
VHDL synthesis: a first step toward a comparison
between Vivado HLS and MMAlpha

Adrien Gougeon†
Adrien.Gougeon@ens-rennes.fr

Supervisor: Daniel Massicotte‡
Daniel.Massicotte@uqtr.ca

ENS Rennes†
UQTR‡

Internship at the University of Québec at Trois-Rivières
11/05/2018 to 04/08/2018

Abstract. FPGA (Field Programmable Gate Array) are nowadays largely
used to realize various specific tasks. They require to use specific lan-
guages such as Verilog or VHDL1 to design the internal circuit. Writing
this kind of language can be very time consuming because they are low
level languages and because of the intrinsic complexity of designing dig-
ital circuits. High Level Synthesis (HLS) tools emerged to reduce design
time often at the cost of performance or by using more ressource of the
FPGA. This paper compare MMAlpha to an HLS tool, Vivado HLS
(VHLS) to generate FPGA-based simulation for power electronics sys-
tems. They seem to have roughly the same performance but VHLS seems
to use less resources than MMAlpha.

Keywords: FPGA; VHDL; HLS; MMAlpha; Vivado.

1 Introduction

FPGA are integrated circuits built to be configured and reconfigured at will to
execute specific tasks. They are commonly used nowadays in various domains
such as video and image processing, security systems, power systems and many
others. They can run at high frequency and can achieve a high degree of par-
allelism natively. This allows them to do more operations per clock cycle and
achieve a lower time-step than a CPU, making them much more powerful to
realize specific tasks and particularly for real-time processing. However, to do
those specific tasks they need to be reprogrammed.

The reprogramming of an FPGA to a specific usage is done by modifying its
internal logic. It is realized by using an HDL (Hardware Description Language)
to implement the new logic of the digital circuit. There exist many languages
1 VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

1. INTRODUCTION

to realize this task; Verilog and VHDL are currently the most used but there
is many others. Those HDLs where created to raise the level of abstraction and
be independent of the integrated circuit used. Digital circuits relies on data-flow
and timing principles. Those principles gives another dimension to the HDLs
than classical programming language such as C of Java. Data-flow and timing
programming can be error-prone and time-consuming when designing digital
circuits, especially for non-expert designers.

The complexity of programming the internal logic of FPGA has motivated
the emergence of HLS tools. Those tools aim at automatically produce HDL
from a high-level description of the desired algorithm to be implemented. This
description is often far from the behavior of the FPGA and does not include the
principles of data-flow and timing. The languages used in such tools are close to
classical languages which greatly reduce design time. Moreover, it is way easier
and faster to apply an optimization on an high-level algorithm and synthesize a
new design than directly look deep into the HDL.

However, HLS tools have drawbacks. Due to the lack of details in the high-
level algorithm they tend to use more resources on the FPGA than custom de-
signs; this problem can be reduced through the use of optimizations. For complex
tasks, i.e., system with high degree of dependence or loop bounds not defined at
compilation time for example, the generated design will have lower performances
than a custom design [4] [6].

The goal of this paper is to compare VHLS and MMAlpha. The first one is a
high end HLS tool commonly used in industry while the second one is a research
tool based on the polyhedral model. The comparison will be on the performance
achieved and the resources usage. This work is in continuation with [4].

VHLS is a commercial HLS tool produced by Xilinx, vastly used nowadays
and available on Windows and Linux. This software is designed to produce HDL
from C/C++ language. All the process from the writing of the algorithm to
the synthesis of the HDL can be done directly in the software, as it include and
IDE (Integrated Development Environment). The tool offer a large panel of opti-
mizations to improve the portability of the algorithm on the FPGA and increase
its performance and/or resources usage [1]. As Xilinx is also manufacturer of
FPGA the synthesis always aim a device and perform specific optimizations de-
pending on it. The optimization methodology applied in VHDL for the synthesis
is depicted in Figure1.

On the other hand, MMAlpha is a research prototype (free) software devel-
oped at IRISA and available on MacOS and Linux. However being under free
license its utilization is done trough a Mathematica interface, a commercial soft-
ware. MMAlpha is the environment to manipulate, analyze, and derive Alpha
programs into VHDL designs. Alpha is a functional language created to provide
a support for expressing algorithms in an extended version of the formalism of
recurrence equations proposed by Karp, Miller and Winograd [2]. Alpha has
been designed to express regular and systolic array algorithms and transform
those algorithm from a mathematical specification into a synchronous parallel

Page 2

2. RELATED WORK

Fig. 1: Optimization methodology applied in Vivado HLS [1].

architecture [3]. Alpha relies on the polyhedral model to analyze and schedule
the input program [5].

The comparison in this paper between VHLS and MMAlpha is oriented
around power systems in an industrial context. In this direction our approach
is centered on matrix vector multiplication. In previous research [4] VHLS was
defined as producing efficient HDL in terms of time-step, area efficiency and
accuracy, but only for small circuits. For larger circuits it seems that VHLS is
not cost-effective anymore. This work is only a first step to define if MMAlpha
is capable to outperform VHLS. The research was centered about a better un-
derstanding on how VHLS work, the MMAlpha version compared is still basic
and require optimizations.

The rest of this paper is organized as follow: Section 2 reviews the related
works in this domain. Section 3 presents the comparisons done between MMAl-
pha and VHLS. Section 4 details the results from the comparisons. Finally,
Section 5 concludes.

2 Related work

This work is in the continuation of [4]. The main idea in this work was to compare
a HLS tool, Vivado HLS, to custom designs in the domain of hardware-in-the-
loop simulation on FPGA. The authors compared them to determine if Vivado
HLS could be a viable solution in terms of performance and area used on the
FPGA. Their conclusion was that Vivado HLS can be really efficient, close to
customs designs, on small designs; but it is inefficient in terms of area used when
the design becomes larger. However, due to the practicality of using a higher level
tool the authors have no doubt that HLS tools will be more and more used in
the future.

Page 3

3. MATRIX VECTOR MULTIPLICATION

On the other hand, [6] compares VHDL synthesized by Vivado HLS to cus-
toms designs for different matrix multiplication algorithms. The authors com-
pared a classic algorithm, the Strassen algorithm and the sparse algorithm. Their
conclusion is that HLS tools perform good when the algorithm is simple, like the
classic algorithm. For complex algorithm, like the sparse algorithm with unde-
termined loop bounds, HLS tools have a hard time to optimize the synthesis
compared to what an experienced VHDL programmer can do. However, as in
the other paper, they conclude that considering the time gain from using HLS
tools still make them a viable solution.

In this continuation the work here aims to compare the VHDL produced
by Vivado HLS to the one produced by MMAlpha to determine if MMAlpha
can have the same, or better, performance than Vivado HLS while being more
cost-efficient in terms of area used.

3 Matrix vector multiplication

This Section explains and details what are the comparisons done between MMAlpha
and Vivado HLS.

The comparison is done on a simple matrix vector multiplication. It was
carried out to present the optimizations directives used in Vivado HLS and to
look at the performances of Vivado HLS and MMAlpha for a simple algorithm.

We first present how the experiment was done in Vivado HLS considering
a multiplication by row of the matrix, then in Vivado HLS considering a mul-
tiplication by column of the matrix and finally with MMAlpha considering a
multiplication by column.

3.1 Vivado HLS by row

The C code used in this version is presented in Figure 2. This algorithm multiplies
a matrix a by a vector b and put the result in a vector c. The matrix is represented
as a one dimension array. As we consider here a multiplication by row, the inner
loop (loop0) multiplies a row of the matrix by the vector, the outer loop (loop1)
process successively the rows of the matrix.

In its first approach Vivado HLS simply compute each step of the loops after
another. This is extremely inefficient and take a lot of cycles.

To optimize a design Vivado HLS uses a system of directives to apply opti-
mizations on the C code for the synthesis. Those directives can be either written
in a separated directive file or written directly in the C code with #pragma, as
in our example.

The first idea is to unroll the inner loop to make it parallel. This will require
more computing blocks of the FPGA but will greatly increase performance and
reduce the number of cycles; this optimization correspond to the directive line
12 of Figure 2: HLS_UNROLL. However, as we can see in line 13 of Figure 2,
the inner loop makes access to the arrays containing the matrix and the vector.
Thus, the second idea is to split the arrays a and b in order to allow parallel

Page 4

3. MATRIX VECTOR MULTIPLICATION

1void prodMatVect(int a[SIZE*SIZE], int b[SIZE], int c[SIZE])
2{
3#pragma HLS ARRAY_PARTITION variable=b complete dim=1
4#pragma HLS ARRAY_PARTITION variable=a cyclic factor =16 dim=1
5 int sum;
6 loop1:for (int i = 0; i < MATSIZE; i++)
7 {
8#pragma HLS PIPELINE
9 sum = 0;

10 loop0:for (int j = 0; j < MATSIZE; j++)
11 {
12#pragma HLS UNROLL
13 sum += a[i * MATSIZE + j] * b[j];
14 }
15 c[i] = sum;
16 }
17}

Fig. 2: Matrix vector multiplication in C. Multiply the matrix a by the vector
b and place the result in the vector c. The multiplication is done by row of the
matrix. The matrix is represented as a one dimension array. The pragmas are
used to optimize the synthesis.

