_{(t, x)=(0,0)} \quad \text { in } \mathscr{S}^{\prime}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{d}\right)
$$

Check that E_{d} is unique under the condition $\operatorname{Supp} E_{d} \subset \mathbb{R}_{+} \times \mathbb{R}^{d}$.
ExErcise 2 (Heat equation on $\left.\mathbb{R}^{d}\right)$. Let $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$. We consider the homogeneous heat equation posed on the whole space \mathbb{R}^{d} :

$$
\left\{\begin{align*}
\partial_{t} u-\frac{1}{2} \Delta u & =0 & & \text { on }(0,+\infty) \times \mathbb{R}^{d} \tag{1}\\
u(0, \cdot) & =u_{0} & & \text { on } \mathbb{R}^{d}
\end{align*}\right.
$$

1. (Regularity) Compute explicitly the solution of the equation (1). What is its regularity ?
2. (Energy estimate) Show that for all $t \geq 0$,

$$
\|u(t, \cdot)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\int_{0}^{t}\|\nabla u(s, \cdot)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \mathrm{~d} s=\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}
$$

3. (Maximum principle) Show that if $u_{0} \in L^{\infty}\left(\mathbb{R}^{d}\right)$, then $u(t, \cdot) \in L^{\infty}\left(\mathbb{R}^{d}\right)$ for all $t \geq 0$ and

$$
\sup _{t \geq 0}\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq\left\|u_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} .
$$

4. (Infinite speed of propagation) Prove that if $u_{0} \geq 0$ is a function not identically equal to zero and non-negative, then $u>0$ in $\mathbb{R}_{+} \times \mathbb{R}^{d}$.

Exercise 3 (Spectral theory). Let Ω be a bounded open subset of \mathbb{R}^{d}.

1. Explain why the operator $\Delta^{-1}: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is a continuous isomorphism.
2. Let $\iota: H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)$ be the canonical injection. Check that the operator $T=-\Delta^{-1} \circ \iota$: $H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is non-negative, selfadjoint, one to one and compact.
3. Deduce that the spectrum of the Laplacian operator $-\Delta$ with Dirichlet boundary condition is a sequence $\left(\lambda_{n}\right)_{n \geq 0}$ of positive real numbers which is increasing and diverges to $+\infty$, and also that there exists a Hilbert basis $\left(e_{n}\right)_{n \geq 0}$ of $H_{0}^{1}(\Omega)$ composed of eigenfunctions of $-\Delta$ and such that

$$
\forall n \geq 0, \quad-\Delta e_{n}=\lambda_{n} e_{n}
$$

4. Compute explicitly those eigenvalues and those eigenfunctions when $d=1$ and $\Omega=(0,1)$.

ExErcise 4 (Heat equation on bounded domains). Let Ω be a bounded open subset of \mathbb{R}^{d} with regular boundary, $T>0$ be a final time, $u_{0} \in L^{2}(\Omega)$ be an initial datum and $f \in L^{2}\left((0, T), L^{2}(\Omega)\right)$ be a source term. We aim at proving that there exists a unique solution $u \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right) \cap$ $C^{0}\left([0, T], L^{2}(\Omega)\right)$ to the following heat equation with Dirichlet boundary conditions

$$
\left\{\begin{align*}
\partial_{t} u-\Delta u=f & \text { a.e. in }(0, T) \times \Omega, \tag{2}\\
u=0 & \text { a.e. on }(0, T) \times \partial \Omega, \\
u(0, \cdot)=u_{0} & \text { a.e. in } \Omega .
\end{align*}\right.
$$

We will also check that this solution satisfies the following energy estimate for all $0 \leq t \leq T$,

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|\nabla u(s, \cdot)\|_{L^{2}(\Omega)}^{2} \mathrm{~d} s \leq C\left(\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|f(s, \cdot)\|_{L^{2}(\Omega)}^{2} \mathrm{~d} s\right), \tag{3}
\end{equation*}
$$

where $C>0$ is a positive constant only depending on Ω. In the following, we consider $\left(e_{n}\right)_{n \geq 0}$ a Hilbert basis of $L^{2}(\Omega)$ composed of eigenfunctions of the operator $-\Delta$. Moreover, we set λ_{n} the eigenvalue associated with the eigenfunction e_{n}.

1. We first prove that there exists a unique $u \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right) \cap C^{0}\left([0, T], L^{2}(\Omega)\right)$ satisfying

$$
\left\{\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle u(t, \cdot), v\rangle_{L^{2}(\Omega)}+\int_{\Omega} \nabla u(t, \cdot) \cdot \nabla v & =\langle f(t, \cdot), v\rangle_{L^{2}(\Omega)} \quad \forall v \in H_{0}^{1}(\Omega), \forall t \in(0, T), \\
u(0, \cdot) & =u_{0} .
\end{aligned}\right.
$$

a) Define properly this variational formulation.
b) Give the expansion in the Hilbert basis $\left(e_{n}\right)_{n \geq 0}$ of such a solution.
c) Prove that this expansion converges in $L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ and also in $C^{0}\left([0, T], L^{2}(\Omega)\right)$.
d) Conclude.
2. We now want to prove that this weak solution u is a strong solution, that is, is solution of the problem (2).
a) Check that the boundary condition and the initial value condition hold.
b) ${ }^{*}$ Prove that $\partial_{t} u-\Delta u=f$ a.e. in $(0, T) \times \Omega$.
3. When $f=0$, check that

$$
\forall t \geq 0, \quad\left\|u(t, \cdot)-\left\langle u_{0}, e_{0}\right\rangle_{L^{2}(\Omega)} e^{-\lambda_{0} t} e_{0}\right\|_{L^{2}(\Omega)} \leq e^{-\lambda_{1} t}\left\|u_{0}\right\|_{L^{2}(\Omega)}
$$

Exercise 5 (Maximum principle). Let Ω be a bounded open subset of \mathbb{R}^{d} with smooth boundary, $T>0$ be a final time, $u_{0} \in H_{0}^{1}(\Omega)$ be an initial datum and $f \in L^{2}\left((0, T), L^{2}(\Omega)\right)$ be a a source term. We consider $u \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right) \cap C^{0}\left([0, T], L^{2}(\Omega)\right)$ the unique solution of the problem (2). Prove that when $f \geq 0$ a.e. in $(0, T) \times \Omega$ and $u_{0} \geq 0$ a.e. in Ω, then $u \geq 0$ a.e. on $(0, T) \times \Omega$. Hint: Admit that $\partial_{t} u \in L^{2}\left((0, T), L^{2}(\Omega)\right)$ and $u \in L^{2}\left((0, T), H^{2}(\Omega)\right) \cap C^{0}\left([0, T], H_{0}^{1}(\Omega)\right)$.

Application ${ }^{*}$: Assume now that $u_{0} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ and $f \in L^{\infty}([0,+\infty) \times \Omega)$. Show that

$$
\sup _{t \geq 0}\|u(t, \cdot)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}+\frac{\operatorname{diam}(\Omega)^{2}}{2 d} \sup _{t \geq 0}\|f(t, \cdot)\|_{L^{\infty}(\Omega)}
$$

