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1. Introduction
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Known results about UCDDP and CDDP
How to encode schedules?

2. Focus 1: A formulation for UCDDP using natural variables
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1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p
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1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
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A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties
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1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded
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1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing
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Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing 6 / 37



1- Introduction • 1.3 How to encode schedules?

Time-indexed variables
d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t

0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance
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0 otherwise
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Variables: ∀i ∈J , ∀t∈T : xi,t =
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1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

+ easy to formulate as a MIP
+ good relaxation value
− 2n p(J) binary variables = a pseudo polynomial number
− n + n p(J) inequalities = a pseudo polynomial number
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1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj ]+ + βj [Cj−d ]+
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1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj ]+ and tj =[Cj − d ]+

Objective function:
∑
j∈J

αj ej + βj tj

← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

d
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1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?

I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4
Focus 2: Dominance inequalities to reinforce such a formulation

part of Chapter 6

10 / 37



1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4
Focus 2: Dominance inequalities to reinforce such a formulation

part of Chapter 6

10 / 37



1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2

Interlude: First attempt to reinforce a compact formulation for UCDDP?
parts of Chapter 3 and 4

Focus 2: Dominance inequalities to reinforce such a formulation
part of Chapter 6

10 / 37



1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4

Focus 2: Dominance inequalities to reinforce such a formulation
part of Chapter 6

10 / 37



1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4
Focus 2: Dominance inequalities to reinforce such a formulation

part of Chapter 6

10 / 37



Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables
Describing the solution set for (e, t) variables
How to extend this formulation
How to manage this kind of formulations in practice

3. Interlude : a first attempt to eliminate dominated solutions

4. Focus 2: dominance inequality

5. Conclusion and perspectives



2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:

- linear inequalities

that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints
[positivity] processing intervals don’t begin before time 0

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊂J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj )2
]

• scheduling problem without due-date

• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj )2
]

A first idea :
{

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X )∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj )−Xi,j

2 +
∑
i∈S

p2
i (1−δi )

(S1)

(S2)


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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I first lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with an
overlapp is the middle of two others

↪→ is not extreme

I second lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with a
late task is larger that another

↪→ is not minimal

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)
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2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant

I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

d

d−a a

e′i t ′k
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2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1k =1
} {

k∈J
∣∣ 1−(δ1k +δ2k )=1

} {
k∈J

∣∣ δ2k =1
} Cj

d @ d A

0
|

20 / 37
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2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37
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How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound
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2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP

→ formulate other similar problems
(e.g. common due window, multi-machine common due date...)

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient? poor linear relaxation value
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3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property

and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

- consider only the V-shaped d-blocks since they are dominant

- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition (E ,T )⇔ same penalty f (E ,T )

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T )

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X )

where hα,β is a linear function depending on α and β
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3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices
X variables←→ edges

({”δj =1”}, {”δj =0”})←→ a vertices bipartition
{”Xi,j = 1”}←→ a cut in Kn

(δ,X )∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

d
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3- Interlude : a first attempt to eliminate dominated solutions

Idea
Eliminate an extreme point corresponding to a "bad" solution according to
the objective value,

using facet defining inequalities to avoid the apparition
of new extreme points

P

A

P̂

AF

G

H

P̃

Application to P2, elimination of (δ,X ) = (0, 0),
P̃n
δ,X =conv

{
(δ,X )∈{0, 1}J × {0, 1}J<

∣∣∣ (X .1−X .4) and δ 6=0
}
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3- Interlude : a first attempt to eliminate dominated solutions

Example of a new facet defining inequality family

for C an hamiltonian cycle in Kn, δu +δv − Xu,v + X (C) > 2

W 1

W 2
•

•
•

•

•
•

•
•

•

•

1=u
2

v

n

• vertex of V
• C-endpoint

other edge of E
C-edge

edge {u, v}
set of vertices W1

set of vertices W2

Too many and too various inequalities appear→ change of strategy
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4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors,
then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their
neighborhood is a strictly dominant set.

Our approach:
- define a neighborhood based on operations
- translate the associate dominance property by linear inequalities
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4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view
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Solution-centered
= consider all the neighbors of one given solution
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4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}
B(u)=

{
i ∈J | βi

pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}
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4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T )> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T )> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T )> 0 if (u, v)∈E×T
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Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T )> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T )> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T )> 0 if (u, v)∈E×T

31 / 37



4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S
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4- Focus 2: dominance inequality • 4.2 Insert inequalities

Conclusion on dominance inequalities

Insert and swap inequalities allow to:
→ reinforce F 3 in a different way as usual strengthen inequalities

no improvement of the linear relaxation value

→ solve UCDDP up to size 180 within one hour
(instead of size 60 without them)

→ illustrate the dominance inequality concept
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5- Conclusion and perspectives

Done during the thesis
- providing formulation F 3 for UCDDP, F 4 for CDDP
- establishing two lemmas about non-overlapping inequalities
- proving validity of F 3 and F 4

- finding a separation algorithm for non-overlapping inequalities in F 3 and F 4

- providing another formulation F 2 for UCDDP
- implementing and testing F 2, F 3 and F 4

↪→ writing a journal paper submitted to DAM, currently accepted

- proposing a framework to "transpose" facet defining inequalities
- testing formulation F 2 when known facet defining inequalities are added
- using PORTA on small-dimensional "non-trivial cuts" polytopes
- identifying some family of facet defining inequalities for arbitrary dimension

- proposing a new kind of inequality to improve some MIP formulations solving
- providing dominance inequalities for F 2 based on insert and swap operations
- implementing and testing the impact of these insert and swap inequalities on F 2

- deriving a heuristic algorithm for UCDDP from insert and swap operations
↪→ writing a journal paper submitted to EJOR, currently to review

+ listening and speaking in seminars or conferences, attending summer school,
teaching, writing final report...
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5- Conclusion and perspectives

Generic frameworks (tools to take away)

I About natural variables and non-overlapping inequality formulations:
→ a methodology to formulate some scheduling problem
→ a scheme of validity proof for such formulations
→ two key lemmas about non-overlapping inequalities

I About facet defining inequalities:
→ a ready-to-use property to transpose facet defining inequalities

I About dominance inequalities:
→ a theoretical framework
→ a recipe to obtain a dominance inequality from a given operation
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5- Conclusion and perspectives

Perspectives

About dominance inequalities:
→ How do insert and swap inequalities improve formulation F 2?
→ Can we provide dominance inequalities useful for other combinatorial

problems?
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5- Conclusion and perspectives

The end

Thank you for your attention
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