Fig. 3: Partition types available with the optimization directive
HLS_PARTITION [1]. In this example the partition factor is set to 2.
The partition splits an array into smaller arrays in order to allow parallel
accesses.

accesses of the arrays; this correspond to the directives lines 3 and 4 on the
Figure 2: HLSARRAY_PARTITION . The partition requires to chose a type
of partition. In one step of the outer loop, and because of the unrolling, we need
to access all the values of the b vector, so the partition of it has to be complete.
For the matrix, we need to access all values of a row, the solution is to split it in
a cyclic way, putting successive values in different arrays; the number of arrays
depends on the factor, here it must be the number of rows. The Figure 3 shows
the different partition type.

Page 5

3. MATRIX VECTOR MULTIPLICATION

Fig. 4: Presentation of the directive HLS_PIPELINE [1]. Instead of doing all
operations completely one after the other, the pipelining consist in using every
stage of a computing unit with different instructions. In this example at the third
cycle there is three different instructions using different stages of the computing
unit.

Finally, another idea is to pipeline the operations. This in done by applying
the pipeline directive to the outer loop2; this correspond to the line 8 in the
Figure 2: HLS_PIPELINE. Pipelining, as shown in Figure 4, allow to make a
continuous use of all the part of the design, reducing again the number of cycles
required for the computation

3.2 Vivado HLS by column

The C code used in this version is presented in Figure 5. This algorithm multiplies
a matrix a by a vector b and put the result in a vector c. The matrix is represented
as a one dimension array. As we consider here a multiplication by column, the
inner loop (loop0) multiplies a column of the matrix by a value of the vector.
The outer loop (loop1) process successively the columns of the matrix and the
values of the vector. The first loop (init_loop) set all values of c at 0. This loop
is necessary because otherwise as VHLS does not know the initial values of c it
consider it as both an input and an output vector. With this loop is consider it
only as an output.

The first partition pragma split the row of the matrix in different arrays, in
order to access all values of a column in one cycle. The second partition pragma
2 This directive placed in a loop automatically unroll the inner loops, making
HLS_UNROLL useless, we left it in the example only to show how to use it without
the HLS_PIPELINE directive.

Page 6

3. MATRIX VECTOR MULTIPLICATION

1void prodMatVect(short a[MATSIZE*MATSIZE], short b[MATSIZE],
short c[MATSIZE])

2{
3 #pragma HLS ARRAY_PARTITION variable=a block

factor =16 dim=1
4 #pragma HLS ARRAY_PARTITION variable=c complete dim=1
5 init_loop:for (short i = 0; i < MATSIZE; i++)
6 {
7 #pragma HLS UNROLL
8 c[i] = 0;
9 }

10 loop1:for (short j = 0; j < MATSIZE; j++)
11 {
12 #pragma HLS PIPELINE
13 loop0:for (short i = 0; i < MATSIZE; i++)
14 {
15 #pragma HLS UNROLL
16 c[i] += a[i * MATSIZE + j] * b[j];
17 }
18 }
19}

Fig. 5: Matrix vector multiplication in C. Multiply the matrix a by the vector
b and place the result in the vector c. The multiplication is done by column of
the matrix. The matrix is represented as a one dimension array. The pragmas
are used for the synthesis optimizations.

split completely the c array, this is necessary because the unrolling of the inner
loop require a parallel access to all its values. The first unroll set all values of c
to 0 in one cycle. The second unroll pragma makes the multiplication parallel.
Finally, the pipeline pragma pipeline the multiplications.

3.3 MMAlpha

The Alpha code used in MMAlpha is presented in Figure 6. Parameter and
variables are represented by dimension assigned with a size:

– The first parameter, N , represent the size of the data flow given to the
algorithm;

– a is the input matrix. i and j represent the two dimension of the matrix, of
size N ;

– b is the input vector, i represent its length, of size N ;
– c is the output vector, i represent its length, of size N ;
– d is an internal variable. Its i dimension is of size N to store the size of

the output vector. Its j dimension, of size N + 1, is to apply the recurrence
principle, explained below.

Page 7

4. RESULTS

1system prodMatVect: {N | N>1}
2 (a : {i,j|1 <= i,j <= N} of integer;
3 b : {i|1 <= i <= N} of integer)
4returns (c : {i|1 <= i <= N} of integer);
5var
6 d : {i,j|1 <= i <= N; 0<= j <=N} of integer;
7let
8 d[i,j] =
9 case

10 {|j=0} : 0[];
11 {|j>=1} : d[i,j-1] + a[i,j] * b[j];
12 esac;
13 c[i]=d[i,N];
14tel;

Fig. 6: Simple matrix vector multiplication in Alpha. Multiply the matrix a by
the vector b and place the result in the vector c.

As MMAlpha is based of affine regular expression its syntax rely on recur-
rence principle. The let is where the recurrence takes place. In this part we define
how will be calculated d depending on i and j. In the first case, when j = 0,
we set its initial value to 0. In the second case, when j >= 1, we apply the
multiplication of a column of the matrix by a value of the vector. This values is
stored and accumulated in d. Finally, on line 13, we assign the output vector to
the last accumulated values of d.

MMAlpha does partitioning and unrolling by default.

4 Results

This section explains what are the resources surveyed in the comparison and
what was the result found.

All experiments were done with Vivado 2018.1 on a Kintex UltraScale+
FPGA, model xcku5p-ffva676-1-i. We used data type of 16 bits integer.

We first present the internal behavior of the different synthesis in the Schematic
analysis. After that we discuss the number of cycle needed to realize the task.
FPGA designs are synchronous and driven by a clock. The number of cycle rep-
resent how many clock cycles are needed from the moment we set the first input
data to the moment the last result is available.

Finally, to discuss the main material resources used, we have to introduce
what are those resources that we survey on the FPGA:

– Digital Signal Processor (DSP): those units are used to multiply or add two
data buses. In our case the model was DSP48E, multiplying or adding 16
bits data buses.

Page 8

4. RESULTS

– Flip Flip (FF): those units are registers, used for data storage.
– Look Up Table (LUT): those are basically truth tables.

To give an idea of the utilization of the resources of the FPGA, the model
used has:

– 216960 LUT;
– 433920 FF;
– 1824 DSP.

4.1 Schematic analysis:

This part explains the differences between the schematics extracted from the
designs, and thus, how they behave.

VHLS by row multiplies at each cycle the data of one row of the matrix with
the full vector. As shown in Figures 11 to 16 in Appendix, this design relies on
log(N) sum to complete the computation in one cycle. This chain of combinatory
block may lead to an excessive WNS. However, VHLS adapt the design to avoid
a too long chain by adding a register. This register reduce the WNS but add 1
more cycle to finish the global computation.

VHLS by column and MMAlpha have pretty much the same behaviorr. As
shown in Figures 17 and 19 in Appendix, they relies on a multiplier-adder princi-
ple. At each cycle, each value of a column of the matrix is multiplied by a single
value of the vector. This value is then summed with the last result stored and
the new result is stored for the next cycle. This continue until each column has
been processed. The length of the data paths does not scale with the size and is
fixed.

The difference between VHLS by column and MMAlpha is that MMAlpha
has as much input for the vector as the size of the multiplication. In fact, the
user of the design has to duplicate each value of the vector depending on the
size. On the other hand, VHLS by column has only 1 input for the value, which
is pinned to every multiplier-adder.

4.2 Cycles analysis

In the Table 1 are shown the number of cycles needed to do the matrix vector
multiplication depending on the size and the synthesis tool used3.

We observe that VHLS by column and MMAlpha perfectly scale with the
size. At each cycle a new column is processed. VHLS by row scale too but with
one more cycle starting from size 16. This is explained by the register added to
reduce the WNS, as shown in the schematic analysis in Section 4.1.

3 Note on the results: the design in Vivado HLS by column of size 256 do not work
as intended. The C code used to for the VHDL synthesis is the same than for the
other size but the VHDL synthesis consider some parts of the output vector as both
input and output. We have not discovered why.

Page 9

4. RESULTS

Size VHLS by row VHDL by column MMAlpha
8 8 8 8
16 17 16 16
32 33 32 32
64 65 64 64
128 129 128 128
256 257 256 256

Table 1: Number of cycles required to compute the multiplication, depending
on the size and the synthesis tool.

