Inégalités linéaires de dominance pour I'ordonnancement juste-à-temps avec date d'échéance commune non restrictive

Anne-Elisabeth FALQ ${ }^{1}$
Pierre Fouilhoux ${ }^{1}$ and Safia Kedad-Sidhoum ${ }^{2}$

1 : Sorbonne Université, CNRS, LIP6, Paris
2: CNAM, CEDRIC, Paris
ROADEF, Montpellier, février 2020

Outline

1. Introduction
2. Dominance properties
3. Dominance inequalities
4. Conclusion

Outline

1. Introduction
2. Dominance properties
3. Dominance inequalities
4. Conclusion

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$

0

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

0

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

0

- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

0

- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$

- a family of pairwise disjoint processing intervals

The Unrestritive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

0

- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$

- a family of pairwise disjoint processing intervals

The objective $=\min \sum_{j \in J} \alpha_{j} E_{j}+\beta_{j} T_{j}$

Definition of dominance

Let T be a solution subset.

Definition of dominance

Let T be a solution subset.

- T is a dominant set if it contains at least one optimal solution

Definition of dominance

Let T be a solution subset.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

Definition of dominance

Let T be a solution subset.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

In both cases, the searching space can be reduced to T, other solutions can be discarded.

Dominance properties for the UCDDP

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant
- schedules with one on-time task are dominant

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant
- schedules with one on-time task are dominant
- V-shaped schedules are strictly dominant

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant
- schedules with one on-time task are dominant
- V-shaped schedules are strictly dominant

Dominance properties for the UCDDP

- blocks (= schedules without idle time) are strictly dominant
- schedules with one on-time task are dominant
- V-shaped schedules are strictly dominant

Introduction

\square

Main results for the UCDDP

- Complexity:
- Solving approach:

Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=\mathbf{c s t} \Rightarrow \mathrm{P}$
- Solving approach:

Kanet, 1981, Naval Research Logistics Quaterly

Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=\mathbf{c s t} \Rightarrow \mathrm{P}$
- symmetric case: $\forall j \in J, \alpha_{j}=\beta_{j} \Rightarrow$ NP-hard
- Solving approach:

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=\mathbf{c s t} \Rightarrow \mathrm{P}$
- symmetric case: $\forall j \in J, \alpha_{j}=\beta_{j} \Rightarrow$ NP-hard (in a weak sense)
- Solving approach:
- dynamic programming in case of symmetric penalties

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=c s t \quad \Rightarrow \mathrm{P}$
- symmetric case: $\forall j \in J, \alpha_{j}=\beta_{j} \Rightarrow$ NP-hard (in a weak sense)
- general case: arbitrary coeficients $\alpha, \beta \Rightarrow$ NP-hard
- Solving approach:
- dynamic programming in case of symmetric penalties

[^0]
Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=\mathbf{c s t} \Rightarrow \mathrm{P}$
- symmetric case: $\forall j \in J, \alpha_{j}=\beta_{j} \Rightarrow$ NP-hard (in a weak sense)
- general case: arbitrary coeficients $\alpha, \beta \Rightarrow$ NP-hard
- Solving approach:
- dynamic programming in case of symmetric penalties
- heuristic

```
Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Biskup and Feldmann, 2001, Computers and Operations Research
```


Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=\mathbf{c s t} \Rightarrow \mathrm{P}$
- symmetric case: $\forall j \in J, \alpha_{j}=\beta_{j} \Rightarrow$ NP-hard (in a weak sense)
- general case: arbitrary coeficients $\alpha, \beta \Rightarrow$ NP-hard
- Solving approach:
- dynamic programming in case of symmetric penalties
- heuristic
- branch-and-bound algorithm solve up to 1000-task instances within 1400 s

```
Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Biskup and Feldmann, 2001, Computers and Operations Research
Sourd, 2009, Informs Journal on Computing
```


Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=c s t \quad \Rightarrow P$
- symmetric case: $\forall j \in J, \alpha_{j}=\beta_{j} \Rightarrow$ NP-hard (in a weak sense)
- general case: arbitrary coeficients $\alpha, \beta \Rightarrow$ NP-hard
- Solving approach:
- dynamic programming in case of symmetric penalties
- heuristic
- branch-and-bound algorithm solve up to 1000-task instances within 1400 s
- MIP formulations (one using natural variables, one compact)

```
Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Biskup and Feldmann, 2001, Computers and Operations Research
Sourd, 2009, Informs Journal on Computing
Falq, Fouilhoux, Kedad-Sidhoum 2019, https://arxiv.org/abs/1901.06880
```


Main results for the UCDDP

- Complexity:
- unitary case: $\forall j \in J, \alpha_{j}=\beta_{j}=c s t \quad \Rightarrow P$
- symmetric case: $\forall j \in J, \alpha_{j}=\beta_{j} \Rightarrow$ NP-hard (in a weak sense)
- general case: arbitrary coeficients $\alpha, \beta \Rightarrow$ NP-hard
- Solving approach:
- dynamic programming in case of symmetric penalties
- heuristic
- branch-and-bound algorithm solve up to 1000-task instances within 1400 s
- MIP formulations (one using natural variables, one compact)
- This work: translate dominance properties in a MIP context

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Biskup and Feldmann, 2001, Computers and Operations Research
Sourd, 2009, Informs Journal on Computing
Falq, Fouilhoux, Kedad-Sidhoum 2019, https://arxiv.org/abs/1901.06880

Outline

1. Introduction
2. Dominance properties

Two types of dominance properties Insert and swap operations
3. Dominance inequalities
4. Conclusion

Two types of dominance properties

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- V-shaped d-blocks having the same early/tardy partition (E, T) have the same penalty $f(E, T)$

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- V-shaped d-blocks having the same early/tardy partition (E, T) have the same penalty $f(E, T)$
- formulate UCDDP as a partition problem $\min _{(E, T) \in \overrightarrow{\mathcal{P}}_{2}^{*}(J)} f(E, T)$
where $\overrightarrow{\mathcal{P}}_{2}^{*}(J)=\{(E, T) \mid\{E, T\}$ is a partition of J and $E \neq \emptyset\}$

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

Structural dominance properties

- consider only the V -shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structural dominance properties

- consider only the V -shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structural dominance properties

- consider only the V -shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structural dominance properties

- consider only the V -shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

$$
\begin{array}{lll}
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } & \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\} \\
B(u)=\left\{i \in J \left\lvert\, \frac{\beta_{i}}{p_{i}}>\frac{\beta_{u}}{p_{u}}\right.\right\} \quad \text { and } & \bar{B}(u)=\left\{i \in J \mid i \neq u, \frac{\beta_{i}}{p_{i}} \leqslant \frac{\beta_{u}}{p_{u}}\right\}
\end{array}
$$

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

$$
\begin{array}{lll}
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } & \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\} \\
B(u)=\left\{i \in J \left\lvert\, \frac{\beta_{i}}{p_{i}}>\frac{\beta_{u}}{p_{u}}\right.\right\} \quad \text { and } & \bar{B}(u)=\left\{i \in J \mid i \neq u, \frac{\beta_{i}}{p_{i}} \leqslant \frac{\beta_{u}}{p_{u}}\right\}
\end{array}
$$

Structural dominance properties

- consider only the V-shaped d-blocks since they are dominant
- introduce notations for any $u \in J$,

$$
\begin{array}{lll}
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } & \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\} \\
B(u)=\left\{i \in J \left\lvert\, \frac{\beta_{i}}{p_{i}}>\frac{\beta_{u}}{p_{u}}\right.\right\} \quad \text { and } & \bar{B}(u)=\left\{i \in J \mid i \neq u, \frac{\beta_{i}}{p_{i}} \leqslant \frac{\beta_{u}}{p_{u}}\right\}
\end{array}
$$

Neighborhood based dominance properties: generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their neighborhood is a strictly dominant set.

Neighborhood based dominance properties: generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their neighborhood is a strictly dominant set.

