Dominances en programmation linéaire :
 ordonnancement autour d'une date d'échéance commune

soutenance de thèse d'Anne-Elisabeth FALQ encadrée par Pierre Fouilhoux et Safia Kedad-Sidhoum

2 Novembre 2020, LIP6, Paris

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia

PLNE et polyèdres

Ordonnancement juste-à-temps

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia

PLNE et polyèdres

Ordonnancement juste-à-temps

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia depuis thèse au LIP6, équipe RO, encadrée par Pierre et Safia

PLNE et polyèdres

Ordonnancement juste-à-temps

Outline

1. Introduction

Scheduling around a common due date Known results about UCDDP and CDDP How to encode schedules?
2. Focus 1: A formulation for UCDDP using natural variables
3. Interlude : a first attempt to eliminate dominated solutions
4. Focus 2: dominance inequality
5. Conclusion and perspectives

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

A schedule :

0

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

A schedule :

0

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$
- unit earliness penalties : $\forall j \in J, \alpha_{j}=2$

A schedule:

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties: $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$
- unit earliness penalties : $\forall j \in J, \alpha_{j}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties: $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$
- unit earliness penalties : $\forall j \in J, \alpha_{j}=2$

A schedule :

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$ a family of pairwise disjoint processing intervals

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$ a family of pairwise disjoint processing intervals

The objective $=\min \sum_{j \in J} \alpha_{j} E_{j}+\beta_{j} \boldsymbol{T}_{j}=$
minimize the sum of earliness and tardiness penalties

The Unrestrictive Common Due Date Problem (CDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- a unrestrictive common due-date d
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$ a family of pairwise disjoint processing intervals

The objective $=\min \sum_{j \in J} \alpha_{j} E_{j}+\beta_{j} T_{j}=$

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

In both cases,
\rightarrow the searching space can be reduced to T
\rightarrow other solutions can be discarded

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance	
properties	

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance properties	\bullet without idle time \square

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance	- without idle time
properties	
	- one on time task

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance	• without idle time
properties	
	• one on time task
complexity	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P}$

Kanet, 1981, Naval Research Logistics Quaterly

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance properties	- without idle time \square - one on time task
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \quad \text { NP-hard } \end{aligned}$

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance properties	\bullet without idle time
	\bullet one on time task
	$(+$ "V-shaped" $)$
complexity	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P}$ $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	\bullet without idle time \square	
	\bullet one on time task	
complexity	 $(+$ "V-shaped" $)$	
 $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard		

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	- without idle time - one on time task (+ "V-shaped")	- without idle time - one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \end{aligned}$	

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	- without idle time \square - one on time task (+ "V-shaped")	- without idle time - one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \end{aligned}$	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow$ NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	- without idle time \square - one on time task (+ "V-shaped")	- without idle time $\square 1$ \square - one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \end{aligned}$	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow$ NP-hard $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	\bullet without idle time	• without idle time \square
• one on time task		

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j} p_{j}$	general case
dominance properties	- without idle time \square - one on time task (+ "V-shaped")	- without idle time II \square one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \\ & \text { arbitrary } \alpha_{j}, \beta_{j} \rightarrow \text { NP-hard } \end{aligned}$	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow$ NP-hard $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard arbitrary $\alpha_{j}, \beta_{j} \rightarrow$ Branch-and-Bound can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research Sourd, 2009, Informs Journal on Computing

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

0

First let us discretize the time horizon

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

0

First let us discretize the time horizon

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$
Objective function: $\sum_{j \in J} \sum_{t \in \mathcal{T}} c_{i, t} X_{i, t} \quad \begin{aligned} & \text { where } c_{i, t} \text { are pre-computed } \\ & \text { from the instance }\end{aligned}$

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$
Objective function: $\quad \sum \sum c_{i, t} X_{i, t}$ where $c_{i, t}$ are pre-computed $\sum_{j \in J} t \in \mathcal{T}$
from the instance

Constraints:

- $\forall i \in J, \sum_{t \in \mathcal{T}} x_{i, t}=1$
task i is placed
- $\forall t \in \mathcal{T}, \sum_{\substack{i \in J \\ s \in\left[t, t+p_{i}[\right.}} \sum_{\substack{s \in \mathcal{T}}} x_{i, s} \leqslant 1$ at most 1 task is in progress at t
- $\forall i \in J, \forall t \in \mathcal{T}, x_{i, t} \in \mathbb{Z} \quad$ integrity constraint

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$
Objective function: $\sum_{j \in J} \sum_{t \in \mathcal{T}} c_{i, t} x_{i, t} \quad \begin{aligned} & \text { where } c_{i, t} \text { are pre-computed } \\ & \text { from the instance }\end{aligned}$

+ easy to formulate as a MIP
+ good relaxation value
$-2 n p(J)$ binary variables $=$ a pseudo polynomial number
- $n+n p(J)$ inequalities $=$ a pseudo polynomial number

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$not linear!