Fig. 7: Worst Negative Slack for the different designs, depending on the size and
on the synthesis tool. MMAlpha is shown in blue, VHLS by column in red and
VHLS by row in green.

4.3 Slack analysis

In the Figure 7 are shown the WNS found for the different designs, depending
on the size and the synthesis tool used.

We observe that the multiplication by column, as used by VHLS by column
and MMAlpha, is far more efficient and can run at significantly higher frequency
than VHLS by row. As explained in Section 4.1, VHLS by row have quickly a
long chain of combinatory block which reduce the slack. All different critical
paths are presented in Appendix.

It is important to notice that the bottleneck for VHLS by column is the data
path, but it is the controller path for MMAlpha.

It is noticeable that MMAlpha should be as stable as VHLS by column is,
but it is slightly higher for the size 64 and 128. The reason is that the design syn-
thesized for those size use LUT4 instead of LUT6, which have a lower processing
time, as shown in the critical paths in Appendix.

4.4 Material resources

Resource usage for the different designs are presented in Figures 8, 9 and 10.

Page 10

5. CONCLUSION

Fig. 8: Number of DSP used for the
design, depending on the matrix size
and the synthesis tool.

Fig. 9: Number of FF used for the
design, depending on the matrix size
and the synthesis tool.

Fig. 10: Number of LUT used for the design, depending on the matrix size and
the synthesis tool.

We observe that all versions use the same amount of DSP. MMAlpha use
more FF and LUT than both VHLS versions. Table 2 show that the MMAlpha
design use more than 3.5 times more LUT than the VHLS by column version,
while the VHLS by row version use around 25% less. Table 3 show that the FF
utilization is far worse: MMAlpha use 16 to 59 times more FF than the VHLS
by column version.

5 Conclusion

This paper aimed toward a comparison of Vivado HLS and MMAlpha. HLS tools
are more and more used nowadays due notably to the practicality of an higher
level environment. As seen in previous works [4,6] they provide an overall good
performance but tend to use more area than customs designs. This comparison
aimed to determine if MMAlpha makes a better use of the material available on
the FPGA while keeping the same performances as Vivado HLS. The comparison
was on a simple algorithm, the matrix vector multiplication for various size: 8,
16, 32, 64, 128 and 256.

Page 11

5. CONCLUSION

Size VHDL by column VHLS by row MMAlpha
8 1x 0.79x 3.58x
16 1x 0.82x 3.66x
32 1x 0.82x 3.66x
64 1x 0.79x 3.77x
128 1x 0.78x 3.65x
256 1x 0.81x 3.82x

Table 2: Comparison of the LUT usage. VHLS by column is considered as the
reference.

Size VHDL by column VHLS by row MMAlpha
8 1x 7.7x 16.4x
16 1x 10.31x 18.25x
32 1x 14.91x 24.91x
64 1x 23.06x 34.19x
128 1x 21.38x 32.06x
256 1x 40.25x 59.88x

Table 3: Comparison of the FF usage. VHLS by column is considered as the
reference.

The cycle analysis has shown MMAlpha and VHLS by column to have the
same performance: they both perfectly scale with the size and compute a column
of the matrix at each cycle. VHLS by row, due to its increasing chain of combi-
natory block has to add a register to reduce its WNS. This has for consequence
an additional cycle to perform the calculation starting from size 16.

The WNS analysis has shown MMAlpha to have a slightly better performance
than VHLS by column. VHLS by row is completely out of the comparison due
to its chain of combinatory blocks reducing greatly its WNS.

The material analysis has shown MMAlpha and VHLS to use the same
amount of DSP. However, MMAlpha use far more LUT than both version of
VHLS, and incredibly more FF the VHLS by column version(up to 59 times
more).

In this particular example Vivado HLS is simple to use in the sense that
the matrix vector multiplication algorithm in C in both version, by row or by
column, is straightforward. The optimizations are easy because the reflexion is
on the split needed on the data arrays, which is simple in this case. On the other
hand, the algorithm is noticeably more difficult to write in the Alpha language.
However, Alpha automatically apply unrolling and partitioning.

This work is an introduction to the problem. We treated here only a simple
algorithm and the basic version of MMAlpha, without optimizations. The result
shows that MMAlpha, even without optimizations, to have slightly better perfor-
mances considering the WNS. However, its resources utilization is catastrophic
in this case.

Page 12

A. DATA PATHS

Future work should be around a better understanding on how Vivado HLS
and MMAlpha differ in their dependence analysis for more complex design.
MMAlpha is supposed to perform a better analysis and scheduling due to the
polyhedral libraries it relies on. To verify this hypothesis research should be on
how to optimize it properly. Considering its resources consumption, it is neces-
sary to optimize it too. This work is expected to be pursued by using MMAlpha
to reproduce the experiment done in [4].

References

1. Vivado hls optimization methodology guide. UG1270 (v2017.4), December 2017.
2. Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organization of

computations for uniform recurrence equations. J. ACM, 14(3):563–590, July 1967.
3. Hervé Le Verge, Christophe Mauras, and Patrice Quinton. The alpha language and

its use for the design of systolic arrays. Journal of VLSI signal processing systems
for signal, image and video technology, 3(3):173–182, Sep 1991.

4. Federico Montano, Tarek Ould Bachir, and Jean-Pierre David. An evaluation of a
high-level synthesis approach to the fpga-based submicrosecond real-time simulation
of power converters. PP:1–1, 06 2017.

5. P. Quinton, A. M. Chana, and S. Derrien. Efficient hardware implementation of
data-flow parallel embedded systems. In 2012 International Conference on Embed-
ded Computer Systems (SAMOS), pages 364–371, July 2012.

6. S. Skalicky, C. Wood, M. Łukowiak, and M. Ryan. High level synthesis: Where are
we? a case study on matrix multiplication. In 2013 International Conference on
Reconfigurable Computing and FPGAs (ReConFig), pages 1–7, Dec 2013.

A Data Paths

A.1 VHLS by row data paths

A.2 VHLS by column data path

A.3 MMAlpha data path

B Critical paths

B.1 VHLS by row critical paths

B.2 VHLS by column critical paths

B.3 MMAlpha critical paths

C VHDL

C.1 Vivado HLS VHDL

C.2 MMAlpha VHDL

Page 13

C. VHDL

Fig. 11: Data paths in the design from Vivado HLS for a matrix vector multi-
plication by row of size 8.

Fig. 12: Data path in the design from Vivado HLS for a matrix vector multipli-
cation by row of size 16. Zoomed on 1 path.

Fig. 13: Data path in the design from Vivado HLS for a matrix vector multipli-
cation by row of size 32. Zoomed on 1 path.

Fig. 14: Data path in the design from Vivado HLS for a matrix vector multipli-
cation by row of size 64. Zoomed on 1 path.

Fig. 15: Data path in the design from Vivado HLS for a matrix vector multipli-
cation by row of size 128. Zoomed on 1 path.

Page 14

C. VHDL

Fig. 16: Data path in the design from Vivado HLS for a matrix vector multipli-
cation by row of size 256. Zoomed on 1 path.

Fig. 17: Data paths in the design from Vivado HLS for a matrix vector mul-
tiplication by column of size 8. Zoomed on 2 paths. Data from the matrix are
shown in red and data from the vector are shown in blue. The block following
(blue square) is detailed in the next figure.

Fig. 18: Internal view of a multiplier-adder from the design by Vivado HLS for
a matrix vector multiplication by column of size 8.

Page 15

C. VHDL

Fig. 19: Data paths in the design from MMAlpha for the size 8. Zoomed on 2
paths.

Fig. 20: Critical path in the design from Vivado HLS for a matrix vector mul-
tiplication by row of size 8.

Fig. 21: Critical path in the design from Vivado HLS for a matrix vector mul-
tiplication by row of size 16.

Fig. 22: Critical path in the design from Vivado HLS for a matrix vector mul-
tiplication by row of size 32.

Page 16

C. VHDL

Fig. 23: Critical path in the design from Vivado HLS for a matrix vector mul-
tiplication by row of size 64.

Fig. 24: Critical path in the design from Vivado HLS for a matrix vector mul-
tiplication by row of size 128.

Fig. 25: Critical path in the design from Vivado HLS for a matrix vector mul-
tiplication by row of size 256.

Page 17

C. VHDL

Fig. 26: Critical path in the design from Vivado HLS for a matrix vector mul-
tiplication by column of size 8.

Fig. 27: Critical path in the design from MMAlpha for a matrix vector multi-
plication of size 8.

Fig. 28: Critical path in the design from MMAlpha for a matrix vector multi-
plication of size 64.

