FEUILLE DE TD Nº 14

Applications linéaires, Polynômes

 1^{ER} Janvier 2022

■ Un peu de Géométrie . . .

Exercice 1.

On considère l'application $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par

$$f(x, y, z) = (-3x - y + z, 8x + 3y - 2z, -4x - y + 2z).$$

- 1. Déterminer une base du noyau de f.
- 2. Donner le rang de f.
- 3. Soit \mathcal{C} la base canonique de \mathbb{R}^3 . Calculer $\mathrm{Mat}_{\mathcal{C}}(f)$.
- 4. Soit $\mathcal{B} = ((1,2,0), (3,1,0), (0,2,1))$. Calculer $\text{Mat}_{\mathcal{B},\mathcal{C}}(f)$.

Exercice 2. Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \end{pmatrix}$ et soit u l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 canoniquement associé à A. Déterminer $\operatorname{Ker}(u)$ et $\operatorname{Im} u$.

Exercice 3. Soit E un \mathbb{R} -espace vectoriel, et $u, v \in \mathcal{L}(E)$. Montrer qu'on a équivalence entre :

- (i) $u \circ v = u$ et $v \circ u = v$;
- (ii) u et v sont des projecteurs et Ker(u) = Ker(v).

Exercice 4. 1. Dans \mathbb{R}^3 , soit F = vect((1,0,0),(1,1,1)). Trouver $f \in \mathcal{L}(\mathbb{R}^3)$ tel que Ker(f) = F.

2. Soit (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 . Montrer qu'il existe un unique endomorphisme g de \mathbb{R}^4 tel que $g(e_1) = e_1 - e_2 + e_3$, $g(2e_1 + 3e_4) = e_2$ et $\text{Ker } (g) = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + 2y + z = 0 \text{ et } x + 3y - t = 0\}.$

Exercice 5. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f^3 = 0$ et $f^2 \neq 0$. Soit $x \in \mathbb{R}^3 \setminus \text{Ker}(f^2)$, montrer que $(x, f(x), f^2(x))$ est une base de \mathbb{R}^3 . Exprimer la matrice de f dans cette base.

Exercice 6. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies et $u \in \mathcal{L}(E,F)$. Soit E' un sous-espace vectoriel de E, et F' un sous-espace vectoriel de F. Montrer les égalités suivantes :

- 1. $\dim(u(E')) = \dim E' \dim(E' \cap \operatorname{Ker}(u))$;
- 2. $\dim (u^{-1}(F')) = \dim (F' \cap \operatorname{Im} u) + \dim (\operatorname{Ker} (u)).$

■ Un peu d'Algèbre . . .

Exercice 7.

Soit f l'endomorphisme de $\mathbb{K}[X]$ qui, à tout polynôme P, associe sa dérivée P'. Soit g l'endomorphisme de $\mathbb{K}[X]$ défini par $P(X^k) = \frac{1}{k+1}X^{k+1}$. Déterminer $\ker(f \circ g)$ et $\ker(g \circ f)$.

Est-ce que $f \circ g$ est injectif? surjectif? bijectif?

Est-ce que $g \circ f$ est injectif? surjectif? bijectif?

Exercice 8.

Pour $n \in \mathbb{N}^*$, développer le polynôme

$$P_n(X) = (1+X)(1+X^2)(1+X^4)\dots(1+X^{2^{n-1}})$$

Exercice 9.

Soient $P, Q \in \mathbb{K}[X]$ non-nuls.

Montrer que les polynômes P et Q sont premiers entre eux si et seulement si P+Q et PQ le sont.

Exercice 10.

Déterminer tous les polynômes P tels que :

$$P(2) = 6, P'(2) = 1$$
 et $P''(2) = 4$

et:

$$\forall n \geqslant 3 \quad P^{(n)}(2) = 0.$$

Exercice 11.

- 1. Soient $P,Q\in\mathbb{Q}[X]$ deux polynômes irréductibles et distincts. Montrer P et de Q n'ont pas de racine commune dans \mathbb{C} .
- 2. Combien vaut pgcd(P, P')?
- 3. Montrer que P et Q sont à racines simples dans \mathbb{C} .

Exercice 12.

1. Soit

$$P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

un polynôme à coefficients entiers tel que $a_n \neq 0$ et $a_0 \neq 0$. On suppose que P admet une racine rationnelle r = p/q exprimée sous forme irréductible. Montrer que $p \mid a_0$ et $q \mid a_n$.

2. Le polynôme

$$P(X) = X^3 + 3X - 1$$

est-il irréductible dans $\mathbb{Q}[X]$?

3. Factoriser dans $\mathbb{Q}[X]$

$$P(X) = 2X^3 - X^2 - 13X + 5$$

Exercice 13.

- 1. Montrer que $a=\cos(\pi/9)$ est racine d'un polynôme de degré trois à coefficients dans \mathbb{Z} .
- 2. Montrer que le nombre a est irrationnel.