Our approach:

- define a neighborhood based on operations
- translate the associate dominance property by constraints

Insert and swap operations on partitions

insert of an early task

Insert and swap operations on partitions

insert of an early task

insert of a tardy task

Insert and swap operations on partitions

insert of an early task

insert of a tardy task

Insert and swap operations on partitions

insert of an early task

E

E
T
swap

A partition (E, T) is said:

- insert non-dominated if $\left\{\begin{array}{l}\forall v \in T, f(E, T) \leqslant f\left(E \cup\{v\}, T_{\backslash\{v\}}\right) \\ \forall u \in E, f(E, T) \leqslant f\left(E_{\backslash\{u\}}, T \cup\{u\}\right)\end{array}\right.$
- swap non-dominated if $\forall(u, v) \in E \times T, f(E, T) \leqslant f\left(E_{\backslash\{u\}} \cup\{v\}, T_{\backslash\{v\}} \cup\{u\}\right)$

Compare insert dominance and swap dominance

(E, T)

Compare insert dominance and swap dominance

An example on schedules

$$
\begin{array}{l|l|l|l|l|l|l}
\text { Instance : } \alpha_{j} & 4 & 3 & 3 & - & 5 & - \\
\hline \beta_{j} & - & 3 & - & 6 & 3 & 1
\end{array}
$$

An example on schedules

An example on schedules

An example on schedules

Insert and swap operations

An example on schedules

Dominance properties
Insert and swap operations

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

$$
\operatorname{cost}\left(\mathcal{S}^{\prime}\right)=\operatorname{cost}(\mathcal{S})-\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(v) \cap T})+p_{u}\right)
$$

Cost variation induced by the insertion of an early task u

$$
\begin{aligned}
\operatorname{cost}\left(\mathcal{S}^{\prime}\right)=\operatorname{cost}(\mathcal{S}) & -\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(v) \cap T})+p_{u}\right) \\
& -p_{u} \alpha(\overline{\bar{A}(u) \cap E})
\end{aligned}
$$

Cost variation induced by the insertion of an early task u

$$
\begin{aligned}
\operatorname{cost}\left(\mathcal{S}^{\prime}\right)=\operatorname{cost}(\mathcal{S}) & -\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(v) \cap T})+p_{u}\right) \\
& -p_{u} \alpha(\overline{\bar{A}(u) \cap E})+p_{u} \beta(\underline{\bar{B}(v) \cap T})
\end{aligned}
$$

Cost variation induced by the insertion of an early task u

$$
\begin{aligned}
\operatorname{cost}\left(\mathcal{S}^{\prime}\right)=\operatorname{cost}(\mathcal{S}) & -\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(v) \cap T})+p_{u}\right) \\
& -p_{u} \alpha(\overline{\bar{A}(u) \cap E})+p_{u} \beta(\underline{\bar{B}(v) \cap T})
\end{aligned}
$$

Cost variation induced by the insertion of an early task u

$$
\begin{aligned}
\Delta_{u}^{\text {early }}(E, T)= & -\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(v) \cap T})+p_{u}\right) \\
& -p_{u} \alpha(\underline{\bar{A}(u) \cap E})+p_{u} \beta(\underline{\bar{B}(v) \cap T)}
\end{aligned}
$$

Insert and swap operations

Cost variation induced by the insertion of an early task u

$$
\begin{aligned}
\Delta_{u}^{\text {early }}(E, T)= & -\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(v) \cap T})+p_{u}\right) \\
& -p_{u} \alpha(\underline{\bar{A}(u) \cap E})+p_{u} \beta(\underline{\bar{B}(v) \cap T)}
\end{aligned}
$$

dominance constraint
for the early-insert of $u \in J \Delta_{u}^{\text {early }}(E, T) \geqslant 0$ if $u \in E$

Cost variation induced by the insertion of an early task u

$$
\begin{aligned}
\Delta_{u}^{\text {early }}(E, T)= & -\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(v) \cap T})+p_{u}\right) \\
& -p_{u} \alpha(\underline{\bar{A}(u) \cap E})+p_{u} \beta(\underline{\bar{B}(v) \cap T})
\end{aligned}
$$

$$
\begin{aligned}
& \text { dominance constraint } \\
& \text { he early-insert of } u \in J
\end{aligned} \Delta_{u}^{\text {early }}(E, T) \geqslant 0 \text { if } u \in E
$$