Page 18

C. VHDL

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.numeric_std.all;
4
5 entity prodMatVect_mul_mbkb_DSP48_0 is
6 port (
7 a: in std_logic_vector (16 - 1 downto 0);
8 b: in std_logic_vector (16 - 1 downto 0);
9 p: out std_logic_vector (16 - 1 downto 0));

10
11 end entity;
12
13 architecture behav of prodMatVect_mul_mbkb_DSP48_0 is
14 signal a_cvt: signed (16 - 1 downto 0);
15 signal b_cvt: signed (16 - 1 downto 0);
16 signal p_cvt: signed (16 - 1 downto 0);
17
18 attribute keep : string;
19 attribute keep of a_cvt : signal is "true";
20 attribute keep of b_cvt : signal is "true";
21 attribute keep of p_cvt : signal is "true";
22
23 begin
24
25 a_cvt <= signed(a);
26 b_cvt <= signed(b);
27 p_cvt <= signed (resize(unsigned (signed (a_cvt) *

signed (b_cvt)), 16));
28 p <= std_logic_vector(p_cvt);
29
30 end architecture;
31
32 Library IEEE;
33 use IEEE.std_logic_1164.all;
34
35 entity prodMatVect_mul_mbkb is
36 generic (
37 ID : INTEGER;
38 NUM_STAGE : INTEGER;
39 din0_WIDTH : INTEGER;
40 din1_WIDTH : INTEGER;
41 dout_WIDTH : INTEGER);
42 port (
43 din0 : IN STD_LOGIC_VECTOR(din0_WIDTH - 1 DOWNTO 0);
44 din1 : IN STD_LOGIC_VECTOR(din1_WIDTH - 1 DOWNTO 0);
45 dout : OUT STD_LOGIC_VECTOR(dout_WIDTH - 1 DOWNTO

0));
46 end entity;

Fig. 29: VHDL code from prodMatVect_mul_mbkb.vhd, generated by Vivado
HLS, part one.

Page 19

C. VHDL

1 architecture arch of prodMatVect_mul_mbkb is
2 component prodMatVect_mul_mbkb_DSP48_0 is
3 port (
4 a : IN STD_LOGIC_VECTOR;
5 b : IN STD_LOGIC_VECTOR;
6 p : OUT STD_LOGIC_VECTOR);
7 end component;
8
9

10
11 begin
12 prodMatVect_mul_mbkb_DSP48_0_U : component

prodMatVect_mul_mbkb_DSP48_0
13 port map (
14 a => din0 ,
15 b => din1 ,
16 p => dout);
17
18 end architecture;

Fig. 30: VHDL code from prodMatVect_mul_mbkb.vhd, generated by Vivado
HLS, part two.

Page 20

C. VHDL

1 -- ===
2 -- File generated by Vivado(TM) HLS - High -Level

Synthesis from C, C++ and SystemC
3 -- Version: 2018.1
4 -- Copyright (C) 1986 -2018 Xilinx , Inc. All Rights

Reserved.
5 --
6 -- ===
7
8 library IEEE;
9 use IEEE.std_logic_1164.all;

10 use IEEE.numeric_std.all;
11
12 entity prodMatVect_mac_mcud_DSP48_1 is
13 port (
14 in0: in std_logic_vector (16 - 1 downto 0);
15 in1: in std_logic_vector (16 - 1 downto 0);
16 in2: in std_logic_vector (16 - 1 downto 0);
17 dout: out std_logic_vector (16 - 1 downto 0));
18
19 end entity;
20
21 architecture behav of prodMatVect_mac_mcud_DSP48_1 is
22 signal a : signed (27-1 downto 0);
23 signal b : signed (18-1 downto 0);
24 signal c : signed (48-1 downto 0);
25 signal m : signed (45-1 downto 0);
26 signal p : signed (48-1 downto 0);
27 begin
28 a <= signed(resize(signed(in0), 27));
29 b <= signed(resize(signed(in1), 18));
30 c <= signed(resize(signed(in2), 48));
31
32 m <= a * b;
33 p <= m + c;
34
35 dout <= std_logic_vector(resize(unsigned(p), 16));
36
37 end architecture;
38
39 Library IEEE;
40 use IEEE.std_logic_1164.all;

Fig. 31: VHDL code from prodMatVect_mac_mcud.vhd, generated by Vivado
HLS, part one.

Page 21

C. VHDL

1 entity prodMatVect_mac_mcud is
2 generic (
3 ID : INTEGER;
4 NUM_STAGE : INTEGER;
5 din0_WIDTH : INTEGER;
6 din1_WIDTH : INTEGER;
7 din2_WIDTH : INTEGER;
8 dout_WIDTH : INTEGER);
9 port (

10 din0 : IN STD_LOGIC_VECTOR(din0_WIDTH - 1 DOWNTO 0);
11 din1 : IN STD_LOGIC_VECTOR(din1_WIDTH - 1 DOWNTO 0);
12 din2 : IN STD_LOGIC_VECTOR(din2_WIDTH - 1 DOWNTO 0);
13 dout : OUT STD_LOGIC_VECTOR(dout_WIDTH - 1 DOWNTO

0));
14 end entity;
15
16 architecture arch of prodMatVect_mac_mcud is
17 component prodMatVect_mac_mcud_DSP48_1 is
18 port (
19 in0 : IN STD_LOGIC_VECTOR;
20 in1 : IN STD_LOGIC_VECTOR;
21 in2 : IN STD_LOGIC_VECTOR;
22 dout : OUT STD_LOGIC_VECTOR);
23 end component;
24
25
26
27 begin
28 prodMatVect_mac_mcud_DSP48_1_U : component

prodMatVect_mac_mcud_DSP48_1
29 port map (
30 in0 => din0 ,
31 in1 => din1 ,
32 in2 => din2 ,
33 dout => dout);
34
35 end architecture;

Fig. 32: VHDL code from prodMatVect_mac_mcud.vhd, generated by Vivado
HLS, part two.

Page 22

C. VHDL

1 -- ===
2 -- RTL generated by Vivado(TM) HLS - High -Level

Synthesis from C, C++ and SystemC
3 -- Version: 2018.1
4 -- Copyright (C) 1986 -2018 Xilinx , Inc. All Rights

Reserved.
5 --
6 -- ===
7
8 library IEEE;
9 use IEEE.std_logic_1164.all;

10 use IEEE.numeric_std.all;
11
12 entity prodMatVect is
13 port (
14 ap_clk : IN STD_LOGIC;
15 ap_rst : IN STD_LOGIC;
16 ap_start : IN STD_LOGIC;
17 ap_done : OUT STD_LOGIC;
18 ap_idle : OUT STD_LOGIC;
19 ap_ready : OUT STD_LOGIC;
20 a_0_address0 : OUT STD_LOGIC_VECTOR (1 downto 0);
21 a_0_ce0 : OUT STD_LOGIC;
22 a_0_q0 : IN STD_LOGIC_VECTOR (15 downto 0);
23 a_1_address0 : OUT STD_LOGIC_VECTOR (1 downto 0);
24 a_1_ce0 : OUT STD_LOGIC;
25 a_1_q0 : IN STD_LOGIC_VECTOR (15 downto 0);
26 a_2_address0 : OUT STD_LOGIC_VECTOR (1 downto 0);
27 a_2_ce0 : OUT STD_LOGIC;
28 a_2_q0 : IN STD_LOGIC_VECTOR (15 downto 0);
29 a_3_address0 : OUT STD_LOGIC_VECTOR (1 downto 0);
30 a_3_ce0 : OUT STD_LOGIC;
31 a_3_q0 : IN STD_LOGIC_VECTOR (15 downto 0);
32 b_0 : IN STD_LOGIC_VECTOR (15 downto 0);
33 b_1 : IN STD_LOGIC_VECTOR (15 downto 0);
34 b_2 : IN STD_LOGIC_VECTOR (15 downto 0);
35 b_3 : IN STD_LOGIC_VECTOR (15 downto 0);
36 c_address0 : OUT STD_LOGIC_VECTOR (1 downto 0);
37 c_ce0 : OUT STD_LOGIC;
38 c_we0 : OUT STD_LOGIC;
39 c_d0 : OUT STD_LOGIC_VECTOR (15 downto 0));
40 end;

Fig. 33: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
one.

