Sheet 6: Lotka-Volterra system

EXERCISE 1. Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be a function of class C^1 . Assume that the ODE

(1)
$$x'(t) = f(x(t)),$$

admits a Lyapunov function $V: \mathbb{R}^d \to \mathbb{R}$ of class C^1 . Let us recall that by definition, V satisfies

$$\forall x \in \mathbb{R}^d, \quad \mathrm{d}V(x) \cdot f(x) \le 0.$$

- 1. Let (x, I) be a solution of the equation (1). Check that the function $t \mapsto V(x(t))$ is non-increasing on I.
- 2. Let $x_0 \in \mathbb{R}^d$ be an equilibrium state of the equation (1), that is, satisfying $f(x_0) = 0$. We assume moreover that x_0 is a strict local minimum of the function V:

$$\exists r_1 > 0, \forall r \in]0, r_1[, \quad \alpha_r = \min_{|x-x_0|=r} V(x) > V(x_0).$$

- (a) Let $0 < r < r_1$. Prove that the set $U_r = \{x \in \mathbb{R}^d : V(x) < \alpha_r\} \cap B(x_0, r)$ is open and contains x_0 , and that any trajectory starting from U_r stays in $B(x_0, r)$.
- (b) Prove that x_0 is a stable stationary point.
- 3. Keeping the same hypothesis as in the previous question, we assume moreover that

 $\forall x \in \mathbb{R}^d \setminus \{x_0\}, \quad \mathrm{d}V(x) \cdot f(x) < 0.$

We aim at proving that the point x_0 is asymptotically stable.

- (a) Let $0 < r < r_1$. Check that the flow $\phi_t(x)$ of (1) is well-defined on $\mathbb{R}_+ \times U_r$.
- (b) Let $x \in U_r$. We define the ω -limit set $\omega(x)$ of the point x as

$$\omega(x) = \big\{ y \in \mathbb{R}^d : \exists (t_n)_{n \ge 0} \in \mathbb{R}^{\mathbb{N}}, \ t_n \xrightarrow[n \to +\infty]{} +\infty, \ \phi_{t_n}(x) \xrightarrow[n \to +\infty]{} y \big\}.$$

Check that for all $y \in \omega(x)$, the function $t \mapsto V(\phi_t(y))$ is constant on \mathbb{R}_+ .

- (c) Check that $\omega(x) \subset \{y \in \mathbb{R}^d : dV(y) \cdot f(y) = 0\}$ for all $x \in U_r$.
- (d) Prove that $\omega(x) = \{x_0\}$ for all $x \in U_r$, and conclude.

EXERCISE 2. Let a, b, c, d > 0 be positive real numbers and $x_0, y_0 \ge 0$ be non-negative real numbers. We consider the Lotka-Volterra system

(2)
$$\begin{cases} x'(t) = x(a - by), \\ y'(t) = y(-c + dx), \end{cases}$$

with initial conditions $x(0) = x_0$ and $y(0) = y_0$.

- 1. Give an interpretation of this system in terms of sharks and sardines.
- 2. Prove that there exists a unique maximal solution defined on an open interval I of \mathbb{R} .
- 3. When $x_0 > 0$, check that x(t) > 0 for all $t \in I$. Similarly, prove that y(t) > 0 for all $t \in I$ under the assumption $y_0 > 0$.
- 4. We now assume that $x_0 > 0$ and $y_0 > 0$. By considering the function $H : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$H(x,y) = dx - c \ln x + by - a \ln y, \quad (x,y) \in (\mathbb{R}^*_+)^2,$$

prove that the maximal solution of the system (2) is bounded. What to conclude?

- 5. What are the stationary points of the system (2)? Study their stability.
- 6. Draw the phase portrait of this system.
- 7. How to model the influence of fishing?

EXERCISE 3. Let $\Omega \subset \mathbb{R}^d$ be a bounded open set. We also consider $a, b, c, d, \lambda > 0$ some positive real numbers and $u_0, v_0 \in L^2(\mathbb{R}^d)$ be smooth initial data satisfying $0 < u_0 < c_1$ and $0 < v_0 < c_2$, with $c_1, c_2 > 0$. We consider (u, v) the solution of the following Lotka-Volterra system

$$\begin{cases} \partial_t u - \lambda \Delta u = u(a - bv) & \text{in } (0, +\infty) \times \Omega, \\ \partial_t v - \lambda \Delta v = v(-c + du) & \text{in } (0, +\infty) \times \Omega, \\ \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0 & \text{on } (0, T) \times \partial \Omega, \\ u(0, \cdot) = u_0 & \text{in } \Omega, \\ v(0, \cdot) = v_0 & \text{in } \Omega. \end{cases}$$

We aim at proving that (u, v) tends to a spatially uniform state as $t \to +\infty$. To that end, we consider the energy s of the system without diffusion

$$s(t,x) = du(t,x) - c \ln u(t,x) + bv(t,x) - a \ln v(t,x), \quad (t,x) \in (0,+\infty) \times \Omega.$$

- 1. What is the equation satisfied by the energy s?
- 2. We define the total energy S of the system at time t by

$$S(t) = \int_{\Omega} s(t, x) \, \mathrm{d}x.$$

Check that S is non-increasing.

- 3. Conclude.
- 4. How to interpret this result ?
- 5. By the way, does such a solution (u, v) exist?