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$not linear!

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$not linear!

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}$

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t
On the first example:

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t
On the first example:

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Thesis guideline and presentation outline

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?

Thesis guideline and presentation outline

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- In particular for the both problems UCDDP and CDDP?

Thesis guideline and presentation outline

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- In particular for the both problems UCDDP and CDDP?

Outline:

Focus 1: MIP formulations using natural variables for these problems parts of Chapter 1 and 2

Thesis guideline and presentation outline

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- In particular for the both problems UCDDP and CDDP?

Outline:

Focus 1: MIP formulations using natural variables for these problems parts of Chapter 1 and 2

Interlude: First attempt to reinforce a compact formulation for UCDDP? parts of Chapter 3 and 4

Thesis guideline and presentation outline

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- In particular for the both problems UCDDP and CDDP?

Outline:

Focus 1: MIP formulations using natural variables for these problems parts of Chapter 1 and 2

Interlude: First attempt to reinforce a compact formulation for UCDDP? parts of Chapter 3 and 4

Focus 2: Dominance inequalities to reinforce such a formulation part of Chapter 6

Outline

1. Introduction
2. Focus 1: A formulation for UCDDP using natural variables Describing the solution set for (e, t) variables How to extend this formulation How to manage this kind of formulations in practice
3. Interlude : a first attempt to eliminate dominated solutions
4. Focus 2: dominance inequality
5. Conclusion and perspectives

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in P} g_{\alpha, \beta}(e, t)$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, it cannot be sufficient (LP-solving $\in \mathcal{P}$ and $U C D D P \in \mathcal{N} \mathcal{P}$)
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in P} g_{\alpha, \beta}(e, t)$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, it cannot be sufficient (LP-solving $\in \mathcal{P}$ and $U C D D P \in \mathcal{N} \mathcal{P}$)
- integrity constraints
in order to obtain:

$$
\mathrm{UCDDP} \Longleftrightarrow \min _{(e, t) \in \operatorname{int}(P)} g_{\alpha, \beta}(e, t)
$$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, it cannot be sufficient (LP-solving $\in \mathcal{P}$ and UCDDP $\in \mathcal{N} \mathcal{P}$)
- integrity constraints
- extremality constraints
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in \text { int (extr } P)} g_{\alpha, \beta}(e, t)$

What do we need for describing the solution set?

An instance $=$

- a set of tasks J
- the processing times of these tasks $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- a unitary earliness penalty for each task $\left(\alpha_{j}\right)_{j \in J}$
- a unitary tardiness penalty for each task $\left(\beta_{j}\right)_{j \in J}$

What do we need for describing the solution set?

An instance $=$

- a set of tasks J
- the processing times of these tasks $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- a unitary earliness penalty for each task $\left(\alpha_{j}\right)_{j \in J}$
- a unitary tardiness penalty for each task $\left(\beta_{j}\right)_{j \in J}$

What do we need for describing the solution set?

An instance $=$

- a set of tasks J
- the processing times of these tasks $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- a unitary earliness penalty for each task $\left(\alpha_{j}\right)_{j \in J}$
- a unitary tardiness penalty for each task $\left(\beta_{j}\right)_{j \in J}$

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints [positivity] processing intervals don't begin before time 0

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints [positivity] processing intervals don't begin before time 0

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_{j} and t_{j} are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{array}{ll}
\forall j \in J, \\
e_{j} & e_{j} \leqslant \delta_{j}(e .1) \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1) \\
t_{j} \leqslant M\left(1-\delta_{j}\right) & (t .2)
\end{array} \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{aligned}
& \forall j \in J, \\
& e_{j} \geqslant 0 \quad(e .0) \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1) \\
& e_{j} \leqslant M \delta_{j}(e .1) t_{j} \leqslant M\left(1-\delta_{j}\right)(t .2)
\end{aligned} \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule : the early tasks \longleftrightarrow the tardy tasks
- are entirely processed before d - are entirely processsed after d

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{aligned}
& \forall j \in J, \\
& e_{j} \geqslant 0 \quad(e .0) \\
& e_{j} \forall j \delta_{j}(e .1)
\end{aligned} \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1) \quad \text { (1-2) } \quad t_{j} \leqslant M\left(1-\delta_{j}\right) \quad(t .2) \quad \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule : the early tasks $\longleftrightarrow \mid \longrightarrow$ the tardy tasks
- are entirely processed before d
- are entirely processsed after d
- do not overlap each other

