Cours : Algèbre 2 - Géométrie 2

FEUILLE DE TD Nº 6

Permutations, Signature,

9 AVRIL 2022

■ Pour commencer...

Exercice 1.

Déterminer les orbites et la signature (en utilisant les inversions puis en utilisant une décomposition) des deux permutations suivantes :

$$\sigma_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 8 & 9 & 4 & 5 & 2 & 1 & 6 \end{bmatrix} \quad \text{et} \quad \sigma_2 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 3 & 2 & 7 & 8 & 6 & 5 \end{bmatrix}.$$

Exercice 2. Soit $\sigma \in \mathcal{S}_n$. On note s le nombre total d'orbites de σ . Montrer que la signature de σ est $(-1)^{n-s}$.

Exercice 3.

- 1. Montrer que les doubles transpositions de la forme $(1 \ i)(1 \ j)$ engendrent le groupe alterné A_n .
- 2. Montrer que les 3-cycles engendrent le groupe alterné \mathcal{A}_n .

Exercice 4. Soit $n \in \mathbb{N}^*$. Déterminer la signature de la permutation

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & \cdots & n & n+1 & n+2 & \cdots & 2n \\ 1 & 3 & 5 & \cdots & 2n-1 & 2 & 4 & \cdots & 2n \end{bmatrix} \in \mathcal{S}_{2n}.$$

■ Un peu d'Algèbre . . .

Exercice 5. Soit n > 1.

On pose $\Omega_n = \{ \sigma \in \mathcal{S}_n \mid \forall k \in [1, n], \sigma(n+1-k) = n+1-\sigma(k) \}.$

- 1. Montrer que Ω_n est un sous-groupe de \mathcal{S}_n .
- 2. Trouver le cardinal de Ω_n .

Exercice 6. Soit (G,*) un groupe. On note e son élément neutre.

- 1. Soient $g \in G$ et $k \ge 1$ tels que $x^k = e$. Montrer que ord(x) divise k.
- 2. Soient $m, n \in \mathbb{N}^*$ premiers entre eux et soient $x, y \in G$ d'ordres respectifs m et n.

On suppose que x et y commutent $(x \star y = y \star x)$.

Quel est l'ordre de x * y?

- 3. On appelle "exposant" de G le plus grand des ordres de ses éléments. On le note r(G).
 - (a) Pour $n \ge 1$, déterminer l'exposant du groupe $(\mathbb{Z}/n\mathbb{Z}, +)$. Déterminer l'exposant du groupe produit $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (b) Montrer que G est un groupe cyclique si et seulement si son exposant est fini et est égal à son cardinal.

Exercice 7. Soit $n \geq 2$. Soit $\overline{m} \in \mathbb{Z}/n\mathbb{Z}$.

Déterminer l'ordre de \overline{m} dans $(\mathbb{Z}/n\mathbb{Z}, +)$.

Quels sont tous les ordres possibles?

Pour chaque ordre r, trouver un élément \overline{m} d'ordre r.