
Dominances en programmation linéaire :
ordonnancement autour d’une date d’échéance commune

soutenance de thèse d’Anne-Elisabeth FALQ
encadrée par Pierre Fouilhoux et Safia Kedad-Sidhoum

2 Novembre 2020, LIP6, Paris

slides et tapuscrit disponibles sur
http://perso.eleves.ens-rennes.fr/~afalq494/recherche-these.html

http://perso.eleves.ens-rennes.fr/~afalq494/recherche-these.html

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l’UPMC, donné par Pierre et Safia

été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia
depuis thèse au LIP6, équipe RO, encadrée par Pierre et Safia

PLNE et polyèdres
P̂

AF

G

H

Ordonnancement juste-à-temps

0
jsi j

da

d−ae′i t ′j

1 / 37

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l’UPMC, donné par Pierre et Safia

été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia
depuis thèse au LIP6, équipe RO, encadrée par Pierre et Safia

PLNE et polyèdres
P̂

AF

G

H

Ordonnancement juste-à-temps

0
jsi j

da

d−ae′i t ′j

1 / 37

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l’UPMC, donné par Pierre et Safia
été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia

depuis thèse au LIP6, équipe RO, encadrée par Pierre et Safia

PLNE et polyèdres
P̂

AF

G

H

Ordonnancement juste-à-temps

0
jsi j

da

d−ae′i t ′j

1 / 37

Comment est née cette thèse? (only slide in french)

2016/2017 cours de M2 à l’UPMC, donné par Pierre et Safia
été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia
depuis thèse au LIP6, équipe RO, encadrée par Pierre et Safia

PLNE et polyèdres
P̂

AF

G

H

Ordonnancement juste-à-temps

0
jsi j

da

d−ae′i t ′j

1 / 37

Outline

1. Introduction
Scheduling around a common due date
Known results about UCDDP and CDDP
How to encode schedules?

2. Focus 1: A formulation for UCDDP using natural variables

3. Interlude : a first attempt to eliminate dominated solutions

4. Focus 2: dominance inequality

5. Conclusion and perspectives

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

31 24

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10

• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

31 24

4.5

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

31 24

↓
4, 5× 2 =9

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 24 3

↓
4× 2 =8

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 24 3

↓
4× 2 =8

↓
4

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 4 2 3

↓
3

↓
7

↓
2.5

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 4 2 3

↓
3

↓
7

↓
2.5

3.5↓
3, 5× 2 =7

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

4 2 3

↓
3

↓
7

↓
2.5

1

↓
5 → 17.5

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 2 34

↓
2

↓
6

↓
0

↓
6 → 14F

2 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 37

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (CDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• a unrestrictive common due-date d

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

j

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

4 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

5 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
• T is a dominant set if it contains at least one optimal solution

• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

5 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

5 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

5 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity ∀j∈J , αj =βj =ω → P

∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly

Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity ∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity ∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj → weakly NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time

• without idle time

• one on time task

• one on time task
or beginning at 0

(+ "V-shaped")

�����V-shaped

complexity ∀j∈J , αj =βj =ω → P

∀j∈J , αj =βj =ω → NP-hard

∀j∈J , αj =βj → weakly NP-hard

∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P

∀j∈J , αj =βj =ω → NP-hard

∀j∈J , αj =βj → weakly NP-hard

∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard

∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard ∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Sourd, 2009, Informs Journal on Computing

6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard ∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing 6 / 37

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard ∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → NP-hard
arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing 6 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables
d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t

0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p(J) p(J)
p p

d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p(J) p(J)
p p

d

0
|

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

Constraints: • ∀i ∈J ,
∑
t∈T

xi,t = 1 task i is placed

• ∀t∈T ,
∑
i∈J

∑
s∈T

s∈[t,t+pi [

xi,s 6 1 at most 1 task is in progress at t

• ∀i ∈J , ∀t∈T , xi,t ∈Z integrity constraint
7 / 37

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

+ easy to formulate as a MIP
+ good relaxation value
− 2n p(J) binary variables = a pseudo polynomial number
− n + n p(J) inequalities = a pseudo polynomial number

7 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Ci

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+ not linear!