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{aligned}
& \forall j \in J, \\
& e_{j} \geqslant 0 \quad(e .0) \quad \forall j \delta_{j}(e .1)
\end{aligned} \quad \forall j, t_{j} \geqslant 0 \quad(t .1) \quad \text { (1-2) } \quad t_{j} \leqslant M\left(1-\delta_{j}\right) \quad(t .2) \quad \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule : the early tasks $\longleftrightarrow \mid \longrightarrow$ the tardy tasks
- are entirely processed before d
- do not overlap each other
- are entirely processsed after d
- do not overlap each other

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

- scheduling problem without due-date

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

Queyranne's non-overlapping inequalities

$$
\begin{aligned}
& \underset{0}{\mathrm{i}} \\
& \forall S \subset J, \sum_{j \in S} p_{j} C_{j} \geqslant g(S) \text { where } g(S)=\frac{1}{2}\left[\sum_{j \in S} p_{j}^{2}+\left(\sum_{j \in S} p_{j}\right)^{2}\right]
\end{aligned}
$$

- scheduling problem without due-date
- encoding schedules by their completion times $\left(C_{j}\right)_{j \in J}$

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

$$
\begin{array}{r|cccc}
\begin{aligned}
\text { Queyranne's } \\
\text { non-overlapping } \\
\text { inequalities }
\end{aligned} & \begin{array}{cc}
i & j \\
0 & C_{i} \\
\forall S \subset J, \sum_{j \in S} p_{j} C_{j} \geqslant g(S) & \text { where } g(S)=\frac{1}{2}\left[\sum_{j \in S} p_{j}^{2}+\left(\sum_{j \in S} p_{j}\right)^{2}\right]
\end{array}
\end{array}
$$

- scheduling problem without due-date
- encoding schedules by their completion times $\left(C_{j}\right)_{j \in J}$
- these inequalities describe the convex hull of such vectors C

2- A formulation for UCDDP using natural variables

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

Queyranne's non-overlapping inequalities

- scheduling problem without due-date
- encoding schedules by their completion times $\left(C_{j}\right)_{j \in J}$
- these inequalities describe the convex hull of such vectors C
- all extreme points of the polyhedron encode feasible schedules

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables - 2.1 Describing the solution set for (e, t) variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables

- 2.1 Describing the solution set for (e, t) variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

Non-overlapping inequalities for UCDDP

Non-overlapping inequalities for UCDDP

A first idea : $\{$

Non-overlapping inequalities for UCDDP

A first idea : $\{\forall S \subseteq J, p * t(S) \geqslant g(S)$

Non-overlapping inequalities for UCDDP

A first idea : $\{\forall S \subseteq J, p * t(S) \geqslant g(S)$

Non-overlapping inequalities for UCDDP

A first idea : $\{\forall S \subseteq J, p * t(S) \geqslant g(S)$

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S) \geqslant g(S) \\ \forall S \subseteq J, p *[p+e](S) \geqslant g(S)\end{array}\right.$

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T) \\ \forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E)\end{array}\right.$

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T) \\ \forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T) \\ \forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T) \\ \forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T) \\ \forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection
- products $\delta_{i} \delta_{j}$ appear

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T) \\ \forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection
- products $\delta_{i} \delta_{j}$ appear
\hookrightarrow linearisation variables are needed

Formulation F^{3} for UCDDP

$$
\begin{aligned}
\forall(i, j) \in J^{<}, & X_{i, j}
\end{aligned} \quad \geqslant 0 \quad(x .1) \quad(x .2)
$$

Formulation F^{3} for UCDDP

$$
\begin{aligned}
& \begin{array}{rlr}
\forall(i, j) \in J<, \\
, X_{i, j} & \geqslant 0 & (x .1) \\
X_{i, j} & \leqslant \delta_{i}+\delta_{j} \quad(\times .2) \\
X_{i, j} & \geqslant \delta_{i}-\delta_{j} \\
X_{i, j} & \geqslant 2-\delta_{i}-\delta_{j}(x .4)
\end{array} \\
& \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{(i, j) \in S^{<}} p_{i} p_{j} \frac{\delta_{i+\delta_{j}-X_{i j}}^{2}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{(i, j) \in S} p_{i} p_{j} \frac{2-\left(\delta, \delta_{j}\right)-X_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)(S 2)
\end{aligned}
$$