Page 23

C. VHDL

1 architecture behav of prodMatVect is
2 attribute CORE_GENERATION_INFO : STRING;
3 attribute CORE_GENERATION_INFO of behav :

architecture is
4 "prodMatVect ,hls_ip_2018_1 ,{ HLS_INPUT_TYPE=cxx ,␣

HLS_INPUT_FLOAT =0, HLS_INPUT_FIXED =0,␣
HLS_INPUT_PART=xcku5p -ffva676 -1-i,␣
HLS_INPUT_CLOCK =10.000000 ,␣
HLS_INPUT_ARCH=others ,HLS_SYN_CLOCK =7.650000 ,␣
HLS_SYN_LAT =6, HLS_SYN_TPT=none ,HLS_SYN_MEM =0,␣
HLS_SYN_DSP =4, HLS_SYN_FF =76, HLS_SYN_LUT =92}";

5 constant ap_const_logic_1 : STD_LOGIC := ’1’;
6 constant ap_const_logic_0 : STD_LOGIC := ’0’;
7 constant ap_ST_fsm_state1 : STD_LOGIC_VECTOR (2

downto 0) := "001";
8 constant ap_ST_fsm_pp0_stage0 : STD_LOGIC_VECTOR (2

downto 0) := "010";
9 constant ap_ST_fsm_state4 : STD_LOGIC_VECTOR (2

downto 0) := "100";
10 constant ap_const_lv32_0 : STD_LOGIC_VECTOR (31

downto 0) := "00000000000000000000000000000000";
11 constant ap_const_boolean_1 : BOOLEAN := true;
12 constant ap_const_lv32_1 : STD_LOGIC_VECTOR (31

downto 0) := "00000000000000000000000000000001";
13 constant ap_const_boolean_0 : BOOLEAN := false;
14 constant ap_const_lv1_0 : STD_LOGIC_VECTOR (0 downto

0) := "0";
15 constant ap_const_lv1_1 : STD_LOGIC_VECTOR (0 downto

0) := "1";
16 constant ap_const_lv3_0 : STD_LOGIC_VECTOR (2 downto

0) := "000";
17 constant ap_const_lv3_4 : STD_LOGIC_VECTOR (2 downto

0) := "100";
18 constant ap_const_lv3_1 : STD_LOGIC_VECTOR (2 downto

0) := "001";
19 constant ap_const_lv32_2 : STD_LOGIC_VECTOR (31

downto 0) := "00000000000000000000000000000010";
20
21 signal ap_CS_fsm : STD_LOGIC_VECTOR (2 downto 0) :=

"001";
22 attribute fsm_encoding : string;
23 attribute fsm_encoding of ap_CS_fsm : signal is

"none";
24 signal ap_CS_fsm_state1 : STD_LOGIC;
25 attribute fsm_encoding of ap_CS_fsm_state1 : signal

is "none";
26 signal i_reg_140 : STD_LOGIC_VECTOR (2 downto 0);
27 signal exitcond1_fu_151_p2 : STD_LOGIC_VECTOR (0

downto 0);
28 signal exitcond1_reg_202 : STD_LOGIC_VECTOR (0

downto 0);
29 signal ap_CS_fsm_pp0_stage0 : STD_LOGIC;
30 attribute fsm_encoding of ap_CS_fsm_pp0_stage0 :

signal is "none";

Fig. 34: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
two.

Page 24

C. VHDL

1 signal ap_block_state2_pp0_stage0_iter0 : BOOLEAN;
2 signal ap_block_state3_pp0_stage0_iter1 : BOOLEAN;
3 signal ap_block_pp0_stage0_11001 : BOOLEAN;
4 signal i_1_fu_157_p2 : STD_LOGIC_VECTOR (2 downto 0);
5 signal ap_enable_reg_pp0_iter0 : STD_LOGIC := ’0’;
6 signal i1_fu_163_p1 : STD_LOGIC_VECTOR (63 downto 0);
7 signal i1_reg_211 : STD_LOGIC_VECTOR (63 downto 0);
8 signal b_0_read_reg_221 : STD_LOGIC_VECTOR (15

downto 0);
9 signal b_1_read_reg_231 : STD_LOGIC_VECTOR (15

downto 0);
10 signal b_2_read_reg_241 : STD_LOGIC_VECTOR (15

downto 0);
11 signal b_3_read_reg_251 : STD_LOGIC_VECTOR (15

downto 0);
12 signal ap_block_pp0_stage0_subdone : BOOLEAN;
13 signal ap_condition_pp0_exit_iter0_state2 :

STD_LOGIC;
14 signal ap_enable_reg_pp0_iter1 : STD_LOGIC := ’0’;
15 signal ap_block_pp0_stage0 : BOOLEAN;
16 signal grp_fu_194_p3 : STD_LOGIC_VECTOR (15 downto

0);
17 signal grp_fu_181_p3 : STD_LOGIC_VECTOR (15 downto

0);
18 signal tmp_8_fu_176_p2 : STD_LOGIC_VECTOR (15 downto

0);
19 signal tmp_8_2_fu_189_p2 : STD_LOGIC_VECTOR (15

downto 0);
20 signal ap_CS_fsm_state4 : STD_LOGIC;
21 attribute fsm_encoding of ap_CS_fsm_state4 : signal

is "none";
22 signal ap_NS_fsm : STD_LOGIC_VECTOR (2 downto 0);
23 signal ap_idle_pp0 : STD_LOGIC;
24 signal ap_enable_pp0 : STD_LOGIC;
25
26 component prodMatVect_mul_mbkb IS
27 generic (
28 ID : INTEGER;
29 NUM_STAGE : INTEGER;
30 din0_WIDTH : INTEGER;
31 din1_WIDTH : INTEGER;
32 dout_WIDTH : INTEGER);
33 port (
34 din0 : IN STD_LOGIC_VECTOR (15 downto 0);
35 din1 : IN STD_LOGIC_VECTOR (15 downto 0);
36 dout : OUT STD_LOGIC_VECTOR (15 downto 0));
37 end component;

Fig. 35: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
three.

Page 25

C. VHDL

1 component prodMatVect_mac_mcud IS
2 generic (
3 ID : INTEGER;
4 NUM_STAGE : INTEGER;
5 din0_WIDTH : INTEGER;
6 din1_WIDTH : INTEGER;
7 din2_WIDTH : INTEGER;
8 dout_WIDTH : INTEGER);
9 port (

10 din0 : IN STD_LOGIC_VECTOR (15 downto 0);
11 din1 : IN STD_LOGIC_VECTOR (15 downto 0);
12 din2 : IN STD_LOGIC_VECTOR (15 downto 0);
13 dout : OUT STD_LOGIC_VECTOR (15 downto 0));
14 end component;
15
16
17
18 begin
19 prodMatVect_mul_mbkb_U1 : component

prodMatVect_mul_mbkb
20 generic map (
21 ID => 1,
22 NUM_STAGE => 1,
23 din0_WIDTH => 16,
24 din1_WIDTH => 16,
25 dout_WIDTH => 16)
26 port map (
27 din0 => a_0_q0 ,
28 din1 => b_0_read_reg_221 ,
29 dout => tmp_8_fu_176_p2);
30
31 prodMatVect_mac_mcud_U2 : component

prodMatVect_mac_mcud
32 generic map (
33 ID => 1,
34 NUM_STAGE => 1,
35 din0_WIDTH => 16,
36 din1_WIDTH => 16,
37 din2_WIDTH => 16,
38 dout_WIDTH => 16)
39 port map (
40 din0 => a_1_q0 ,
41 din1 => b_1_read_reg_231 ,
42 din2 => tmp_8_fu_176_p2 ,
43 dout => grp_fu_181_p3);

Fig. 36: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
four.

Page 26

C. VHDL

1 prodMatVect_mul_mbkb_U3 : component
prodMatVect_mul_mbkb

2 generic map (
3 ID => 1,
4 NUM_STAGE => 1,
5 din0_WIDTH => 16,
6 din1_WIDTH => 16,
7 dout_WIDTH => 16)
8 port map (
9 din0 => a_2_q0 ,

10 din1 => b_2_read_reg_241 ,
11 dout => tmp_8_2_fu_189_p2);
12
13 prodMatVect_mac_mcud_U4 : component

prodMatVect_mac_mcud
14 generic map (
15 ID => 1,
16 NUM_STAGE => 1,
17 din0_WIDTH => 16,
18 din1_WIDTH => 16,
19 din2_WIDTH => 16,
20 dout_WIDTH => 16)
21 port map (
22 din0 => a_3_q0 ,
23 din1 => b_3_read_reg_251 ,
24 din2 => tmp_8_2_fu_189_p2 ,
25 dout => grp_fu_194_p3);
26
27
28
29
30
31 ap_CS_fsm_assign_proc : process(ap_clk)
32 begin
33 if (ap_clk ’event␣and␣ap_clk␣=␣␣’1’)␣then
34␣␣␣␣␣␣␣␣ if␣(ap_rst␣=␣’1’)␣then
35␣␣␣␣␣␣␣␣ ap_CS_fsm␣ <=␣ap_ST_fsm_state1;
36␣␣␣␣␣␣␣␣ else
37␣␣␣␣␣␣␣␣ ap_CS_fsm␣ <=␣ap_NS_fsm;
38␣␣␣␣␣␣␣␣ end␣if;
39␣␣␣␣␣␣␣␣ end␣if;
40␣␣␣␣␣␣␣␣ end␣process;
41␣␣␣␣␣␣␣␣

Fig. 37: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
five.