Similarly: $\begin{array}{r}\text { dominance constraint } \\ \text { for the tardy-insert of } v \in J\end{array} \Delta_{V}^{\text {tardy }}(E, T) \geqslant 0$ if $v \in T$

Cost variation induced by the insertion of an early task u

$$
\begin{aligned}
& \text { dominance constraint } \Delta_{u}^{\text {early }}(E, T) \geqslant 0 \text { if } u \in E \\
& \text { for the early-insert of } u \in J
\end{aligned}
$$

Similarly: $\begin{gathered}\text { dominance constraint } \\ \text { for the tardy-insert of } v \in J\end{gathered} \Delta_{v}^{\text {tardy }}(E, T) \geqslant 0$ if $v \in T$

$$
\begin{aligned}
& \text { dominance constraint } \\
& \text { wap of } u \in J \text { and } v \in J \Delta_{u, v}^{s w a p}(E, T) \geqslant 0 \text { if }(u, v) \in E \times T
\end{aligned}
$$

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

$$
\begin{array}{ll}
& \bullet \\
& \bullet \\
& \bullet \\
\text { Operation-centered } \\
\text { Consider one given type of neighbor for all the solutions }
\end{array}
$$

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Outline

1. Introduction
 2. Dominance properties

3. Dominance inequalities
4. Conclusion

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$
$=$ a compact linear formulation

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$
$=$ a compact linear formulation
- translate dominance constraints

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$
$=$ a compact linear formulation
- translate dominance constraints

$$
\Delta_{u}^{\text {early }}(E, T) \geqslant 0 \text { if } u \in E
$$

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$
$=$ a compact linear formulation
- translate dominance constraints

$$
\Delta_{u}^{\text {early }}(E, T) \geqslant 0 \text { if } u \in E
$$

$$
\text { ex: }-\alpha_{u} p(\underline{A(u) \cap E})
$$

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$
$=$ a compact linear formulation
- translate dominance constraints

$$
\Delta_{u}^{\text {early }}(E, T) \geqslant 0 \text { if } u \in E
$$

$$
\mathrm{ex}:-\alpha_{u} p(\underline{A(u) \cap E}) \longrightarrow-\alpha_{u} \sum_{i \in A(u)} p_{i} \delta_{i}
$$

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$
$=$ a compact linear formulation
- translate dominance constraints

$$
\Delta_{u}^{\text {early }}(E, T) \geqslant 0 \text { if } u \in E \rightarrow \Delta_{u}^{\text {early }}(\delta) \geqslant 0 \text { if } u \in E
$$

$$
\text { ex: }-\alpha_{u} p(\underline{A(u) \cap E}) \longrightarrow-\alpha_{u} \sum_{i \in A(u)} p_{i} \delta_{i}
$$

Linear formulation

- describe a partition (E, T)
- express "task i is early" is needed
\rightarrow introduce a binary variable δ_{j} for each task $j \in J \delta_{j}=1$ iff $j \in E$
- express f as a linear function
- express "both tasks i and j are early" is needed
\rightarrow introduce a variable $X_{i, j}$ for each couple of tasks (i, j) with $i<j$
\rightarrow introduce 4 inequalities for each $(i, j) X_{i, j}=1$ iff $\delta_{i} \neq \delta_{j}$
$=$ a compact linear formulation
- translate dominance constraints

$$
\begin{aligned}
\Delta_{u}^{\text {early }}(E, T) \geqslant 0 \text { if } u \in E & \rightarrow \Delta_{u}^{\text {early }}(\delta) \geqslant-M\left(1-\delta_{u}\right) \\
\text { ex: }-\alpha_{u} p(\underline{A(u) \cap E)} & \longrightarrow-\alpha_{u} \sum_{i \in A(u)} p_{i} \delta_{i}
\end{aligned}
$$