Formulation F^{3} for UCDDP

$$
\begin{align*}
& \forall j \in J, 0 \leqslant \delta_{j} \leqslant 1(\delta) \\
& \forall j \in J, e_{j} \geqslant 0 \quad(e .0) \quad \forall j \in J, t_{j} \geqslant 0(t .1) \\
& e_{j} \leqslant M \delta_{j}(e .1) \quad t_{j} \leqslant M\left(1-\delta_{j}\right) \quad(t .2) \\
& \forall(i, j) \in J<, X_{i, j} \geqslant 0(x .1) \tag{S1}\\
& X_{i, j} \leqslant \delta_{i}+\delta_{j} \quad(x .2) \\
& X_{i, j} \geqslant \delta_{i}-\delta_{j}(x .3) \\
& X_{i, j} \geqslant 2-\delta_{i}-\delta_{j}(x .4) \\
& \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-X_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)(\mathrm{S} 2)
\end{align*}
$$

Formulation F^{3} for UCDDP

$$
F^{3}: \min \left\{\begin{array}{c|l}
\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} & (e, t, \delta, X) \in \operatorname{extr}\left(P^{3}\right) \text { and } \delta \in\{0,1\}^{J}
\end{array}\right\}
$$

where:

$$
\begin{align*}
& \forall j \in J, 0 \leqslant \delta_{j} \leqslant 1(\delta) \\
& \forall j \in J, \begin{array}{l}
e_{j} \geqslant 0 \quad(e .0) \\
e_{j} \leqslant M \delta_{j}(e .1)
\end{array} \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1) \\
& \begin{aligned}
& \forall(i, j) \in J< \\
&, X_{i, j} \\
& X_{i, j} \geqslant 0 \quad(x .1) \\
& X_{i, j} \geqslant \delta_{i}+\delta_{j} \\
& X_{i, j} \geqslant 2-\delta_{j}-\delta_{j} \\
&(x .2) \\
& \text { (x.3) }
\end{aligned} \\
& \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \tag{S1}\\
& \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-X_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)(\mathrm{S} 2)
\end{align*}
$$

Validity of F^{3}

- validity proof
- is not based on a geometrical proof
- must be compatible with additional inequalities

Validity of F^{3}

- validity proof
- is not based on a geometrical proof
- must be compatible with additional inequalities
- first lemma:
a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others

Validity of F^{3}

- validity proof
- is not based on a geometrical proof
- must be compatible with additional inequalities
- first lemma:
a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others \hookrightarrow is not extreme

Validity of F^{3}

- validity proof
- is not based on a geometrical proof
- must be compatible with additional inequalities
- first lemma:
a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others \hookrightarrow is not extreme
- second lemma:
a point satisfying non-overlapping ineq. that corresponds to a schedule with a late task is larger that another

Validity of F^{3}

- validity proof
- is not based on a geometrical proof
- must be compatible with additional inequalities
- first lemma:
a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others \hookrightarrow is not extreme
- second lemma:
a point satisfying non-overlapping ineq. that corresponds to a schedule with a late task is larger that another

\hookrightarrow is not minimal

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant
- general case: d-or-left-blocks are dominant

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant
- general case: d-or-left-blocks are dominant \hookrightarrow new variable a for a new reference point: $d-a$

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant
- general case: d-or-left-blocks are dominant \hookrightarrow new variable a for a new reference point: $d-a$

2- A formulation for UCDDP using natural variables - 2.2 How to extend this formulation

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window $[d\ulcorner, d \sqsupset]$ instead of a due date d

2- A formulation for UCDDP using natural variables - 2.2 How to extend this formulation

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window $[d\ulcorner, d \sqsupset]$ instead of a due date d

2- A formulation for UCDDP using natural variables - 2.2 How to extend this formulation

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window $[d\ulcorner, d \sqsupset]$ instead of a due date d

\rightarrow block with a task completing at $d \sqsubset$ or $d \sqsupset$ are not dominant \hookrightarrow a straddling task can occur over $d \sqsubset$ (resp. over $d \sqsupset$)

2- A formulation for UCDDP using natural variables - 2.2 How to extend this formulation

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window $[d\ulcorner, d \sqsupset]$ instead of a due date d

\rightarrow block with a task completing at $d \sqsubset$ or $d \sqsupset$ are not dominant \hookrightarrow a straddling task can occur over $d \sqsubset$ (resp. over $d \sqsupset$)
\hookrightarrow two half-axes with flexible reference point

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window $[d\ulcorner, d \sqsupset]$ instead of a due date d

\rightarrow block with a task completing at $d \sqsubset$ or $d \sqsupset$ are not dominant \hookrightarrow a straddling task can occur over $d \sqsubset$ (resp. over $d \sqsupset$)
\hookrightarrow two half-axes with flexible reference point

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm \rightarrow polynomial separation algorithm

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm \rightarrow polynomial separation algorithm
- extremality constraints

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm \rightarrow polynomial separation algorithm
- extremality constraints
\hookrightarrow ensuring the solutions extremality in spite of the branching scheme

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point
the solution of the Branch-and-Bound is an extreme point

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point
the solution of the Branch-and-Bound is an extreme point

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point
\Rightarrow the solution of the Branch-and-Bound is an extreme point

Counter-example:

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point

the solution of the Branch-and-Bound is an extreme point

Counter-example:

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point

the solution of the Branch-and-Bound is an extreme point

Counter-example:

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow formulate other similar problems
(e.g. common due window, multi-machine common due date...)