Page 27

C. VHDL

1 ap_enable_reg_pp0_iter0_assign_proc : process(ap_clk)
2 begin
3 if (ap_clk ’event␣and␣ap_clk␣=␣␣’1’)␣then
4␣␣␣␣␣␣␣␣ if␣(ap_rst␣=␣’1’)␣then
5␣␣␣␣␣␣␣␣ ap_enable_reg_pp0_iter0␣<=␣ap_const_logic_0;
6␣␣␣␣␣␣␣␣ else
7␣␣␣␣␣␣␣␣ if␣(((ap_const_logic_1␣=␣ap_CS_fsm_pp0_stage0)␣and␣

(ap_const_logic_1␣=␣ap_condition_pp0_exit_iter0_state2)␣
and␣(ap_const_boolean_0␣=␣ap_block_pp0_stage0_subdone)))␣
then

8␣␣␣␣␣␣␣␣ ap_enable_reg_pp0_iter0␣<=␣ap_const_logic_0;
9␣␣␣␣␣␣␣␣ elsif␣(((ap_start␣=␣ap_const_logic_1)␣and␣

(ap_const_logic_1␣=␣ap_CS_fsm_state1)))␣then
10␣␣␣␣␣␣␣␣ ap_enable_reg_pp0_iter0␣<=␣ap_const_logic_1;
11␣␣␣␣␣␣␣␣ end␣if;
12␣␣␣␣␣␣␣␣ end␣if;
13␣␣␣␣␣␣␣␣ end␣if;
14␣␣␣␣␣␣␣␣ end␣process;
15
16
17␣␣␣␣␣␣␣␣ ap_enable_reg_pp0_iter1_assign_proc␣:␣process(ap_clk)
18␣␣␣␣␣␣␣␣ begin
19␣␣␣␣␣␣␣␣ if␣(ap_clk ’event and ap_clk = ’1’) then
20 if (ap_rst = ’1’) then
21 ap_enable_reg_pp0_iter1 <= ap_const_logic_0;
22 else
23 if (((ap_const_logic_1 =

ap_condition_pp0_exit_iter0_state2) and
(ap_const_boolean_0 =
ap_block_pp0_stage0_subdone))) then

24 ap_enable_reg_pp0_iter1 <= (ap_const_logic_1 xor
ap_condition_pp0_exit_iter0_state2);

25 elsif ((ap_const_boolean_0 =
ap_block_pp0_stage0_subdone)) then

26 ap_enable_reg_pp0_iter1 <= ap_enable_reg_pp0_iter0;
27 elsif (((ap_start = ap_const_logic_1) and

(ap_const_logic_1 = ap_CS_fsm_state1))) then
28 ap_enable_reg_pp0_iter1 <= ap_const_logic_0;
29 end if;
30 end if;
31 end if;
32 end process;

Fig. 38: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
six.

Page 28

C. VHDL

1 i_reg_140_assign_proc : process (ap_clk)
2 begin
3 if (ap_clk ’event␣and␣ap_clk␣=␣’1’)␣then
4␣␣␣␣␣␣␣␣ if␣(((ap_const_boolean_0␣=␣

ap_block_pp0_stage0_11001)␣and␣(exitcond1_fu_151_p2␣=␣
ap_const_lv1_0)␣and␣(ap_enable_reg_pp0_iter0␣=␣
ap_const_logic_1)␣and␣(ap_const_logic_1␣=␣
ap_CS_fsm_pp0_stage0)))␣then

5␣␣␣␣␣␣␣␣ i_reg_140␣ <=␣i_1_fu_157_p2;
6␣␣␣␣␣␣␣␣ elsif␣(((ap_start␣=␣ap_const_logic_1)␣and␣

(ap_const_logic_1␣=␣ap_CS_fsm_state1)))␣then
7␣␣␣␣␣␣␣␣ i_reg_140␣ <=␣ap_const_lv3_0;
8␣␣␣␣␣␣␣␣ end␣if;
9␣␣␣␣␣␣␣␣ end␣if;

10␣␣␣␣␣␣␣␣ end␣process;
11␣␣␣␣␣␣␣␣ process␣(ap_clk)
12␣␣␣␣␣␣␣␣ begin
13␣␣␣␣␣␣␣␣ if␣(ap_clk ’event and ap_clk = ’1’) then
14 if (((ap_const_boolean_0 =

ap_block_pp0_stage0_11001) and
(exitcond1_fu_151_p2 = ap_const_lv1_0) and
(ap_const_logic_1 = ap_CS_fsm_pp0_stage0))) then

15 b_0_read_reg_221 <= b_0;
16 b_1_read_reg_231 <= b_1;
17 b_2_read_reg_241 <= b_2;
18 b_3_read_reg_251 <= b_3;
19 i1_reg_211 (2 downto 0) <= i1_fu_163_p1 (2 downto 0);
20 end if;
21 end if;
22 end process;
23 process (ap_clk)
24 begin
25 if (ap_clk ’event␣and␣ap_clk␣=␣’1’)␣then
26␣␣␣␣␣␣␣␣ if␣(((ap_const_boolean_0␣=␣

ap_block_pp0_stage0_11001)␣and␣(ap_const_logic_1␣=␣
ap_CS_fsm_pp0_stage0)))␣then

27␣␣␣␣␣␣␣␣ exitcond1_reg_202␣<=␣exitcond1_fu_151_p2;
28␣␣␣␣␣␣␣␣ end␣if;
29␣␣␣␣␣␣␣␣ end␣if;
30␣␣␣␣␣␣␣␣ end␣process;
31␣␣␣␣␣␣␣␣ i1_reg_211 (63␣downto␣3)␣<=␣

"00␣
0000000000000";

32␣␣␣␣␣␣␣␣

Fig. 39: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
seven.

Page 29

C. VHDL

1 ap_NS_fsm_assign_proc : process (ap_start ,
ap_CS_fsm , ap_CS_fsm_state1 ,
exitcond1_fu_151_p2 , ap_enable_reg_pp0_iter0 ,
ap_block_pp0_stage0_subdone)

2 begin
3 case ap_CS_fsm is
4 when ap_ST_fsm_state1 =>
5 if (((ap_start = ap_const_logic_1) and

(ap_const_logic_1 = ap_CS_fsm_state1))) then
6 ap_NS_fsm <= ap_ST_fsm_pp0_stage0;
7 else
8 ap_NS_fsm <= ap_ST_fsm_state1;
9 end if;

10 when ap_ST_fsm_pp0_stage0 =>
11 if (not(((exitcond1_fu_151_p2 = ap_const_lv1_1) and

(ap_enable_reg_pp0_iter0 = ap_const_logic_1) and
(ap_const_boolean_0 =
ap_block_pp0_stage0_subdone)))) then

12 ap_NS_fsm <= ap_ST_fsm_pp0_stage0;
13 elsif (((exitcond1_fu_151_p2 = ap_const_lv1_1) and

(ap_enable_reg_pp0_iter0 = ap_const_logic_1) and
(ap_const_boolean_0 =
ap_block_pp0_stage0_subdone))) then

14 ap_NS_fsm <= ap_ST_fsm_state4;
15 else
16 ap_NS_fsm <= ap_ST_fsm_pp0_stage0;
17 end if;
18 when ap_ST_fsm_state4 =>
19 ap_NS_fsm <= ap_ST_fsm_state1;
20 when others =>
21 ap_NS_fsm <= "XXX";
22 end case;
23 end process;
24 a_0_address0 <= i1_fu_163_p1 (2 - 1 downto 0);

Fig. 40: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
eight.