Experimental results

Framework:

```
- machine
    RAM 144 Go
    1 core at 3.47 Ghz
- PL Solver
    Cplex 12.6.3
    - time limit
    3600s
```

Benchmark:

- by Biskup\&Feldmann
- $n \in\{10,20,30,40,50,60\}$
- 10 instances for each n
- p, α and β integers
- $p_{i} \in[1,20]$

Experimental results

Framework:

```
- machine
    RAM 144 Go
    1 core at 3.47 Ghz
- PL Solver
    Cplex 12.6.3
    - time limit
    3600s
```

Benchmark:

- by Biskup\&Feldmann
- $n \in\{10,20,30,40,50,60\}$
- 10 instances for each n
- p, α and β integers
- $p_{i} \in[1,20]$

Experimental results

20	7
50	32
100	323
120	868

Framework:

```
- machine RAM 144 Go 1 core at 3.47 Ghz
- PL Solver
Cplex 12.6.3
- time limit
3600s
```

Benchmark:

- by Biskup\&Feldmann
- $n \in\{10,20,30,40,50,60\}$
- 10 instances for each n
- p, α and β integers
- $p_{i} \in[1,20]$

Experimental results

Framework:

- machine RAM 144 Go 1 core at 3.47 Ghz
- PL Solver

Cplex 12.6.3

- time limit 3600s

Benchmark:

- by Biskup\&Feldmann
- $n \in\{10,20,30,40,50,60\}$
- 10 instances for each n
- p, α and β integers
- $p_{i} \in[1,20]$

Unusual inequalities

Unusual inequalities

Unusual inequalities

- integer solutions

Unusual inequalities

- integer solutions

\star
best integer solution
best fractionnal solution in P

Unusual inequalities

- integer solutions
\star best integer solution
best fractionnal solution in P
_ a dominance inequality
polyhedron P

Unusual inequalities

- integer solutions
\star
\star
\qquad a dominance inequality

Unusual inequalities

- integer solutions
best integer solution
best fractionnal solution in P
a dominance inequality
new polyhedron P^{\prime}

Unusual inequalities

- integer solutions
best integer solution
best fractionnal solution in P
a dominance inequality
new polyhedron P^{\prime}
best fractionnal solution in P^{\prime}

Outline

1. Introduction

2. Dominance properties
3. Dominance inequalities
4. Conclusion

We propose linear inequalities

We propose linear inequalities

- which improves the linear formulation

We propose linear inequalities

- which improves the linear formulation
- in a non classical way

We propose linear inequalities

- which improves the linear formulation
- in a non classical way

- by translating neigborhood-based dominance properties

We propose linear inequalities

- which improves the linear formulation
- in a non classical way

- by translating neigborhood-based dominance properties

Future work:

- applying the dominance inequalities principle to other combinatorial problems

References I

R
D. Biskup and M. Feldmann.

Benchmarks for scheduling on a single machine against restrictive and unrestrictive common due dates.
Computers and operations research, Vol 28:787-801, 2001.
A. Falq, P. Fouilhoux, and S. Kedad-Sidhoum.

Mixed integer formulations using natural variables for single machine scheduling around a common due date.
CoRR, abs/1901.06880, 2019.
T
N. G. Hall and M. E. Posner.

Earliness-tardiness scheduling problems, 1: Weighted deviation of completion times about a common due date.
Operations Research, Vol 39:836-846, Sep-Oct 1991.
T
J. A. Hoogeveen and S. van de Velde.

Scheduling around a small common due date.
European Journal of Operational Research, Vol 55:237-242, 1991.

References II

A. Jouglet and J. Carlier.

Dominance rules in combinatorial optimization problems.
European Journal of Operational Research, 212(3):433-444, 2011.
J. J. Kanet.

Minimizing the average deviation of job completion times about a common due date.
Naval Research Logistics Quarterly, Vol 28:643-651, Dec 1981.
F. Sourd.

New exact algorithms for one-machine earliness-tardiness scheduling. INFORMS Journal on Computing, 21(1):167-175, 2009.

[^0]: Kanet, 1981, Naval Research Logistics Quaterly
 Hall and Posner, 1991, Operations research