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)
\rightarrow solve UCDDP instances up to size 40 within one hour

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)
\rightarrow solve UCDDP instances up to size 40 within one hour
\rightarrow solve CDDP instances up to size 20 or 30 within one hour

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)
\rightarrow solve UCDDP instances up to size 40 within one hour
\rightarrow solve CDDP instances up to size 20 or 30 within one hour
Why it is not so efficient?

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)
\rightarrow solve UCDDP instances up to size 40 within one hour
\rightarrow solve CDDP instances up to size 20 or 30 within one hour
Why it is not so efficient? poor linear relaxation value

Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables
3. Interlude : a first attempt to eliminate dominated solutions
4. Focus 2: dominance inequality
5. Conclusion and perspectives

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property

- consider only the V -shaped d-blocks since they are dominant

A compact MIP formulation for UCDDP...

... using the V-shaped dominance property

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition $(E, T) \Leftrightarrow$ same penalty $f(E, T)$

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition $(E, T) \Leftrightarrow$ same penalty $f(E, T)$
- formulate UCDDP as a partition problem

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property and δ and X variables.

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition $(E, T) \Leftrightarrow$ same penalty $f(E, T)$
- formulate UCDDP as a partition problem $\min _{\{E, T\} \text { bi-partition of } J} f(E, T)$

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property and δ and X variables.

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition $(E, T) \Leftrightarrow$ same penalty $f(E, T)$
- formulate UCDDP as a partition problem $\min _{\{E, T\} \text { bi-partition of } J} f(E, T)$

A compact MIP formulation for UCDDP...

... using the V -shaped dominance property and δ and X variables.

- consider only the V -shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition $(E, T) \Leftrightarrow$ same penalty $f(E, T)$
- formulate UCDDP as a partition problem $\min _{\{E, T\} \text { bi-partition of } J} f(E, T)$
- formulate UCDDP as a MIP $F^{2:} \min _{(\delta, X) \text { s.t. }(X .1-X .4)} h_{\alpha, \beta}(\delta, X)$ where $h_{\alpha, \beta}$ is a linear function depending on α and β

3- Interlude : a first attempt to eliminate dominated solutions

Link between F^{2} and the Cut Polytope

in Formulation F^{2} in the complete graph K_{n}

Link between F^{2} and the Cut Polytope

$$
\begin{gathered}
\text { in Formulation } F^{2} \quad \text { in the complete graph } K_{n} \\
\qquad \text { variables } \longleftrightarrow \text { vertices }
\end{gathered}
$$

Link between F^{2} and the Cut Polytope

> in Formulation $F^{2} \quad$ in the complete graph K_{n} $$
\text { variables } \longleftrightarrow \text { vertices }
$$

Link between F^{2} and the Cut Polytope

in Formulation F^{2} in the complete graph K_{n}
δ variables \longleftrightarrow vertices
X variables \longleftrightarrow edges

Link between F^{2} and the Cut Polytope

$$
\begin{aligned}
\text { in Formulation } F^{2} & \text { in the complete graph } K_{n} \\
\delta \text { variables } & \longleftrightarrow \text { vertices } \\
X \text { variables } & \longleftrightarrow \text { edges } \\
\left(\left\{" \delta_{j}=1^{\prime \prime}\right\},\left\{" \delta_{j}=0^{\prime \prime}\right\}\right) & \longleftrightarrow \text { a vertices bipartition }
\end{aligned}
$$

Link between F^{2} and the Cut Polytope

$$
\begin{aligned}
\text { in Formulation } F^{2} & \text { in the complete graph } K_{n} \\
\delta \text { variables } & \longleftrightarrow \text { vertices } \\
X \text { variables } & \longleftrightarrow \text { edges } \\
\left(\left\{" \delta_{j}=1^{\prime \prime}\right\},\left\{" \delta_{j}=0^{\prime \prime}\right\}\right) & \longleftrightarrow \text { a vertices bipartition }
\end{aligned}
$$

