FEUILLE DE TD Nº 10

$D \acute{e} r i v a t i o n$

Exercice 1. Pour chacune des fonctions suivantes, déterminer le domaine de dérivabilité et étudier les éventuels prolongements continus/dérivables aux points posant problème.

•
$$f_1(x) = e^{x + \frac{1}{x}}$$
 • $f_2(x) = x^2 \ln \left(1 + \frac{1}{x^2} \right)$
• $f_3(x) = \sqrt{x}e^{-x}$ • $f_4(x) = (1 - x)\sqrt{1 - x^2}$.
• $f_5(x) = x\sqrt{x + x^2}$ • $f_6(x) = \frac{x\sqrt{x}}{e^x - 1}$

Exercice 2. Etudier les limites des fonctions suivantes :

1.
$$\frac{\sin(5x)}{x}$$
 pour $x \to 0$.
2. $\frac{\sin(x^2)}{x}$ pour $x \to 0$.
3. $\frac{\sin(x)}{x^2}$ pour $x \to 0$.
4. $\frac{\sin(x)}{e^x - 1}$ pour $x \to 0$.
5. $x(e^{\frac{1}{x}} - 1)$ pour $x \to +\infty$.

Exercice 3. Donner le domaine de définition, puis le domaine de dérivabilité de la fonction suivante : $f: x \mapsto \sqrt{x^2 - x^3}$.

Exercice 4. On pose $f: x \mapsto \arcsin(\sqrt{1-x^2})$.

Déterminer le domaine de définition D_f de f, le domaine de continuité de f, le domaine sur lequel f est de classe C^{∞} .

Déterminer les éventuels points en lesquels f se prolonge de façon continue/dérivable.

Exercice 5. Soient $n \geq 0$ et $f: x \in \mathbb{R} \mapsto x^{2n}$.

Calculer la dérivée n-ème de f de deux façons différentes (directement, puis à l'aide de la formule de Leibniz en écrivant f sous forme de produit).

En déduire la valeur de $\sum_{k=0}^{n} \binom{n}{k}^2$.

Exercice 6. Soit $f:[0;a] \to \mathbb{R}$ une fonction dérivable, telle que f(0)=f(a)=f'(0)=0.

- 1. Montrer que la dérivée de la fonction $f: x \mapsto \frac{f(x)}{x}$ s'annule sur]0; a[.
- En déduire que la courbe de f admet une tangente passant par l'origine autre que celle en 0.
 On rappellera l'équation d'une tangente à la courbe de f.

Exercice 7. Soient f et g deux fonctions continues sur [a;b] et dérivables sur [a;b[.

Montrer qu'il existe $x \in]a; b[$ tel que f'(x)(g(b) - g(a)) = g'(x)(f(b) - f(a)).

Exercice 8. Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=1$ et $u_{n+1}=u_n+\frac{1}{4}(2-u_n^2)$, $\forall n\in\mathbb{N}$.

- 1. On note f la fonction définie par $f(x) = x + \frac{1}{4}(2 x^2)$. Étudier les variations de f et déterminer ses points fixes.
- 2. Montrer que $\forall x \in [1, 2], |f'(x)| \le \frac{1}{2}$, et que $f([1, 2]) \subset [1, 2]$.
- 3. En déduire que $\forall n \in \mathbb{N}, u_n \in [1, 2],$ et que $|u_{n+1} \sqrt{2}| \leq \frac{1}{2}|u_n \sqrt{2}|.$
- 4. Prouver par récurrence que $\forall n \in \mathbb{N}, |u_n \sqrt{2}| \leq \frac{1}{2^n}$, et en déduire la limite de la suite $(u_n)_{n \geq 0}$.

Exercice 9. On considère la fonction f définie sur $\left]0; \frac{1}{e} \left[\cup \right] \frac{1}{e}; +\infty \right[\text{ par } f(x) = \frac{x}{\ln x + 1}.$

- 1. Montrer que f est prolongeable par continuité en 0. La fonction prolongée est-elle dérivable en 0 ?
- 2. Étudier les variations de f et tracer l'allure de sa courbe représentative.
- 3. Déterminer les points fixes de f.
- 4. On définit la suite $(x_n)_{n\geq 0}$ par $x_0=2$ et, pour tout $n\in\mathbb{N}$, $x_{n+1}=f(x_n)$.
 - (a) Étudier sur \mathbb{R}_+ la fonction $g: x \mapsto \frac{x}{(x+1)^2}$, en déduire que $\forall x \in]1; +\infty[, 0 \le f'(x) \le \frac{1}{4}$.
 - (b) Montrer que la suite $(x_n)_{n\geq 0}$ est bien définie. On s'aidera d'un intervalle stable.
 - (c) Montrer que pour tout $n \in \mathbb{N}$, on a $|x_{n+1} 1| \le \frac{1}{4}|x_n 1|$.

- (d) Puis, montrer que $|x_n-1|\leq \frac{1}{4^n}$. (e) En déduire que la suite $(x_n)_{n\geq 0}$ converge et déterminer sa limite.