Page 30

C. VHDL

1 a_0_ce0_assign_proc : process(ap_CS_fsm_pp0_stage0 ,
ap_block_pp0_stage0_11001 ,
ap_enable_reg_pp0_iter0)

2 begin
3 if (((ap_const_boolean_0 =

ap_block_pp0_stage0_11001) and
(ap_enable_reg_pp0_iter0 = ap_const_logic_1) and
(ap_const_logic_1 = ap_CS_fsm_pp0_stage0))) then

4 a_0_ce0 <= ap_const_logic_1;
5 else
6 a_0_ce0 <= ap_const_logic_0;
7 end if;
8 end process;
9

10 a_1_address0 <= i1_fu_163_p1 (2 - 1 downto 0);
11
12 a_1_ce0_assign_proc : process(ap_CS_fsm_pp0_stage0 ,

ap_block_pp0_stage0_11001 ,
ap_enable_reg_pp0_iter0)

13 begin
14 if (((ap_const_boolean_0 =

ap_block_pp0_stage0_11001) and
(ap_enable_reg_pp0_iter0 = ap_const_logic_1) and
(ap_const_logic_1 = ap_CS_fsm_pp0_stage0))) then

15 a_1_ce0 <= ap_const_logic_1;
16 else
17 a_1_ce0 <= ap_const_logic_0;
18 end if;
19 end process;
20
21 a_2_address0 <= i1_fu_163_p1 (2 - 1 downto 0);
22
23 a_2_ce0_assign_proc : process(ap_CS_fsm_pp0_stage0 ,

ap_block_pp0_stage0_11001 ,
ap_enable_reg_pp0_iter0)

24 begin
25 if (((ap_const_boolean_0 =

ap_block_pp0_stage0_11001) and
(ap_enable_reg_pp0_iter0 = ap_const_logic_1) and
(ap_const_logic_1 = ap_CS_fsm_pp0_stage0))) then

26 a_2_ce0 <= ap_const_logic_1;
27 else
28 a_2_ce0 <= ap_const_logic_0;
29 end if;
30 end process;
31
32 a_3_address0 <= i1_fu_163_p1 (2 - 1 downto 0);

Fig. 41: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
nine.

Page 31

C. VHDL

1 a_3_ce0_assign_proc : process(ap_CS_fsm_pp0_stage0 ,
ap_block_pp0_stage0_11001 ,
ap_enable_reg_pp0_iter0)

2 begin
3 if (((ap_const_boolean_0 =

ap_block_pp0_stage0_11001) and
(ap_enable_reg_pp0_iter0 = ap_const_logic_1) and
(ap_const_logic_1 = ap_CS_fsm_pp0_stage0))) then

4 a_3_ce0 <= ap_const_logic_1;
5 else
6 a_3_ce0 <= ap_const_logic_0;
7 end if;
8 end process;
9

10 ap_CS_fsm_pp0_stage0 <= ap_CS_fsm (1);
11 ap_CS_fsm_state1 <= ap_CS_fsm (0);
12 ap_CS_fsm_state4 <= ap_CS_fsm (2);
13 ap_block_pp0_stage0 <= not((ap_const_boolean_1 =

ap_const_boolean_1));
14 ap_block_pp0_stage0_11001 <= not((ap_const_boolean_1

= ap_const_boolean_1));
15 ap_block_pp0_stage0_subdone <=

not((ap_const_boolean_1 = ap_const_boolean_1));
16 ap_block_state2_pp0_stage0_iter0 <=

not((ap_const_boolean_1 = ap_const_boolean_1));
17 ap_block_state3_pp0_stage0_iter1 <=

not((ap_const_boolean_1 = ap_const_boolean_1));
18
19 ap_condition_pp0_exit_iter0_state2_assign_proc :

process(exitcond1_fu_151_p2)
20 begin
21 if ((exitcond1_fu_151_p2 = ap_const_lv1_1)) then
22 ap_condition_pp0_exit_iter0_state2 <=

ap_const_logic_1;
23 else
24 ap_condition_pp0_exit_iter0_state2 <=

ap_const_logic_0;
25 end if;
26 end process;

Fig. 42: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
ten.

Page 32

C. VHDL

1 ap_done_assign_proc : process(ap_CS_fsm_state4)
2 begin
3 if ((ap_const_logic_1 = ap_CS_fsm_state4)) then
4 ap_done <= ap_const_logic_1;
5 else
6 ap_done <= ap_const_logic_0;
7 end if;
8 end process;
9

10 ap_enable_pp0 <= (ap_idle_pp0 xor ap_const_logic_1);
11
12 ap_idle_assign_proc : process(ap_start ,

ap_CS_fsm_state1)
13 begin
14 if (((ap_start = ap_const_logic_0) and

(ap_const_logic_1 = ap_CS_fsm_state1))) then
15 ap_idle <= ap_const_logic_1;
16 else
17 ap_idle <= ap_const_logic_0;
18 end if;
19 end process;
20
21
22 ap_idle_pp0_assign_proc :

process(ap_enable_reg_pp0_iter0 ,
ap_enable_reg_pp0_iter1)

23 begin
24 if (((ap_enable_reg_pp0_iter0 = ap_const_logic_0)

and (ap_enable_reg_pp0_iter1 =
ap_const_logic_0))) then

25 ap_idle_pp0 <= ap_const_logic_1;
26 else
27 ap_idle_pp0 <= ap_const_logic_0;
28 end if;
29 end process;
30
31
32 ap_ready_assign_proc : process(ap_CS_fsm_state4)
33 begin
34 if ((ap_const_logic_1 = ap_CS_fsm_state4)) then
35 ap_ready <= ap_const_logic_1;
36 else
37 ap_ready <= ap_const_logic_0;
38 end if;
39 end process;
40
41 c_address0 <= i1_reg_211 (2 - 1 downto 0);

Fig. 43: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
eleven.

Page 33

C. VHDL

1 c_ce0_assign_proc : process(ap_CS_fsm_pp0_stage0 ,
ap_block_pp0_stage0_11001 ,
ap_enable_reg_pp0_iter1)

2 begin
3 if (((ap_const_boolean_0 =

ap_block_pp0_stage0_11001) and (ap_const_logic_1
= ap_CS_fsm_pp0_stage0) and
(ap_enable_reg_pp0_iter1 = ap_const_logic_1)))
then

4 c_ce0 <= ap_const_logic_1;
5 else
6 c_ce0 <= ap_const_logic_0;
7 end if;
8 end process;
9

10 c_d0 <= std_logic_vector(signed(grp_fu_194_p3) +
signed(grp_fu_181_p3));

11
12 c_we0_assign_proc : process(exitcond1_reg_202 ,

ap_CS_fsm_pp0_stage0 , ap_block_pp0_stage0_11001 ,
ap_enable_reg_pp0_iter1)

13 begin
14 if (((ap_const_boolean_0 =

ap_block_pp0_stage0_11001) and
(exitcond1_reg_202 = ap_const_lv1_0) and
(ap_const_logic_1 = ap_CS_fsm_pp0_stage0) and
(ap_enable_reg_pp0_iter1 = ap_const_logic_1)))
then

15 c_we0 <= ap_const_logic_1;
16 else
17 c_we0 <= ap_const_logic_0;
18 end if;
19 end process;
20
21 exitcond1_fu_151_p2 <= "1" when (i_reg_140 =

ap_const_lv3_4) else "0";
22 i1_fu_163_p1 <=

std_logic_vector(IEEE.numeric_std.resize(
unsigned(i_reg_140) ,64));

23 i_1_fu_157_p2 <=
std_logic_vector(unsigned(i_reg_140) +
unsigned(ap_const_lv3_1));

24 end behav;

Fig. 44: VHDL code from prodMatVect.vhd, generated by Vivado HLS, part
twelve.

Page 34

C. VHDL

1 -- VHDL Model Created for "system␣
ControllerprodMatVectModule"

2 -- 4/7/2018 9:49:46.597984
3 -- Alpha2Vhdl Version 0.9
4
5 LIBRARY IEEE;
6 USE IEEE.std_logic_1164.all;
7 USE IEEE.std_logic_signed.all;
8 USE IEEE.numeric_std.all;
9 ENTITY ControllerprodMatVectModule IS

10
11 GENERIC(
12 counterDelay: INTEGER := 0
13);
14 PORT(
15 clk: IN STD_LOGIC;
16 CE : IN STD_LOGIC;
17 Rst : IN STD_LOGIC;
18 counter: OUT INTEGER;
19 dXctl1Out : OUT STD_LOGIC
20);
21 END ControllerprodMatVectModule;
22
23 ARCHITECTURE BEHAVIOURAL OF

ControllerprodMatVectModule IS
24
25 -- Declaration of the states
26 TYPE state_type IS (initState , trueState ,

falseState , finalState);
27 ATTRIBUTE ENUM_ENCODING: STRING;
28 ATTRIBUTE ENUM_ENCODING OF state_type : TYPE IS "00␣

01␣10␣11";
29
30 SIGNAL curStatedXctl1Out , nextStatedXctl1Out :

STATE_TYPE;
31
32 BEGIN

Fig. 45: VHDL code from ControllerprodMatVectModule.vhd, generated by
MMAlpha, part one.