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − dCj

Ci

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+ not linear!

8 / 37

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+ not linear!

8 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj

← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj

← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

C1 =8
C3 =10

C2 =11 C4 =15

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

C3 =10
C2 =11 C4 =15d−2

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 43 2

C3 =10
C2 =11 C4 =15d−2

↓
e1 =2
t1 =0

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 43 2

C2 =11 C4 =15d−2
d

↓
e1 =2
t1 =0

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 2

C2 =11 C4 =15d−2
d

↓
e1 =2
t1 =0

↓
e3 =0
t1 =0

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 2

C4 =15d−2
d

d +1
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 22

C4 =15d−2
d

d +1
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

↓
e2 =0
t1 =1

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 22

d−2
d

d +1 d +4
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

↓
e2 =0
t1 =1

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 4433 22

d−2
d

d +1 d +4
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

↓
e2 =0
t1 =1

↓
e4 =0
t1 =4

d

9 / 37

1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?

I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4
Focus 2: Dominance inequalities to reinforce such a formulation

part of Chapter 6

10 / 37

1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4
Focus 2: Dominance inequalities to reinforce such a formulation

part of Chapter 6

10 / 37

1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2

Interlude: First attempt to reinforce a compact formulation for UCDDP?
parts of Chapter 3 and 4

Focus 2: Dominance inequalities to reinforce such a formulation
part of Chapter 6

10 / 37

1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4

Focus 2: Dominance inequalities to reinforce such a formulation
part of Chapter 6

10 / 37

1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:
I How can we use linear programming to formulate scheduling problems

for an exact solving?
I In particular for the both problems UCDDP and CDDP?

Outline:
Focus 1: MIP formulations using natural variables for these problems

parts of Chapter 1 and 2
Interlude: First attempt to reinforce a compact formulation for UCDDP?

parts of Chapter 3 and 4
Focus 2: Dominance inequalities to reinforce such a formulation

part of Chapter 6

10 / 37

Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables
Describing the solution set for (e, t) variables
How to extend this formulation
How to manage this kind of formulations in practice

3. Interlude : a first attempt to eliminate dominated solutions

4. Focus 2: dominance inequality

5. Conclusion and perspectives

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:

- linear inequalities

that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

11 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities

that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

11 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P

if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)
- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈P

gα,β(e, t)

11 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈P

gα,β(e, t)

11 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints

- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈int(P)

gα,β(e, t)

11 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈int(extr P)

gα,β(e, t)

11 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J

12 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J

12 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J

12 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints
[positivity] processing intervals don’t begin before time 0

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

13 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints
[positivity] processing intervals don’t begin before time 0

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

13 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

13 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

13 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d

�

• do not overlap each other

�

• do not overlap each other

13 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

13 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

13 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊂J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

• scheduling problem without due-date

• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming

14 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊂J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

• scheduling problem without due-date
• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming

14 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊂J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

• scheduling problem without due-date
• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C

• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming

14 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊂J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

• scheduling problem without due-date
• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming
14 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

σ 1 2
0Cσ

1 =p1

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

σ 1 2
0Cσ

1 =p1 Cσ
2 =p1+p2

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0Cσ

1 =p1 Cσ
2 =p1+p2

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
15 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{

i j

ti
tjd

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)

i j

ti
tjd

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)

i |
eipi

d

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)

i |
eipi

d

i |
Ci =pi +ei

0

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)
∀S⊆J , p ∗ [p + e](S) > g(S)

i |
eipi

d

i |
Ci =pi +ei

0

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S∩T) > g(S∩T)
∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S∩T) > g(S∩T)
∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}

I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S∩T) > g(S∩T)
∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant

I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S∩T) > g(S∩T)
∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection

I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S∩T) > g(S∩T)
∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2
]

