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What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
e T is a dominant set if it contains at least one optimal solution

e T is a strictly dominant set if it contains all the optimal solutions

In both cases,
— the searching space can be reduced to T

— other solutions can be discarded
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2- A formulation for UCDDP using natural variables e 2.2 Non-overlapping inequalities

Formulation F3 for UCDDP

(i, j)e<, X = 0 (x.1)
Xij <0i+9;  (x.2)
Xij = 0i—3; (x.3)
Xij=2— ({:*51' (x.4)

R. Fortet, 1959, Cahiers du centre d'études en recherche opérationnelle
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What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

e integer variables
— Branch-and-Bound algorithm — branching on ¢ variables

e exponential number of inequalities
— Branch-and-Cut algorithm — polynomial separation algorithm

e extremality constraints
— ensuring the solutions extremality in spite of the branching scheme
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