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Introduction

The Unrestritive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J

• an unrestrictive common due-date
d >

∑
pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0

|

j
j ′

j ′′

A solution schedule =
• a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj
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Introduction

Definition of dominance

Let T be a solution subset.

• T is a dominant set if it contains at least one optimal solution

• T is a strictly dominant set if it contains all the optimal solutions

In both cases, the searching space can be reduced to T , other solutions
can be discarded.
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Introduction

Dominance properties for the UCDDP

• blocks (= schedules without idle time) are strictly dominant

• schedules with one on-time task are dominant

• V-shaped schedules are strictly dominant

p p p p p p p p p p p p p p p

d

Hall and Posner, 1991, Operations research
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Introduction

Main results for the UCDDP

• Complexity:

- unitary case: ∀j ∈J, αj =βj =cst ⇒ P
- symmetric case: ∀j ∈J, αj =βj ⇒ NP-hard

(in a weak sense)

- general case: arbitrary coeficients α, β ⇒ NP-hard

• Solving approach:

- dynamic programming in case of symmetric penalties
- heuristic
- branch-and-bound algorithm solve up to 1000-task instances within 1400 s
- MIP formulations (one using natural variables, one compact)

• This work: translate dominance properties in a MIP context

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Biskup and Feldmann, 2001, Computers and Operations Research
Sourd, 2009, Informs Journal on Computing
Falq, Fouilhoux, Kedad-Sidhoum 2019, https://arxiv.org/abs/1901.06880
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Dominance properties

Two types of dominance properties

Structural dominance properties

p p p p p p p p p p p p p p p

d

αi

pi

βi
pi

- consider only the V-shaped d-blocks since they are dominant

- define the early/tardy partition of a V-shaped d-block

- V-shaped d-blocks having the same early/tardy partition (E ,T )
have the same penalty f (E ,T )

- formulate UCDDP as a partition problem min
(E ,T )∈ ~P∗2 (J)

f (E ,T )

where ~P∗2 (J) =
{

(E ,T ) | {E ,T} is a partition of J and E 6=∅
}

- introduce notations for any u∈J,

A(u)=
{
i ∈J | αi

pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}
B(u)=

{
i ∈J | βipi >

βu
pu

}
and B̄(u)=

{
i ∈J | i 6=u, βipi 6

βu
pu

}
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Dominance properties

Two types of dominance properties

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors,
then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their
neighborhood is a strictly dominant set.

Our approach:
- define a neighborhood based on operations
- translate the associate dominance property by constraints
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Dominance properties

Insert and swap operations

Insert and swap operations on partitions

E T

•
u

insert of an early task

E T

•
v

insert of a tardy task
E T

•
u

•
v

swap

A partition (E ,T ) is said:

• insert non-dominated if

{
∀v ∈T , f

(
E ,T

)
6 f

(
E∪{v}, T\{v}

)
∀u∈E , f

(
E ,T

)
6 f

(
E\{u}, T∪{u}

)
• swap non-dominated if ∀(u, v)∈E×T , f

(
E ,T

)
6 f

(
E\{u}∪{v}, T\{v} ∪{u}

)
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Dominance properties

Insert and swap operations

An example on schedules

Instance : αj 4 3 3 - 5 -
βj - 3 - 6 3 1

S p p p p p p p p p p p p p p p p p p p p p13 4 6
u=5 v =2

d

penalty: 65

S1 p p p p p p p p p p p p p p p p p p p p p13 4 6
u=5v =2

d

penalty: 69

+2*3 +5*3 -5*3 -2*1

S2 p p p p p p p p p p p p p p p p p p p p p13 4 6
u=5v =2

d

penalty: 73

-2*3 -2*5 +8*3 +2*1

S3 p p p p p p p p p p p p p p p p p p p p p13 4 6
u=5v =2

d

penalty: 62

-1*3 -2*5+2*3 -5*3+6*3 +1*1
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Dominance properties

Insert and swap operations

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(v)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T )> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T )> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T )> 0 if (u, v)∈E×T
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Dominance inequalities

Linear formulation

• describe a partition (E ,T )

- express "task i is early" is needed
→ introduce a binary variable δj for each task j ∈J δj =1 iff j ∈E

• express f as a linear function
- express "both tasks i and j are early" is needed
→ introduce a variable Xi,j for each couple of tasks (i , j) with i< j
→ introduce 4 inequalities for each (i , j) Xi,j =1 iff δi 6=δj

= a compact linear formulation

• translate dominance constraints

∆early
u (E ,T ) > 0 if u∈E −→ ∆early

u (δ)

ex: −αu p
(
A(u)∩E

)
−→

−αu
∑

i∈A(u)
piδi
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We propose linear inequalities

- which improves the linear formulation

- in a non classical way
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- by translating neigborhood-based
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Future work:
- applying the dominance inequalities principle to other
combinatorial problems
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