Page 35

C. VHDL

1 -- Synchronous reset process
2 PROCESS (clk , rst)
3 BEGIN
4 IF clk = ’1’ AND clk’event␣THEN
5␣␣␣␣␣␣␣␣ IF␣CE␣=␣’1’␣THEN
6␣␣␣␣␣␣␣␣ IF␣rst␣=␣’0’␣THEN
7␣␣␣␣␣␣␣␣ counter␣ <=␣0;
8␣␣␣␣␣␣␣␣ curStatedXctl1Out␣<=␣initState;
9␣␣␣␣␣␣␣␣ ELSE

10␣␣␣␣␣␣␣␣ counter␣ <=␣counter␣+␣1;
11␣␣␣␣␣␣␣␣ curStatedXctl1Out␣<=␣nextStatedXctl1Out;
12␣␣␣␣␣␣␣␣ END␣IF;
13␣␣␣␣␣␣␣␣ END␣IF;
14␣␣␣␣␣␣␣␣ END␣IF;
15␣␣␣␣␣␣␣␣ END␣PROCESS;
16
17␣␣␣␣␣␣␣␣ --␣Controller␣for␣signal␣dXctl1Out
18␣␣␣␣␣␣␣␣ PROCESS(counter ,␣curStatedXctl1Out)
19␣␣␣␣␣␣␣␣ BEGIN
20␣␣␣␣␣␣␣␣ CASE␣curStatedXctl1Out␣IS
21␣␣␣␣␣␣␣␣ WHEN␣initState␣=>␣IF␣counter␣=␣1␣THEN
22␣␣␣␣␣␣␣␣ nextStatedXctl1Out␣<=␣trueState;
23␣␣␣␣␣␣␣␣ ELSE␣nextStatedXctl1Out␣<=␣initState;
24␣␣␣␣␣␣␣␣ END␣IF;
25␣␣␣␣␣␣␣␣ WHEN␣trueState␣=>␣IF␣counter␣=␣2␣THEN
26␣␣␣␣␣␣␣␣ nextStatedXctl1Out␣<=␣falseState;
27␣␣␣␣␣␣␣␣ ELSE␣nextStatedXctl1Out␣<=␣trueState;
28␣␣␣␣␣␣␣␣ END␣IF;
29␣␣␣␣␣␣␣␣ WHEN␣falseState␣=>␣IF␣counter␣=␣9␣THEN
30␣␣␣␣␣␣␣␣ nextStatedXctl1Out␣<=␣finalState;
31␣␣␣␣␣␣␣␣ ELSE␣nextStatedXctl1Out␣<=␣falseState;
32␣␣␣␣␣␣␣␣ END␣IF;
33␣␣␣␣␣␣␣␣ WHEN␣OTHERS␣=>␣nextStatedXctl1Out␣ <=␣finalState;
34␣␣␣␣␣␣␣␣ END␣CASE;
35␣␣␣␣␣␣␣␣ END␣PROCESS;
36␣␣␣␣␣␣␣␣

Fig. 46: VHDL code from ControllerprodMatVectModule.vhd, generated by
MMAlpha, part two.

Page 36

C. VHDL

1 -- Output function for signal dXctl1Out
2 PROCESS(curStatedXctl1Out)
3 BEGIN
4 CASE curStatedXctl1Out is
5 WHEN initState => dXctl1Out <= ’0’;
6 WHEN falseState => dXctl1Out <= ’0’;
7 WHEN trueState => dXctl1Out <= ’1’;
8 WHEN finalState => dXctl1Out <= ’0’;
9 WHEN others => dXctl1Out <= ’0’;

10 END CASE;
11 END PROCESS;
12 END BEHAVIOURAL;

Fig. 47: VHDL code from ControllerprodMatVectModule.vhd, generated by
MMAlpha, part three.

1 -- VHDL Model Created for "system␣prodMatVectModule"
2 -- 4/7/2018 9:49:46.768462
3 -- Alpha2Vhdl Version 0.9
4 LIBRARY IEEE;
5 USE IEEE.std_logic_1164.all;
6 USE IEEE.std_logic_signed.all;
7 USE IEEE.numeric_std.all;
8 PACKAGE TYPESprodMatVectModule IS
9 TYPE Array1To4OfBoolean IS ARRAY (1 TO 4) OF

STD_LOGIC;
10 TYPE Array1To4OfInteger IS ARRAY (1 TO 4) OF

SIGNED (15 DOWNTO 0);
11 END TYPESprodMatVectModule;

Fig. 48: VHDL code from prodMatVectModule.vhd, generated by MMAlpha.

Page 37

C. VHDL

1
2 -- VHDL Model Created for "system␣prodMatVectModule"
3 -- 4/7/2018 9:49:46.768462
4 -- Alpha2Vhdl Version 0.9
5
6 LIBRARY IEEE;
7 USE IEEE.std_logic_1164.all;
8 USE IEEE.std_logic_signed.all;
9 USE IEEE.numeric_std.all;USE

work.TYPESprodMatVectModule.all;
10
11
12 ENTITY prodMatVectModule IS
13 GENERIC(
14 counterDelay: INTEGER := 0
15);
16 PORT(
17 clk: IN STD_LOGIC;
18 CE : IN STD_LOGIC;
19 Rst : IN STD_LOGIC;
20 aMirrIn : IN Array1To4OfInteger;
21 bMirrIn : IN Array1To4OfInteger;
22 dOut : OUT Array1To4OfInteger
23);
24 END prodMatVectModule;
25
26 ARCHITECTURE behavioural OF prodMatVectModule IS
27
28 SIGNAL counter : INTEGER; -- Counter
29
30 SIGNAL dXctl1XInOut : Array1To4OfBoolean;
31 SIGNAL dXctl1 : STD_LOGIC;
32 SIGNAL a01 : Array1To4OfInteger;
33 SIGNAL b01 : Array1To4OfInteger;
34 SIGNAL TSep2Out : Array1To4OfInteger;
35 SIGNAL dSepTime1 : Array1To4OfInteger;
36 SIGNAL TSep1 : Array1To4OfInteger;
37
38
39 -- Insert missing components here!

Fig. 49: VHDL code from prodMatVectModule.vhd, generated by MMAlpha.

Page 38

C. VHDL

1 -- Components for calls to external functions
2
3 -- Component for ControllerprodMatVectModule
4 COMPONENT ControllerprodMatVectModule
5 GENERIC(
6 counterDelay: INTEGER := 0
7);
8 PORT(
9 clk: IN STD_LOGIC;

10 CE : IN STD_LOGIC;
11 Rst : IN STD_LOGIC;
12 counter: OUT INTEGER;
13 dXctl1Out : OUT STD_LOGIC
14);
15 END COMPONENT;
16
17 -- $MissingComponents$
18
19 BEGIN
20
21 -- Translation of the definition of a01
22 G1 : FOR p IN 1 TO 4 GENERATE
23 a01(p) <= aMirrIn(p);
24 END GENERATE;
25
26 -- Translation of the definition of b01
27 G2 : FOR p IN 1 TO 4 GENERATE
28 b01(p) <= bMirrIn(p);
29 END GENERATE;
30
31 -- Translation of the definition of dOut
32 G3 : FOR p IN 1 TO 4 GENERATE
33 dOut(p) <= resize("0000000000000000", 16) WHEN

dXctl1XInOut(p) = ’1’ ELSE TSep2Out(p);
34 END GENERATE;
35
36 -- Translation of the definition of dSepTime1
37 G4 : FOR p IN 1 TO 4 GENERATE
38 PROCESS(clk) BEGIN IF (clk = ’1’ AND clk’EVENT)␣THEN
39␣␣␣␣␣␣␣␣ IF␣CE=’1’␣THEN␣dSepTime1(p)␣<=␣dOut(p);␣END␣IF;
40␣␣␣␣␣␣␣␣ END␣IF;
41␣␣␣␣␣␣␣␣ END␣PROCESS;
42␣␣␣␣␣␣␣␣ END␣GENERATE;
43␣␣␣␣␣␣␣␣

Fig. 50: VHDL code from packageprodMatVectModule.vhd, generated by
MMAlpha.

Page 39

C. VHDL

1 -- Translation of the definition of dXctl1XInOut
2 G5 : FOR p IN 1 TO 4 GENERATE
3 dXctl1XInOut(p) <= dXctl1;
4 END GENERATE;
5
6 -- Translation of the definition of TSep1
7 G6 : FOR p IN 1 TO 4 GENERATE
8 TSep1(p) <= resize ((a01(p) * b01(p)), 16);
9 END GENERATE;

10
11 -- Translation of the definition of TSep2Out
12 G7 : FOR p IN 1 TO 4 GENERATE
13 TSep2Out(p) <= resize ((dSepTime1(p) + TSep1(p)), 16);
14 END GENERATE;
15
16 G8 : ControllerprodMatVectModule
17 GENERIC MAP (counterDelay => counterDelay)
18 PORT MAP (clk , CE, rst , counter , dXctl1);
19
20 END BEHAVIOURAL;

Fig. 51: VHDL code from prodMatVectModule.vhd, generated by MMAlpha.

Page 40

	VHDL synthesis: a first step toward a comparison between Vivado HLS and MMAlpha

