Cours: Algèbre 2 - Géométrie 2

FEUILLE DE TD Nº 2

Dénombrement, Bornes supérieure et inférieure

6 mars 2022

■ Pour commencer...

Exercice 1.

- 1. Combien y a-t-il d'anagrammes du mot « ABRACADABRA »?
- 2. Soit $(p,q) \in \mathbb{N}^2$. On part du point de coordonnées (0,0) pour rejoindre le point de coordonnées (p,q) en se déplaçant à chaque étape d'une unité vers la droite ou vers le haut. Combien y a-t-il de chemins possibles?

Exercice 2.

Une urne contient 10 boules rouges numérotées de 1 à 10, 10 boules jaunes numérotées de 1 à 10, 10 boules bleues numérotées de 1 à 10 et 10 boules vertes numérotées de 1 à 10. On tire simultanément sans remise 5 boules dans l'urne. On ne cherchera pas la valeur numérique des résultats.

- 1. Combien y a-t-il de tirages contenant exactement une boule numérotée 1?
- 2. Combien y a-t-il de tirages contenant exactement trois boules rouges?
- 3. Combien y a-t-il de tirages contenant exactement deux boules jaunes et deux boules bleues?
- 4. Combien y a-t-il de tirages contenant au moins deux boules vertes?
- 5. Combien y a-t-il de tirages contenant au moins une boule numérotée 5 et deux boules jaunes ?

Exercice 3.

Soit E un ensemble à n éléments.

- 1. (a) Soit X une partie à p éléments de E. Combien y a-t-il de parties Y de E telles que $X \cap Y = \emptyset$?
 - (b) Combien y a-t-il de couples (X, Y) formés de parties disjointes de E (ie telles que $X \cap Y = \emptyset$)?
- 2. Combien y a-t-il de couples (X,Y) de parties de E tels que $Y \subset X$?
- 3. Combien y a-t-il de couples (X,Y) de parties de E qui forment une partition de E?

■ Pour aller plus loin . . .

Exercice 4.

On note S_n^p le nombre de surjections de $\{1,\ldots,n\}$ sur $\{1,\ldots,p\}$ avec $(n,p)\in\mathbb{N}^{*2}$. Déterminer les nombres suivants :

$$S_n^p$$
 pour $p > n$, S_n^n , S_n^1 , S_n^2 et S_{n+1}^n .

On fixe $n \in \mathbb{N}^*$, déterminer une relation de récurrence vérifiée par la suite $(S_n^p)_p$.

Exercice 5. 1. Soit $n \in \mathbb{N}^*$, $k \in \llbracket \llbracket 1, n \rrbracket$, on veut montrer la formule du pion :

$$k \binom{n}{k} = n \binom{n-1}{k-1}. \tag{1}$$

- (a) Montrer (1) en utilisant la formule de $\binom{n}{k}$.
- (b) Montrer (1) en comptant de deux façons différentes le nombre de couples (X, a) tels que $X \subset [1, n]$ avec |X| = k et $a \in X$.
- 2. Soit $n \in \mathbb{N}^*$. On veut montrer que

$$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}.$$
 (2)

- (a) Montrer (2) en utilisant (1).
- (b) Montrer (2) en dérivant $x \mapsto (1+x)^n$.
- 3. Calculer de deux façons la somme $\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1}.$

■ Un peu d'Algèbre . . .

Exercice 6. On considère la relation \leq sur \mathbb{N} définie par $x \leq y$ s'il existe $n \in \mathbb{N}^*$ tel que $y = x^n$.

Cette relation est une relation d'ordre (voir TD n°1).

- 1. Rappeler pourquoi cette relation d'ordre n'est pas totale.
- 2. La partie $\{2,3\}$ est-elle majorée?
- 3. Trouver une partie A de \mathbb{N} qui est majorée et minorée pour \preccurlyeq . (avec au moins 2 éléments)
- 4. Trouver une partie A de $\mathbb N$ qui est majorée pour \preccurlyeq , mais qui n'a pas de maximum.
- 5. Trouver une partie A de \mathbb{N} qui est non majorée et minorée pour \leq .

Exercice 7. Soit (E, \preceq) un ensemble ordonné. Soit A une partie de E. Montrer que la partie A admet un plus grand élément si et seulement si elle admet une borne supérieure m telle que $m = \sup(A) \in A$.

Exercice 8. Déterminer les bornes supérieure et inférieure des parties suivantes, après avoir justifié leur existence. Ces parties admettent-elles un maximum ou un minimum?

1.
$$A = \left\{ (-1)^n + \frac{1}{n+1} \mid n \in \mathbb{N} \right\}.$$

2.
$$B = \left\{ \frac{1}{n} - \frac{1}{p} \mid (n, p) \in (\mathbb{N}^*)^2 \right\}.$$

Exercice 9. Soient (E, \preceq_E) et (F, \preceq_F) deux ensembles ordonnés et A une partie non vide de E. Soit f une application croissante de E dans F, c'est-à-dire, telle que pour tout $(x, y) \in E^2$, si $x \preceq_E y$ alors $f(x) \preceq_F f(y)$.

- 1. Montrer que si $\max(A)$ existe, alors $\max(f(A))$ existe et est égal à $f(\max A)$.
- 2. Est-ce encore vrai si on remplace les max par des sup?