A first idea :
{
∀S⊆J , p ∗ t(S∩T) > g(S∩T)
∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)



17 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)



17 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)


17 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)


17 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I first lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with an
overlapp is the middle of two others

↪→ is not extreme

I second lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with a
late task is larger that another

↪→ is not minimal

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

18 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I first lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with an
overlapp is the middle of two others

↪→ is not extreme
I second lemma:

a point satisfying non-overlapping ineq.
that corresponds to a schedule with a
late task is larger that another

↪→ is not minimal

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

18 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I first lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with an
overlapp is the middle of two others
↪→ is not extreme

I second lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with a
late task is larger that another

↪→ is not minimal

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

18 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I first lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with an
overlapp is the middle of two others
↪→ is not extreme

I second lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with a
late task is larger that another

↪→ is not minimal

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

18 / 37

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I first lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with an
overlapp is the middle of two others
↪→ is not extreme

I second lemma:
a point satisfying non-overlapping ineq.
that corresponds to a schedule with a
late task is larger that another
↪→ is not minimal

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

18 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant

I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

d

d−a a

e′i t ′k

19 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant
I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

d

d−a a

e′i t ′k

19 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant
I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

dd−a a

e′i t ′k

19 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant
I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

dd−a a

e′i t ′k

19 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1k =1
} {

k∈J
∣∣ 1−(δ1k +δ2k)=1

} {
k∈J

∣∣ δ2k =1
} Cj

d @ d A

0
|

20 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1k =1
} {

k∈J
∣∣ 1−(δ1k +δ2k)=1

} {
k∈J

∣∣ δ2k =1
} Cj

d @ d A

0
|

20 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j
βj T ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)

↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1k =1
} {

k∈J
∣∣ 1−(δ1k +δ2k)=1

} {
k∈J

∣∣ δ2k =1
} Cj

d @ d A

0
|

20 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j
βj T ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1k =1
} {

k∈J
∣∣ 1−(δ1k +δ2k)=1

} {
k∈J

∣∣ δ2k =1
} Cj

d @ d A

0
|

20 / 37

2- A formulation for UCDDP using natural variables • 2.2 How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j
βj T ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1k =1
} {

k∈J
∣∣ 1−(δ1k +δ2k)=1

} {
k∈J

∣∣ δ2k =1
} Cj

d @ d A

0
|

20 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables

↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables
• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm

→ branching on δ (and γ) variables
• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities

↪→ Branch-and-Cut algorithm → polynomial separation algorithm
• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm

→ polynomial separation algorithm
• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints

↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ (and γ) variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

21 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

22 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• • • •

•

•

•

•

22 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• • • •

•

•

•

•

F

22 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• •

•

•

• •

•

•

x61 x>2

22 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• •

•

•

• •

•

•F F

x61 x>2

22 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP

→ formulate other similar problems
(e.g. common due window, multi-machine common due date...)

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient? poor linear relaxation value

23 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient? poor linear relaxation value

23 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

→ solve UCDDP instances up to size 40 within one hour

→ solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient? poor linear relaxation value

23 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient? poor linear relaxation value

23 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient?

poor linear relaxation value

23 / 37

2- A formulation for UCDDP using natural variables • 2.3 How to manage this kind of formulations in practice

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient? poor linear relaxation value

23 / 37

Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables

3. Interlude : a first attempt to eliminate dominated solutions

4. Focus 2: dominance inequality

5. Conclusion and perspectives

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property

and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

- consider only the V-shaped d-blocks since they are dominant

- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property

and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property

and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property

and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block

- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property

and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property

and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E = {j∈J | δj =1} T

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E = {j∈J | δj =1} T = {j∈J | δj =0}

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β

24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

A compact MIP formulation for UCDDP...
... using the V-shaped dominance property and δ and X variables.