Link between F^{2} and the Cut Polytope

$$
\begin{aligned}
\text { in Formulation } F^{2} & \text { in the complete graph } K_{n} \\
\delta \text { variables } & \longleftrightarrow \text { vertices } \\
X \text { variables } & \longleftrightarrow \text { edges } \\
\left(\left\{" \delta_{j}=1^{\prime \prime}\right\},\left\{" \delta_{j}=0^{\prime \prime}\right\}\right) & \longleftrightarrow \text { a vertices bipartition } \\
\left\{" X_{i, j}=1 "\right\} & \longleftrightarrow \text { a cut in } K_{n}
\end{aligned}
$$

Link between F^{2} and the Cut Polytope

$$
\begin{aligned}
& \text { in Formulation } F^{2} \text { in the complete graph } K_{n} \\
& \delta \text { variables } \longleftrightarrow \text { vertices } \\
& X \text { variables } \longleftrightarrow \text { edges } \\
&\left(\left\{" \delta_{j}=1^{\prime \prime}\right\},\left\{" \delta_{j}=0 "\right\}\right) \longleftrightarrow \text { a vertices bipartition } \\
&\left\{" X_{i, j}=1^{\prime \prime}\right\} \longleftrightarrow \text { a cut in } K_{n} \\
&(\delta, X) \in P^{2} \longleftrightarrow X \in \text { CUT }_{n} \text { the cut polytope for } K_{n}
\end{aligned}
$$

Idea

Eliminate an extreme point corresponding to a "bad" solution according to the objective value,

Idea

Eliminate an extreme point corresponding to a "bad" solution according to the objective value,

Idea

Eliminate an extreme point corresponding to a "bad" solution according to the objective value, using facet defining inequalities to avoid the apparition of new extreme points

Idea

Eliminate an extreme point corresponding to a "bad" solution according to the objective value, using facet defining inequalities to avoid the apparition of new extreme points

Application to P^{2}, elimination of $(\delta, X)=(0,0)$, $\widetilde{P}_{\delta, X}^{n}=\operatorname{conv}\left\{(\delta, X) \in\{0,1\}^{J} \times\{0,1\}^{j^{<}} \mid(X .1-X .4)\right.$ and $\left.\delta \neq 0\right\}$

Example of a new facet defining inequality family

for \mathcal{C} an hamiltonian cycle in $K_{n}, \underline{\delta_{u}+\delta_{v}}-\underline{X_{u, v}}+\underline{X(\mathcal{C})} \geqslant 2$

\square	vertex of V
-	\mathcal{C}-endpoint \mathcal{C}-edge other edge of E edge $\{u, v\}$ set of vertices W_{1} set of vertices W_{2}

Example of a new facet defining inequality family

for \mathcal{C} an hamiltonian cycle in $K_{n}, \underline{\delta_{u}+\delta_{v}}-\underline{X_{u, v}}+\underline{X(\mathcal{C})} \geqslant 2$

\square	vertex of V
\mathcal{C}-endpoint	
\mathcal{C}-edge	
$=$	other edge of E edge $\{u, v\}$ set of vertices W_{1} set of vertices W_{2}

Too many and too various inequalities appear \rightarrow change of strategy

Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables
3. Interlude : a first attempt to eliminate dominated solutions
4. Focus 2: dominance inequality

Neighborhood based dominance properties Insert inequalities
5. Conclusion and perspectives

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their neighborhood is a strictly dominant set.

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their neighborhood is a strictly dominant set.

Our approach:

- define a neighborhood based on operations
- translate the associate dominance property by linear inequalities

Neighborhood: solution-centered vs operation-centered point of view

Solution-centered
$=$ consider all the neighbors of one given solution

Neighborhood: solution-centered vs operation-centered point of view

Solution-centered
$=$ consider all the neighbors of one given solution

Neighborhood: solution-centered vs operation-centered point of view

Solution-centered
$=$ consider all the neighbors of one given solution

Neighborhood: solution-centered vs operation-centered point of view

Solution-centered
$=$ consider all the neighbors of one given solution

Neighborhood: solution-centered vs operation-centered point of view

Solution-centered
$=$ consider all the neighbors of one given solution

Neighborhood: solution-centered vs operation-centered point of view

Solution-centered
$=$ consider all the neighbors of one given solution

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered

$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Neighborhood: solution-centered vs operation-centered point of view

Operation-centered
$=$ consider one given type of neighbor for all the solutions

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

$$
A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \quad \text { and } \quad \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\}
$$

