Cours : Algèbre 2 - Géométrie 2

FEUILLE DE TD Nº 8

Déterminants, Groupes

21 AVRIL 2022

■ Pour commencer...

Exercice 1.

1. Calculer les déterminants suivants :

$$D_1 = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix}, \quad D_2 = \begin{vmatrix} 0 & 1 & -4 \\ 1 & 0 & 2 \\ 4 & 2 & 0 \end{vmatrix}.$$

Quand le déterminant est nul, vérifier que les colonnes forment une famille liée.

2. Soient $a, b, c \in \mathbb{K}$, calculer les déterminants suivants :

$$D_3 = \begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}, \quad D_4 = \begin{vmatrix} a & c & b \\ b & a & c \\ c & b & a \end{vmatrix}.$$

3. Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$, calculer

$$A \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 et $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} A$.

Exercice 2. On considère dans \mathbb{R}^3 les trois vecteurs $f_1 = (2, -1, 3), f_2 = (0, 1, 2)$ et $f_3 = (4, -1, 5)$. La famille (f_1, f_2, f_3) est-elle une base de \mathbb{R}^3 ?

Exercice 3.

Soit $p \in \{2,3\}$, soit $M \in \mathcal{M}_p(\mathbb{K})$ et soit $\lambda \in \mathbb{K}$. Que vaut $\det(\lambda M)$? En déduire que si $M \in \mathcal{M}_3(\mathbb{R})$ est anti-symétrique (c'est-à-dire ${}^tM = -M$), le déterminant de M est nul.

Exercice 4. Soient $A, B \in \mathcal{M}_2(\mathbb{K})$, montrer que

$$\det(AB) = \det A \, \det B.$$

Que peut-on dire de l'application det : $GL_2(\mathbb{K}) \longrightarrow \mathbb{K}^*$?

■ Pour aller plus loin . . .

Exercice 5. En faisant des opérations élémentaires sur les colonnes (et les lignes), montrer que

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$$

■ Un peu d'Algèbre . . .

Exercice 6.

Soient (G, \times_G) , (H, \times_H) deux groupes, et $f: G \to H$ un morphisme de groupes. On suppose que G est un groupe fini.

- 1. On pose la relation $x\mathcal{R}y$ si f(x) = f(y). Quelles sont les propriétés de cette relation?
- 2. Soit $x \in G$, trouver tous les $y \in G$ tels que f(x) = f(y).
- 3. En déduire une expression de $Card(f^{-1}(\{z\}))$ en fonction de Ker(f).
- 4. Combien y a-t-il d'ensembles $f^{-1}(\{z\})$ non-vides différents au total?
- 5. En déduire une relation entre les cardinaux de G, Ker(f) et Im(f).

Exercice 7. Soit $n \geq 2$. On note $(\mathbb{Z}/n\mathbb{Z})^{\times}$ l'ensemble des éléments de $\mathbb{Z}/n\mathbb{Z}$ qui ont un inverse pour \times .

- 1. Quels sont les éléments $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$?
- 2. Montrer que $((\mathbb{Z}/n\mathbb{Z})^{\times}, \times)$ est un groupe commutatif.
- 3. Trouver un produit de groupes $\mathbb{Z}/m\mathbb{Z}$ isomorphe à $(\mathbb{Z}/7\mathbb{Z})^{\times}.$
- 4. Trouver un produit de groupes $\mathbb{Z}/m\mathbb{Z}$ isomorphe à $(\mathbb{Z}/8\mathbb{Z})^{\times}$.
- 5. Trouver un produit de groupes $\mathbb{Z}/m\mathbb{Z}$ isomorphe à $(\mathbb{Z}/9\mathbb{Z})^{\times}.$