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E = {j∈J | δj =1} T = {j∈J | δj =0}

- consider only the V-shaped d-blocks since they are dominant
- define the early/tardy partition of a V-shaped d-block
- same early/tardy partition (E ,T)⇔ same penalty f (E ,T)

- formulate UCDDP as a partition problem min
{E ,T} bi-partition of J

f (E ,T)

- formulate UCDDP as a MIP F 2 : min
(δ,X)s.t.(X .1−X .4)

hα,β(δ,X)

where hα,β is a linear function depending on α and β
24 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices
X variables←→ edges

({”δj =1”}, {”δj =0”})←→ a vertices bipartition
{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

d

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices

X variables←→ edges
({”δj =1”}, {”δj =0”})←→ a vertices bipartition

{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

d

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices

X variables←→ edges
({”δj =1”}, {”δj =0”})←→ a vertices bipartition

{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

d

1

2

3

4

5

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices
X variables←→ edges

({”δj =1”}, {”δj =0”})←→ a vertices bipartition
{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

d

1

2

3

4

5

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices
X variables←→ edges

({”δj =1”}, {”δj =0”})←→ a vertices bipartition

{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

"δj =1" "δj =1"d

1

2

3

4

5

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices
X variables←→ edges

({”δj =1”}, {”δj =0”})←→ a vertices bipartition

{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

"δj =1" "δj =1"d

1

2

3

4

5

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices
X variables←→ edges

({”δj =1”}, {”δj =0”})←→ a vertices bipartition
{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

"δj =1" "δj =1"d

1

2

3

4

5

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Link between F 2 and the Cut Polytope
in Formulation F 2 in the complete graph Kn

δ variables←→ vertices
X variables←→ edges

({”δj =1”}, {”δj =0”})←→ a vertices bipartition
{”Xi,j = 1”}←→ a cut in Kn

(δ,X)∈P2 ←→ X ∈CUTn the cut polytope for Kn

1 2 3 4 5

"δj =1" "δj =1"d

1

2

3

4

5

25 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Idea
Eliminate an extreme point corresponding to a "bad" solution according to
the objective value,

using facet defining inequalities to avoid the apparition
of new extreme points

P

A

P̂

AF

G

H

P̃

Application to P2, elimination of (δ,X) = (0, 0),
P̃n
δ,X =conv

{
(δ,X)∈{0, 1}J × {0, 1}J<

∣∣∣ (X .1−X .4) and δ 6=0
}

26 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Idea
Eliminate an extreme point corresponding to a "bad" solution according to
the objective value,

using facet defining inequalities to avoid the apparition
of new extreme points

P

A

P̂

AF

G

H

P̃

Application to P2, elimination of (δ,X) = (0, 0),
P̃n
δ,X =conv

{
(δ,X)∈{0, 1}J × {0, 1}J<

∣∣∣ (X .1−X .4) and δ 6=0
}

26 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Idea
Eliminate an extreme point corresponding to a "bad" solution according to
the objective value, using facet defining inequalities to avoid the apparition
of new extreme points

P

A

P̂

AF

G

H

P̃

Application to P2, elimination of (δ,X) = (0, 0),
P̃n
δ,X =conv

{
(δ,X)∈{0, 1}J × {0, 1}J<

∣∣∣ (X .1−X .4) and δ 6=0
}

26 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Idea
Eliminate an extreme point corresponding to a "bad" solution according to
the objective value, using facet defining inequalities to avoid the apparition
of new extreme points

P

A

P̂

AF

G

H

P̃

Application to P2, elimination of (δ,X) = (0, 0),
P̃n
δ,X =conv

{
(δ,X)∈{0, 1}J × {0, 1}J<

∣∣∣ (X .1−X .4) and δ 6=0
}

26 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Example of a new facet defining inequality family

