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What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
e T is a dominant set if it contains at least one optimal solution

e T is a strictly dominant set if it contains all the optimal solutions

In both cases,
— the searching space can be reduced to T

— other solutions can be discarded
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2- A formulation for UCDDP using natural variables e 2.2 Non-overlapping inequalities

Formulation F3 for UCDDP

(i, j)e<, X = 0 (x.1)
Xij <0i+9;  (x.2)
Xij = 0i—3; (x.3)
Xij=2— ({:*51' (x.4)

R. Fortet, 1959, Cahiers du centre d'études en recherche opérationnelle
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Formulation F3 for UCDDP

V(i,j)€J<, X,'yj }0 (Xl)
X,"j g (5,+(5 (X2)
X,'7j 2 6,'—(5{ (X3)
Xij=2-— ({1*51 (x.4)
VSeP(J), > piei =Y pip;j % (S1)
i€S (ij)es<

—(640;)Xi j
> Piti =) pipj % +>- pi(1-61) (52)
i€eS (ij)es< i€S

16 /25



2- A formulation for UCDDP using natural variables e 2.2 Non-overlapping inequalities

Formulation F3 for UCDDP

Vjed, =0 (e0) Vjed, ;=0
& < My (el) ;i <M(1-4) (t.2)
(i, j)ed<, Xij = 0 (x.1)
3 Xij < 5,+gj (x.2)
P = (ea ta 6aX) Xi,j 2 61_ i (X3)
X"J 2 2— bji*(sj (X4)

i€eS (i.j)es< ieS

X pit 230 prpy O 4 pR(1-0) (52)

(S1)

16 /25



2- A formulation for UCDDP using natural variables e 2.2 Non-overlapping inequalities

Formulation F3 for UCDDP

F3: min{ S aje+8it | (e t,d,X)e€extr(P?) and
Jj€d
where:
VjielJ,0<6; <1 (0)
vjed, =0 (e0) Vjed, t
& < M(Sj (e.l) tJ
V(i,j)€J<, X,'yj 20 (Xl)
Xiﬁj g (5,+(5 (X2)
pP3= (e, t,6,X) X,'J}(S,—éJ' (X3)
Xij=2— (#1*51 (x.4)
VSEP(J), X pier =X pipy G
i€eS (i,j)es<
> pity 230 pipy R 4 pH(1-67) (52)
i€eS (ij)es< i€S

66{0,1}J}

(S1)

16 /25



2- A formulation for UCDDP using natural variables e 2.3 Validity

Validity of F3

(@} b .

- (M, M)
M d
> validity proof Ke /
- is not based on a geometrical proof Conv(Q)
- rnust bfa .compatlble with additional pitps L )
inequalities ce Ke
p L =
CfT
0 t f
0 Pt p1tp2 MG

Falg, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)
17/25



2- A formulation for UCDDP using natural variables e 2.3 Validity

Validity of F3

G
M
» validity proof
- is not based on a geometrical proof
- _must bfe _compatlble with additional p1+po -
inequalities
. P2
» we provide 2 key lemmas to use
non-overlapping inequalities combined
with additional inequalities
0 t t
0o M p1+p2 MG

Falg, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)
17/25



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities

Let y eR7 satisfying VSCJ, 3" piy; = g(S) (Q).
Jjes

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities

Let y eR7 satisfying VSCJ, 3" piy; = g(S) (Q).
Jjes

Lemma 1
If there exists (i,j)€J? s.t. i#£j and y; <y;<yi+p; ,

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities

Let y e R7 satisfying VSCJ, 3 piy; = g(S) (Q).
Jj€es

Lemma 1
If there exists (i,j)€J? s.t. i#£j and y; <y;<yi+p; ,

Falg, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities
Let y e R7 satisfying VSCJ, 3 piy; = g(S) (Q).
Jj€es

Lemma 1
If there exists (i,j)€J? s.t. i#£j and y; <y;<yi+p; ,

y =yt gli- 2

yr=y—sli+ 2

then there exists e € R s.t. { also satisfy ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities
Let y e R7 satisfying VSCJ, 3 piy; = g(S) (Q).
Jj€es

Lemma 1 to use with extremality of y
If there exists (i,j)€J? s.t. i#£j and y; <y;<yi+p; ,

y =yt gli- 2

yr=y—slit

then there exists e € R s.t. { also satisfy ineq. (Q).

Falg, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities

Let y eR7 satisfying VSCJ, 3" piy; = g(S) (Q).
Jj€es

Lemma 1 to use with extremality of y
If there exists (i,j)€J? s.t. i#£j and y; <y;<yi+p; ,

+—-_ g g
y T =y+ohi—-2
then there exists e€R* s.t. ¢~ _ i P also satisfy ineq. (Q).
+ {y +=y—§]1,-+§ﬂj

Lemma 2
If there exists (i,j)€J? s.t. i#£], y;<yi+p; and y; > p;,

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities
Let y eR7 satisfying VSCJ, 3" piy; = g(S) (Q).
Jjes

Lemma 1 to use with extremality of y
If there exists (i,j)€J? s.t. i#£j and y; <y;<yi+p; ,

+—-_ g g
=y+-Li—21
then there exists e € R} s.t. {y YT T lso satisfy ineq. (Q).

yr=y—sli+ 2

|

l—L=— -] = > -
yio VP e/pj e/pi €/pi e/pj

Lemma 2
If there exists (i,j)€J? s.t. i#£], y;<yi+p; and y; > p;,
then there exists e €RY s.t. y—~1; also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



2- A formulation for UCDDP using natural variables e 2.3 Validity
Two key lemmas for non-overlapping inequalities
Let y eR7 satisfying VSCJ, 3" piy; = g(S) (Q).
Jj€es

Lemma 1 to use with extremality of y
If there exists (i,j)€J? s.t. i#£j and y; <y;<yi+p; ,

+—- £ 1>
y T =y+ o=
then there exists e €R* s.t. _ P P also satisfy ineq. )
+ {y +:y_§]1i+p£jﬂj y q (Q)
...... J ol i LT J
(o a '
' = < = ~ =
yio ViR e/p e/pj  €/pi e/pj

Lemma 2 to use with minimality of y
If there exists (i,j)€J? s.t. i#£], y;<yi+p; and y; > p;,

then there exists e €RY s.t. y—~1; also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 1825



Outline

3. How to manage this kind of formulations in practice
Non-overlapping inequalities’ separation
Extremality constraints and Branch-and-Bound



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
< Branch-and-Bound algorithm

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
— Branch-and-Bound algorithm — branching on ¢ variables

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
— Branch-and-Bound algorithm — branching on ¢ variables

e exponential number of inequalities

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
— Branch-and-Bound algorithm — branching on ¢ variables

e exponential number of inequalities
— Branch-and-Cut algorithm

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
— Branch-and-Bound algorithm — branching on ¢ variables

e exponential number of inequalities
— Branch-and-Cut algorithm — polynomial separation algorithm

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
— Branch-and-Bound algorithm — branching on ¢ variables

e exponential number of inequalities
— Branch-and-Cut algorithm — polynomial separation algorithm

e extremality constraints

19/25



3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
— Branch-and-Bound algorithm — branching on ¢ variables

e exponential number of inequalities
— Branch-and-Cut algorithm — polynomial separation algorithm

e extremality constraints
— ensuring the solutions extremality in spite of the branching scheme
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