Sheet 8: Systems of Reaction-diffusion equations

Exercise 1. Rabies may infect all warm-blooded animals, also birds, and also humans, and affects the central nervous system. Vaccines are available (but expensive); but no further cure is known. The spread seems to occur in waves, e.g. one coming from the Polish-Russian border; the spread velocity is approx. $30-60 \mathrm{~km} /$ year.

Let us consider two groups of foxes:
. Susceptible foxes (S), with no diffusion (as they are territorial),
. Infective foxes (I), with diffusion (loss of sense of territory), constant death rate.
The infection rate is assumed to be proportional to their densities, no reproduction or further spread:

$$
\left\{\begin{aligned}
\partial_{t} S & =-r I S, & & t>0, x \in \mathbb{R} \\
\partial_{t} I & =r I S-a I+\nu \partial_{x x}^{2} I, & & t>0, x \in \mathbb{R}
\end{aligned}\right.
$$

The non-dimensionalised version of the above system is the following:

$$
\begin{cases}\partial_{t} S=-I S, & t>0, x \in \mathbb{R}, \\ \partial_{t} T=I S-m I+\partial_{x x}^{2} I, & t>0, x \in \mathbb{R},\end{cases}
$$

with $m=a /\left(r S_{0}\right), S_{0}$ being the initial (maximum) susceptible density. We look for a travelling wave solution of this system of the form

$$
S(t, x)=S(x-c t)=S(z) \quad \text { and } \quad I(t, x)=I(x-c t)=I(z),
$$

where $z=x-c t$, the wave fronts S and I satisfying $0 \leq S \leq 1$ and $0 \leq I \leq 1$.

1. Write the system of ODEs satisfied by the functions S and I.
2. Justify the following boundary conditions: $S(+\infty)=1, I(+\infty)=0, S^{\prime}(-\infty)=0, I(-\infty)=0$.
3. Check that

$$
S(-\infty)-m \ln S(-\infty)=1
$$

Deduce the fraction of susceptibles which survives the "rabies wave" (draw a picture).
4. Draw the phase plane associated with the system satisfied by S and I.
5. Explain why $c=2 \sqrt{1-m}$ is the minimal wave speed.
6. Draw the shapes of the waves fronts S and I.

Exercise 2. We consider a simple predator-prey model with logistic growth of the prey

$$
\begin{cases}\partial_{t} u=u(1-u-v)+\nu \partial_{x x}^{2} u, & t>0, x \in \mathbb{R}, \\ \partial_{t} v=a v(u-b)+\partial_{x x}^{2} v, & t>0, x \in \mathbb{R},\end{cases}
$$

with $a>0,0<b<1$ and $\nu \geq 0$ some constants.

1. Check that the spatially independent system admits three stationary points, namely $(0,0)$, $(1,0)$ and $(b, 1-b)$. Study their stability.
We look for constant shape travelling wavefront solutions moving to the left:

$$
u(t, x)=U(z) \quad \text { and } \quad v(t, x)=V(z)
$$

where z denotes the wave variable $z=x+c t$ and $c>0$ is positive.
2. Write the system of ODEs satisfied by the wave fronts U and V.

As a simpler case, we assume that the prey is diffusing much slower than the predators (e.g. consider a system where animals eat some plants), thus $\nu=0$ is assumed.
3. Transform the system obtained in Question 2 in a new system of three ODEs of order one. Check that its stationary points are $(0,0,0),(1,0,0)$ and $(b, 1-b, 0)$.
4. Compute the Jacobian matrix $J(U, V, W)$ of this system.
5. By studying the stability of the point $(1,0,0)$, explain why the wave speed c should necessarily satisfy $c \geq \sqrt{4 a(1-b)}$ for keeping the possibility of a travelling wavefront.
6. Check that the point $(0,0,0)$ is unstable.
7. Let p be the characteristic polynomial of the matrix $J(b, 1-b, 0)$. What can we say about the local maxima of p ? Draw the typical graph of p for various values of a.
8. Justify that we could find some solutions with the following boundary conditions:

$$
\begin{equation*}
U(-\infty)=1, \quad V(-\infty)=0, \quad U(+\infty)=b, \quad V(+\infty)=1-b \tag{1}
\end{equation*}
$$

and / or:

$$
U(-\infty)=0, \quad V(-\infty)=0, \quad U(+\infty)=b, \quad V(+\infty)=1-b
$$

9. By considering the boundary conditions (1), draw the possible shapes for the fronts U and V.

ExERCISE 3. We consider the Belousov-Zhabotinskii chemical reaction modeled by the following system:

$$
\begin{cases}\partial_{t} u=L r v+u(1-u-r v)+\partial_{s s}^{2} u, & t>0, x \in \mathbb{R} \\ \partial_{t} v=-M v-b u v+\partial_{s s}^{2} v, & t>0, x \in \mathbb{R}\end{cases}
$$

where L and M are of order $10^{-4}, b$ is of order $1, r$ is something between 5 and 50 .

1. Check that the spatially homogeneous stationary states are $(0,0)$ and $(1,0)$.

Due to $L \ll 1$ and $M \ll 1$, we neglect the corresponding terms, which yields a model for the leading edge of travelling waves in the Belousov-Zhabotinskii reaction:

$$
\begin{cases}\partial_{t} u=u(1-u-r v)+\partial_{s s}^{2} u, & t>0, x \in \mathbb{R} \\ \partial_{t} v=-b u v+\partial_{s s}^{2} v, & t>0, x \in \mathbb{R}\end{cases}
$$

We search for travelling wavefront solutions $u(t, x)=U(x+c t)$ and $v(t, x)=V(x+c t)$ for this new system, moving to the left and satisfying the boundary conditions

$$
U(-\infty)=0, \quad V(-\infty)=1, \quad U(+\infty)=1, \quad V(+\infty)=0
$$

2. * By using what was stated previously for the Fisher-KPP equation and the comparison theorem, show that necessarily, the wave speed satisfies $c \leq 2$.
Remark: The best known result is a priori $\left(\left(r^{2}+\frac{2 b}{2}\right)^{1 / 2}-r\right)(2(b+2 r))^{-1 / 2} \leq c \leq 2$.