for C an hamiltonian cycle in Kn, δu +δv − Xu,v + X (C) > 2

W 1

W 2
•

•
•

•

•
•

•
•

•

•

1=u
2

v

n

• vertex of V
• C-endpoint

other edge of E
C-edge

edge {u, v}
set of vertices W1

set of vertices W2

Too many and too various inequalities appear→ change of strategy

27 / 37

3- Interlude : a first attempt to eliminate dominated solutions

Example of a new facet defining inequality family

for C an hamiltonian cycle in Kn, δu +δv − Xu,v + X (C) > 2

W 1

W 2
•

•
•

•

•
•

•
•

•

•

1=u
2

v

n

• vertex of V
• C-endpoint

other edge of E
C-edge

edge {u, v}
set of vertices W1

set of vertices W2

Too many and too various inequalities appear→ change of strategy

27 / 37

Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables

3. Interlude : a first attempt to eliminate dominated solutions

4. Focus 2: dominance inequality
Neighborhood based dominance properties
Insert inequalities

5. Conclusion and perspectives

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors,
then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their
neighborhood is a strictly dominant set.

Our approach:
- define a neighborhood based on operations
- translate the associate dominance property by linear inequalities

28 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors,
then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their
neighborhood is a strictly dominant set.

Our approach:
- define a neighborhood based on operations
- translate the associate dominance property by linear inequalities

28 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors,
then it is not an optimal solution.

Consequence: The set of solutions non-dominated in their
neighborhood is a strictly dominant set.

Our approach:
- define a neighborhood based on operations
- translate the associate dominance property by linear inequalities

28 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•X

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Solution-centered
= consider all the neighbors of one given solution

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

X

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

X

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

XX X

X X

X

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

XX X

X X

X

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Neighborhood: solution-centered vs operation-centered point of view

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Operation-centered

X X

X

= consider one given type of neighbor for all the solutions

29 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}
B(u)=

{
i ∈J | βi

pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}

B(u)=
{

i ∈J | βi
pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

u

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}

B(u)=
{

i ∈J | βi
pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

u

Ā(u)∩E

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}

B(u)=
{

i ∈J | βi
pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

u

Ā(u)∩E A(u)∩E

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}

B(u)=
{

i ∈J | βi
pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

u

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}
B(u)=

{
i ∈J | βi

pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

u

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}
B(u)=

{
i ∈J | βi

pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.1 Neighborhood based dominance properties

Structure of a V-shaped d-block

p p p p p p p p p p p p p p p

d

αi

pi

βi

pi

E T

u

B(u)∩T B̄(u)∩T

- introduce notations for any u∈J ,

A(u)=
{

i ∈J | αi
pi
> αu

pu

}
and Ā(u)=

{
i ∈J | i 6=u, αi

pi
6 αu

pu

}
B(u)=

{
i ∈J | βi

pi
> βu

pu

}
and B̄(u)=

{
i ∈J | i 6=u, βi

pi
6 βu

pu

}

30 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

cost(S ′) = cost(S)

− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

cost(S ′) = cost(S)− αu p
(
A(u)∩E

)

+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

cost(S ′) = cost(S)− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)

− pu α
(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu

pu

cost(S ′) = cost(S)− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)

+ pu β
(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

cost(S ′) = cost(S)− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)

dominance constraint
for the early-insert of u∈J ∆early

u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

cost(S ′) = cost(S)− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)

dominance constraint
for the early-insert of u∈J ∆early

u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

∆early
u (E ,T) = − αu p

(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)

dominance constraint
for the early-insert of u∈J ∆early

u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

∆early
u (E ,T) = − αu p

(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

∆early
u (E ,T) = − αu p

(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Cost variation induced by the insertion of an early task u

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′
Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

