Sheet 9: Reviews

EXERCISE 1 (Faber-Krahn inequality). Let Ω be an open bounded subset of \mathbb{R}^d , with $d \geq 3$, and $V \in L^{\infty}(\Omega)$ such that $V \geq 0$. We consider the problem

(1)
$$\begin{cases} -\Delta u = Vu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

- 1. Give the definition of a weak solution to the equation (1).
- 2. Can you apply the Lax-Milgram theorem here?
- 3. Let $r > \frac{d}{2}$. Show that there is a constant $c_d > 0$ depending on d only such that, if (1) has a non-trivial weak solution, then

$$|\Omega|^{\frac{2}{d}-\frac{1}{r}} ||V||_{L^{r}(\Omega)} \ge c_{d}.$$

Hint: Use the following Sobolev inequality

$$||u||_{L^{2^*}(\Omega)} \le M_d ||\nabla u||_{L^2(\Omega)}, \quad \frac{1}{2^*} = \frac{1}{2} - \frac{1}{d},$$

which holds for all $u \in H_0^1(\Omega)$, where M_d depends on d only.

4. What do you obtain in the particular case $V = \lambda = \text{cst}$?

EXERCISE 2 (Estimates on the gradient). Let Ω be an open bounded subset of \mathbb{R}^d . Let A be a symmetric definite positive $d \times d$ matrix and $f \in \operatorname{Lip}(\overline{\Omega})$. We will establish gradient estimates for solutions u to the equation Lu = f with Dirichlet homogeneous boundary condition, where L is the elliptic operator $Lu = -\operatorname{div}(A\nabla u)$, under the assumption that there exists a function $\psi \in \operatorname{Lip}(\Omega) \cap C^2(\Omega)$ such that $L\psi \ge f$ in Ω and $\psi = 0$ on $\partial\Omega$. For simplicity, we will consider the case where the function f is constant.

1. Let $\omega \subset \Omega$ and $u, v \in C^2(\omega) \cap C(\bar{\omega})$ satisfying $Lu \leq Lv$ in ω . Show that

$$\sup_{\overline{\omega}} (u-v) \le \sup_{\partial \omega} (u-v).$$

2. Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfying Lu = f in Ω .

(a) Prove that

$$\sup\left\{\frac{|u(x)-u(y)|}{|x-y|}: x, y \in \Omega, x \neq y\right\} \le \sup\left\{\frac{|u(x)-u(y)|}{|x-y|}: x \in \Omega, y \in \partial\Omega\right\}.$$

Hint: given $x_1, x_2 \in \Omega$ with $\tau = x_2 - x_1 \neq 0$, compare u and $u_\tau \colon x \mapsto u(x + \tau)$ in $\omega = \Omega \cap (-\tau + \Omega)$.

- (b) We assume furthermore that u = 0 on $\partial \Omega$. Show that $\operatorname{Lip}(u) \leq \operatorname{Lip}(\psi)$.
- 3. A ψ as above is called a *barrier function*. Construct a barrier function in the case $\Omega = B(0, 1)$. *Hint*: consider $\psi(x) = -\gamma |x|^2/2 + C$ for some given constants $\gamma > 0$ and $C \in \mathbb{R}$.

EXERCISE 3 (The method of continuity).

- 1. Solve the equation $u \Delta u = f$ on \mathbb{T}^d and show that it defines a map $L^2(\mathbb{T}^d) \to H^2(\mathbb{T}^d)$.
- 2. Let X, Y be some Banach spaces. Let $(T_t)_{t \in [0,1]}$ be a *continuous* path of linear operators from X to Y satisfying

(2)
$$\exists C \ge 0, \forall u \in X, \forall t \in [0,1], \quad \|u\|_X \le C \|T_t u\|_Y.$$

Prove that T_0 is surjective if and only if T_1 is surjective as well.

3. Let $(a_{i,j})_{1 \leq i,j \leq d}$ be a family of maps of class C^1 on \mathbb{T}^d . We assume that the following ellipticity condition holds

$$\exists \alpha > 0, \forall x \in \mathbb{T}^d, \forall \xi \in \mathbb{R}^d, \quad a_{i,j}(x)\xi_i\xi_j \ge \alpha |\xi|^2.$$

We define the path $(T_t)_{t\in[0,1]}$ of operators $H^2(\mathbb{T}^d) \to L^2(\mathbb{T}^d)$ by the formula

$$T_t u = u - \partial_i (a_{ij}^{(t)}(x)\partial_j u), \quad a_{ij}^{(t)} = t a_{ij} + (1-t)\delta_{ij}.$$

- (a) Show that $t \mapsto T_t$ is continuous.
- (b) Check that (2) is satisfied.
- (c) What to conclude ?

EXERCISE 4 (The heat equation). Let $u_0 : \mathbb{R} \to \mathbb{R}$ be a continuous, piecewise C^1 and 2π -periodic function. Prove that there exists a unique function $u \in C^0([0, +\infty) \times \mathbb{R}) \cap C^\infty((0, +\infty) \times \mathbb{R})$ satisfying

$$\begin{cases} \partial_t u(t,x) = \partial_x^2 u(t,x), & (t,x) \in (0,+\infty) \times \mathbb{R}, \\ u(0,x) = u_0(x), & x \in \mathbb{R}, \end{cases}$$

the function $u(t, \cdot)$ being moreover 2π -periodic for all $t \ge 0$.

EXERCISE 5 (A reaction-diffusion equation). We consider the following reaction-diffusion equation:

(3)
$$\begin{cases} \partial_t u - \Delta u = u^3 & \text{in } (0, +\infty) \times \mathbb{R}, \\ u(0, \cdot) = u_0 & \text{in } \mathbb{R}, \end{cases}$$

with initial datum $u_0 \in H^1(\mathbb{R})$.

- 1. Establish a priori energy estimates for the equation (3).
- 2. By using an iterative method, prove that there exists a positive time T > 0 and a unique solution $u \in C^0([0,T], H^1(\mathbb{R}))$ of the equation (3). Check that $u \in C^\infty((0,T) \times \mathbb{R})$.
- 3. Assuming moreover that the initial datum u_0 is fast decaying, establish pointwise estimates for the solution u.

EXERCISE 6 (The Fisher-KPP equation with Allee effect). We consider the one-dimensional Fisher-KPP equation with Allee effect posed on the whole space

(4)
$$\partial_t u - \partial_{xx} u = u(1-u)(u-a), \quad t > 0, \ x \in \mathbb{R},$$

where 0 < a < 1/2 is a parameter. Study the existence of traveling wave solutions for this equation, that is, solutions of the form

$$u(t,x) = \phi(x - ct), \quad t > 0, \ x \in \mathbb{R}$$

with c > 0.