## Sheet 9: Reviews

Exercise 1 (Faber-Krahn inequality). Let $\Omega$ be an open bounded subset of $\mathbb{R}^{d}$, with $d \geq 3$, and $V \in L^{\infty}(\Omega)$ such that $V \geq 0$. We consider the problem

$$
\left\{\begin{align*}
-\Delta u & =V u & & \text { in } \Omega,  \tag{1}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

1. Give the definition of a weak solution to the equation (1).
2. Can you apply the Lax-Milgram theorem here?
3. Let $r>\frac{d}{2}$. Show that there is a constant $c_{d}>0$ depending on $d$ only such that, if (1) has a non-trivial weak solution, then

$$
|\Omega|^{\frac{2}{d}-\frac{1}{r}}\|V\|_{L^{r}(\Omega)} \geq c_{d}
$$

Hint: Use the following Sobolev inequality

$$
\|u\|_{L^{2^{*}}(\Omega)} \leq M_{d}\|\nabla u\|_{L^{2}(\Omega)}, \quad \frac{1}{2^{*}}=\frac{1}{2}-\frac{1}{d}
$$

which holds for all $u \in H_{0}^{1}(\Omega)$, where $M_{d}$ depends on $d$ only.
4. What do you obtain in the particular case $V=\lambda=\mathrm{cst}$ ?

Exercise 2 (Estimates on the gradient). Let $\Omega$ be an open bounded subset of $\mathbb{R}^{d}$. Let $A$ be a symmetric definite positive $d \times d$ matrix and $f \in \operatorname{Lip}(\bar{\Omega})$. We will establish gradient estimates for solutions $u$ to the equation $L u=f$ with Dirichlet homogeneous boundary condition, where $L$ is the elliptic operator $L u=-\operatorname{div}(A \nabla u)$, under the assumption that there exists a function $\psi \in \operatorname{Lip}(\Omega) \cap C^{2}(\Omega)$ such that $L \psi \geq f$ in $\Omega$ and $\psi=0$ on $\partial \Omega$. For simplicity, we will consider the case where the function $f$ is constant.

1. Let $\omega \subset \Omega$ and $u, v \in C^{2}(\omega) \cap C(\bar{\omega})$ satisfying $L u \leq L v$ in $\omega$. Show that

$$
\sup _{\bar{\omega}}(u-v) \leq \sup _{\partial \omega}(u-v) .
$$

2. Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfying $L u=f$ in $\Omega$.
(a) Prove that

$$
\sup \left\{\frac{|u(x)-u(y)|}{|x-y|}: x, y \in \Omega, x \neq y\right\} \leq \sup \left\{\frac{|u(x)-u(y)|}{|x-y|}: x \in \Omega, y \in \partial \Omega\right\}
$$

Hint: given $x_{1}, x_{2} \in \Omega$ with $\tau=x_{2}-x_{1} \neq 0$, compare $u$ and $u_{\tau}: x \mapsto u(x+\tau)$ in $\omega=\Omega \cap(-\tau+\Omega)$.
(b) We assume furthermore that $u=0$ on $\partial \Omega$. Show that $\operatorname{Lip}(u) \leq \operatorname{Lip}(\psi)$.
3. A $\psi$ as above is called a barrier function. Construct a barrier function in the case $\Omega=B(0,1)$. Hint: consider $\psi(x)=-\gamma|x|^{2} / 2+C$ for some given constants $\gamma>0$ and $C \in \mathbb{R}$.

Exercise 3 (The method of continuity).

1. Solve the equation $u-\Delta u=f$ on $\mathbb{T}^{d}$ and show that it defines a map $L^{2}\left(\mathbb{T}^{d}\right) \rightarrow H^{2}\left(\mathbb{T}^{d}\right)$.
2. Let $X, Y$ be some Banach spaces. Let $\left(T_{t}\right)_{t \in[0,1]}$ be a continuous path of linear operators from $X$ to $Y$ satisfying

$$
\begin{equation*}
\exists C \geq 0, \forall u \in X, \forall t \in[0,1], \quad\|u\|_{X} \leq C\left\|T_{t} u\right\|_{Y} . \tag{2}
\end{equation*}
$$

Prove that $T_{0}$ is surjective if and only if $T_{1}$ is surjective as well.
3. Let $\left(a_{i, j}\right)_{1 \leq i, j \leq d}$ be a family of maps of class $C^{1}$ on $\mathbb{T}^{d}$. We assume that the following ellipticity condition holds

$$
\exists \alpha>0, \forall x \in \mathbb{T}^{d}, \forall \xi \in \mathbb{R}^{d}, \quad a_{i, j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2} .
$$

We define the path $\left(T_{t}\right)_{t \in[0,1]}$ of operators $H^{2}\left(\mathbb{T}^{d}\right) \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ by the formula

$$
T_{t} u=u-\partial_{i}\left(a_{i j}^{(t)}(x) \partial_{j} u\right), \quad a_{i j}^{(t)}=t a_{i j}+(1-t) \delta_{i j} .
$$

(a) Show that $t \mapsto T_{t}$ is continuous.
(b) Check that (2) is satisfied.
(c) What to conclude ?

Exercise 4 (The heat equation). Let $u_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous, piecewise $C^{1}$ and $2 \pi$-periodic function. Prove that there exists a unique function $u \in C^{0}([0,+\infty) \times \mathbb{R}) \cap C^{\infty}((0,+\infty) \times \mathbb{R})$ satisfying

$$
\begin{cases}\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x), & (t, x) \in(0,+\infty) \times \mathbb{R}, \\ u(0, x)=u_{0}(x), & x \in \mathbb{R}\end{cases}
$$

the function $u(t, \cdot)$ being moreover $2 \pi$-periodic for all $t \geq 0$.
Exercise 5 (A reaction-diffusion equation). We consider the following reaction-diffusion equation:

$$
\left\{\begin{align*}
\partial_{t} u-\Delta u=u^{3} & \text { in }(0,+\infty) \times \mathbb{R}  \tag{3}\\
u(0, \cdot)=u_{0} & \text { in } \mathbb{R}
\end{align*}\right.
$$

with initial datum $u_{0} \in H^{1}(\mathbb{R})$.

1. Establish a priori energy estimates for the equation (3).
2. By using an iterative method, prove that there exists a positive time $T>0$ and a unique solution $u \in C^{0}\left([0, T], H^{1}(\mathbb{R})\right)$ of the equation (3). Check that $u \in C^{\infty}((0, T) \times \mathbb{R})$.
3. Assuming moreover that the initial datum $u_{0}$ is fast decaying, establish pointwise estimates for the solution $u$.

Exercise 6 (The Fisher-KPP equation with Allee effect). We consider the one-dimensional FisherKPP equation with Allee effect posed on the whole space

$$
\begin{equation*}
\partial_{t} u-\partial_{x x} u=u(1-u)(u-a), \quad t>0, x \in \mathbb{R} \tag{4}
\end{equation*}
$$

where $0<a<1 / 2$ is a parameter. Study the existence of traveling wave solutions for this equation, that is, solutions of the form

$$
u(t, x)=\phi(x-c t), \quad t>0, x \in \mathbb{R}
$$

with $c>0$.