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

$$
\begin{aligned}
& A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \text { and } \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\} \\
& B(u)=\left\{i \in J \left\lvert\, \frac{\beta_{i}}{p_{i}}>\frac{\beta_{u}}{p_{u}}\right.\right\} \text { and } \bar{B}(u)=\left\{i \in J \mid i \neq u, \frac{\beta_{i}}{p_{i}} \leqslant \frac{\beta_{u}}{p_{u}}\right\}
\end{aligned}
$$

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

$$
\begin{aligned}
& A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \text { and } \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\} \\
& B(u)=\left\{i \in J \left\lvert\, \frac{\beta_{i}}{p_{i}}>\frac{\beta_{u}}{p_{u}}\right.\right\} \text { and } \bar{B}(u)=\left\{i \in J \mid i \neq u, \frac{\beta_{i}}{p_{i}} \leqslant \frac{\beta_{u}}{p_{u}}\right\}
\end{aligned}
$$

Structure of a V-shaped d-block

- introduce notations for any $u \in J$,

$$
\begin{aligned}
& A(u)=\left\{i \in J \left\lvert\, \frac{\alpha_{i}}{p_{i}}>\frac{\alpha_{u}}{p_{u}}\right.\right\} \text { and } \bar{A}(u)=\left\{i \in J \mid i \neq u, \frac{\alpha_{i}}{p_{i}} \leqslant \frac{\alpha_{u}}{p_{u}}\right\} \\
& B(u)=\left\{i \in J \left\lvert\, \frac{\beta_{i}}{p_{i}}>\frac{\beta_{u}}{p_{u}}\right.\right\} \text { and } \bar{B}(u)=\left\{i \in J \mid i \neq u, \frac{\beta_{i}}{p_{i}} \leqslant \frac{\beta_{u}}{p_{u}}\right\}
\end{aligned}
$$

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

$\operatorname{cost}\left(\mathcal{S}^{\prime}\right)=\operatorname{cost}(\mathcal{S})$

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

$$
\operatorname{cost}\left(\mathcal{S}^{\prime}\right)=\operatorname{cost}(\mathcal{S})-\alpha_{u} p(\underline{A(u) \cap E})+\beta_{u}\left(p(\underline{B(u) \cap T})+p_{u}\right)
$$

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

Cost variation induced by the insertion of an early task u

dominance constraint
$\Delta_{u}^{\text {early }}(E, T) \geqslant 0$ if $u \in E$

Cost variation induced by the insertion of an early task u

dominance constraint
$\Delta_{u}^{\text {early }}(E, T) \geqslant 0$ if $u \in E$
Similarly: for dominance constraint tardy-insert of $v \in J \quad \Delta_{v}^{\text {tardy }}(E, T) \geqslant 0$ if $v \in T$

Cost variation induced by the insertion of an early task u

dominance constraint
$\Delta_{u}^{\text {early }}(E, T) \geqslant 0$ if $u \in E$
Similarly: for the tardy-insert of $v \in J \quad \Delta_{v}^{\text {tardy }}(E, T) \geqslant 0$ if $v \in T$

$$
\begin{aligned}
& \text { dominance constraint } \Delta_{u, v}^{\text {swap }}(E, T) \geqslant 0 \text { if }(u, v) \in E \times T \\
& \text { wap of } u \in J \text { and } v \in J
\end{aligned}
$$

Unusual inequalities

\square polyhedron P

Unusual inequalities

\square polyhedron P

4- Focus 2: dominance inequality - 4.2 Insert inequalities

Unusual inequalities

polyhedron P
integer solutions

4- Focus 2: dominance inequality - 4.2 Insert inequalities

Unusual inequalities

polyhedron P
integer solutions

4- Focus 2: dominance inequality - 4.2 Insert inequalities

Unusual inequalities

polyhedron P
integer solutions

4- Focus 2: dominance inequality - 4.2 Insert inequalities

Unusual inequalities

- integer solutions
polyhedron P

4- Focus 2: dominance inequality - 4.2 Insert inequalities

Unusual inequalities

- integer solutions

4- Focus 2: dominance inequality - 4.2 Insert inequalities

Unusual inequalities

- integer solutions

Unusual inequalities

Unusual inequalities

Unusual inequalities

Unusual inequalities

Unusual inequalities

polyhedron P

- integer solutions
* best integer solution
best fractionnal solution in P
a dominance inequality

Unusual inequalities

- integer solutions
\star best integer solution

best fractionnal solution in P
a dominance inequality

Unusual inequalities

- integer solutions
\star
best integer solution
best fractionnal solution in P
a dominance inequality
new polyhedron P^{\prime}

Unusual inequalities

polyhedron P

- integer solutions
best integer solution
best fractionnal solution in P
a dominance inequality
new polyhedron P^{\prime}
best fractionnal solution in P^{\prime}

