Cours : Probabilités

FEUILLE DE TD Nº 9

Variables aléatoires

27 AVRIL 2022

Exercice 1. Soit n > 2. Soit (Ω, \mathcal{B}, P) un espace probabilisé.

Soient $X,_1, X_2: \Omega \to \{1, \dots, n\}$ deux v.a. qui sont indépendantes et qui ont toutes deux comme loi la mesure de probas uniforme sur $\{1, 2, \dots, n\}$. Soit $a \in \{1, 2, \dots, n\}$. On note Y la v.a. définie par :

$$\forall \omega \in \Omega, \ Y(\omega) = \left\{ \begin{array}{ll} X_1(\omega) & \text{si } X_2(\omega) \le a \\ X_2(\omega) & \text{si } X_2(\omega) > a. \end{array} \right.$$

- 1. Déterminer la loi de probas de Y.
- 2. Calculer $\mathbb{E}(Y)$, et la comparer à $\mathbb{E}(X_1)$.
- 3. Pour quelles valeurs de a cette espérance est-elle minimale? maximale?

Exercice 2. Soient $n, m \ge 1$. Dans un jeu, n candidats doivent traverser un pont à m planches.

Pour chaque planche, une moitié est robuste, tandis que l'autre moitié est très fragile. Les deux moitiés sont identiques à l'oeil.

Si un candidat marche sur la mauvaise moitié d'une planche, il a perdu. S'il traverse les m planches, il a gagné.

Les candidats vont sur le pont l'un après l'autre, et le pont reste le même entre chaque candidat.

Le candidat no.2 peut donc voir où le candidat no.1 a marché, et suivre ses pas (et éviter la moitié fragile si le candidat no.1 a perdu).

On note $X_k : \Omega \to \{1, \dots, m+1\}$ la v.a. qui indique la progression du candidat numéro k. Elle vaut $1 \le r \le m$ si le candidat perd à la planche no.r, et m+1 si le candidat traverse tout le pont.

1. Calculer $\mathbb{P}(X_1 = r)$, $1 \le r \le m$ et $\mathbb{P}(X_1 = m + 1)$.

- 2. Soient $1 \le r, s \le m+1$. Calculer $\mathbb{P}(X_2 = s | X_1 = r)$. On pourra distinguer des cas.
- 3. En déduire $\mathbb{P}(X_2 = s)$, pour $2 \le s \le m$ et s = m + 1.
- 4. Soient $1 \le r < s \le m$. Calculer $\mathbb{P}(X_3 = m+1, X_2 = s, X_1 = r)$. Que trouve-t-on?

On pourra utiliser des probabilités conditionnelles.

- 5. Calculer $\mathbb{P}(X_3 = m + 1 | X_2 = m + 1)$. En déduire $\mathbb{P}(X_3 = m + 1)$.
- 6. Trouver une expression générale de $\mathbb{P}(X_k = m+1)$, pour $k \geq 1$. On pourra s'aider des questions précédentes. Quelle méthode peut-on utiliser pour démontrer cela?
- 7. Pour quelles valeurs de $k \ge 1$ a-t-on $\mathbb{P}(X_k = m+1) \ge \frac{1}{2}$?
- 8. Calculer $\mathbb{E}(X_1)$. Montrer que $\mathbb{E}(X_1) \leq 2$ et que cette espérance converge vers 2 quand $m \to +\infty$.

Exercice 3. Soient $\alpha, \beta \in]0,1[$. On pose

$$g: \mathbb{N}^2 \to \mathbb{R}$$

$$(i,j) \mapsto \alpha \beta (1-\alpha)^i (1-\beta)^j$$
.

- 1. Vérifier que la famille $(g(i,j))_{(i,j)}$ définit une mesure de probabilité sur \mathbb{N}^2 .
- 2. Sur $(\mathbb{N}^2, \mathcal{P}(\mathbb{N})^2, \mathbb{P})$, on note $X,Y:\mathbb{N}^2\to\mathbb{N}$ deux v.a. discrètes définies par

$$X(i,j) = i, \ Y(i,j) = j, \ \forall (i,j) \in \mathbb{N}^2.$$

Donner les lois de probas de X et Y. Retrouver des lois de probas usuelles.

- 3. Calculer
 - (a) $\mathbb{P}(X=Y)$,
 - (b) $\mathbb{P}(X > Y)$.

4. Soit $Z:\mathbb{N}^2 \to \mathbb{R}$ la v.a. discrète définie par

$$\forall (i,j) \in \mathbb{N}^2, \ Z(i,j) = \left\{ \begin{array}{l} 1 \ \text{si} \ i \ \text{et} \ j \ \text{sont pairs} \\ -1 \ \text{si} \ i \ \text{et} \ j \ \text{sont impairs} \\ 0 \ \text{sinon} \end{array} \right.$$

Calculer $\mathbb{E}(Z)$.