Conclusion on dominance inequalities

Insert and swap inequalities allow to:
\rightarrow reinforce F^{3} in a different way as usual strengthen inequalities no improvement of the linear relaxation value

Conclusion on dominance inequalities

Insert and swap inequalities allow to:
\rightarrow reinforce F^{3} in a different way as usual strengthen inequalities no improvement of the linear relaxation value
\rightarrow solve UCDDP up to size 180 within one hour (instead of size 60 without them)

Conclusion on dominance inequalities

Insert and swap inequalities allow to:
\rightarrow reinforce F^{3} in a different way as usual strengthen inequalities no improvement of the linear relaxation value
\rightarrow solve UCDDP up to size 180 within one hour (instead of size 60 without them)
\rightarrow illustrate the dominance inequality concept

Outline

1. Introduction
2. Focus 1: A formulation for UCDDP using natural variables
3. Interlude : a first attempt to eliminate dominated solutions
4. Focus 2: dominance inequality
5. Conclusion and perspectives

Done during the thesis

- providing formulation F^{3} for UCDDP, F^{4} for CDDP
- establishing two lemmas about non-overlapping inequalities
- proving validity of F^{3} and F^{4}
- finding a separation algorithm for non-overlapping inequalities in F^{3} and F^{4}
- providing another formulation F^{2} for UCDDP
- implementing and testing F^{2}, F^{3} and F^{4}
\hookrightarrow writing a journal paper submitted to DAM, currently accepted
- proposing a framework to "transpose" facet defining inequalities
- testing formulation F^{2} when known facet defining inequalities are added
- using PORTA on small-dimensional "non-trivial cuts" polytopes
- identifying some family of facet defining inequalities for arbitrary dimension
- proposing a new kind of inequality to improve some MIP formulations solving
- providing dominance inequalities for F^{2} based on insert and swap operations
- implementing and testing the impact of these insert and swap inequalities on F^{2}
- deriving a heuristic algorithm for UCDDP from insert and swap operations \hookrightarrow writing a journal paper submitted to EJOR, currently to review
+ listening and speaking in seminars or conferences, attending summer school, teaching, writing final report...

Done during the thesis

- providing formulation F^{3} for UCDDP, F^{4} for CDDP
- establishing two lemmas about non-overlapping inequalities
- proving validity of F^{3} and F^{4}
- finding a separation algorithm for non-overlapping inequalities in F^{3} and F^{4}
- providing another formulation F^{2} for UCDDP
- implementing and testing F^{2}, F^{3} and F^{4}
\hookrightarrow writing a journal paper submitted to DAM, currently accepted
- proposing a framework to "transpose" facet defining inequalities
- testing formulation F^{2} when known facet defining inequalities are added
- using PORTA on small-dimensional "non-trivial cuts" polytopes
- identifying some family of facet defining inequalities for arbitrary dimension
- proposing a new kind of inequality to improve some MIP formulations solving
- providing dominance inequalities for F^{2} based on insert and swap operations
- implementing and testing the impact of these insert and swap inequalities on F^{2}
- deriving a heuristic algorithm for UCDDP from insert and swap operations \hookrightarrow writing a journal paper submitted to EJOR, currently to review
+ listening and speaking in seminars or conferences, attending summer school, teaching, writing final report...

Generic frameworks (tools to take away)

- About natural variables and non-overlapping inequality formulations:
\rightarrow a methodology to formulate some scheduling problem
\rightarrow a scheme of validity proof for such formulations
\rightarrow two key lemmas about non-overlapping inequalities

Generic frameworks (tools to take away)

- About natural variables and non-overlapping inequality formulations:
\rightarrow a methodology to formulate some scheduling problem
\rightarrow a scheme of validity proof for such formulations
\rightarrow two key lemmas about non-overlapping inequalities
- About facet defining inequalities:
\rightarrow a ready-to-use property to transpose facet defining inequalities

Generic frameworks (tools to take away)

- About natural variables and non-overlapping inequality formulations:
\rightarrow a methodology to formulate some scheduling problem
\rightarrow a scheme of validity proof for such formulations
\rightarrow two key lemmas about non-overlapping inequalities
- About facet defining inequalities:
\rightarrow a ready-to-use property to transpose facet defining inequalities
- About dominance inequalities:
\rightarrow a theoretical framework
\rightarrow a recipe to obtain a dominance inequality from a given operation

5- Conclusion and perspectives

Perspectives

About dominance inequalities:
\rightarrow How do insert and swap inequalities improve formulation F^{2} ?
\rightarrow Can we provide dominance inequalities useful for other combinatorial problems?

5- Conclusion and perspectives

The end

Thank you for your attention