∆early
u (E ,T) = − αu p

(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(v)∩T

)
dominance constraint

for the early-insert of u∈J ∆early
u (E ,T)> 0 if u∈E

Similarly: dominance constraint
for the tardy-insert of v ∈J ∆tardy

v (E ,T)> 0 if v ∈T

dominance constraint
for the swap of u∈J and v ∈J ∆swap

u,v (E ,T)> 0 if (u, v)∈E×T

31 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

polyhedron P

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

•

•
polyhedron P

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

•

polyhedron P

integer solutions•

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

•

polyhedron P

integer solutions•

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

•

polyhedron P

integer solutions•

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

•

polyhedron P

integer solutions•

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

•

polyhedron P

integer solutions•

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

•

polyhedron P

integer solutions•

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

F

polyhedron P

integer solutions•

best integer solutionF

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

F

polyhedron P

integer solutions•

best integer solutionF

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

F

polyhedron P

integer solutions•

best integer solutionF

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

F

F

polyhedron P

integer solutions•

best integer solutionF

best fractionnal solution in PF

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•

F

F

polyhedron P

integer solutions•

best integer solutionF

best fractionnal solution in PF

a dominance inequality

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•X

F

F

polyhedron P

integer solutions•

best integer solutionF

best fractionnal solution in PF

a dominance inequality

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•X

F

F

polyhedron P

integer solutions•

best integer solutionF

best fractionnal solution in PF

a dominance inequality

new polyhedron P ′

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Unusual inequalities

•

•X

F

F

F

polyhedron P

integer solutions•

best integer solutionF

best fractionnal solution in PF

a dominance inequality

new polyhedron P ′

best fractionnal solution in P ′F

32 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Conclusion on dominance inequalities

Insert and swap inequalities allow to:
→ reinforce F 3 in a different way as usual strengthen inequalities

no improvement of the linear relaxation value

→ solve UCDDP up to size 180 within one hour
(instead of size 60 without them)

→ illustrate the dominance inequality concept

33 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Conclusion on dominance inequalities

Insert and swap inequalities allow to:
→ reinforce F 3 in a different way as usual strengthen inequalities

no improvement of the linear relaxation value
→ solve UCDDP up to size 180 within one hour

(instead of size 60 without them)

→ illustrate the dominance inequality concept

33 / 37

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Conclusion on dominance inequalities

Insert and swap inequalities allow to:
→ reinforce F 3 in a different way as usual strengthen inequalities

no improvement of the linear relaxation value
→ solve UCDDP up to size 180 within one hour

(instead of size 60 without them)
→ illustrate the dominance inequality concept

33 / 37

Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables

3. Interlude : a first attempt to eliminate dominated solutions

4. Focus 2: dominance inequality

5. Conclusion and perspectives

5- Conclusion and perspectives

Done during the thesis
- providing formulation F 3 for UCDDP, F 4 for CDDP
- establishing two lemmas about non-overlapping inequalities
- proving validity of F 3 and F 4

- finding a separation algorithm for non-overlapping inequalities in F 3 and F 4

- providing another formulation F 2 for UCDDP
- implementing and testing F 2, F 3 and F 4

↪→ writing a journal paper submitted to DAM, currently accepted

- proposing a framework to "transpose" facet defining inequalities
- testing formulation F 2 when known facet defining inequalities are added
- using PORTA on small-dimensional "non-trivial cuts" polytopes
- identifying some family of facet defining inequalities for arbitrary dimension

- proposing a new kind of inequality to improve some MIP formulations solving
- providing dominance inequalities for F 2 based on insert and swap operations
- implementing and testing the impact of these insert and swap inequalities on F 2

- deriving a heuristic algorithm for UCDDP from insert and swap operations
↪→ writing a journal paper submitted to EJOR, currently to review

+ listening and speaking in seminars or conferences, attending summer school,
teaching, writing final report...

34 / 37

5- Conclusion and perspectives

Done during the thesis
- providing formulation F 3 for UCDDP, F 4 for CDDP
- establishing two lemmas about non-overlapping inequalities
- proving validity of F 3 and F 4

- finding a separation algorithm for non-overlapping inequalities in F 3 and F 4

- providing another formulation F 2 for UCDDP
- implementing and testing F 2, F 3 and F 4

↪→ writing a journal paper submitted to DAM, currently accepted

- proposing a framework to "transpose" facet defining inequalities
- testing formulation F 2 when known facet defining inequalities are added
- using PORTA on small-dimensional "non-trivial cuts" polytopes
- identifying some family of facet defining inequalities for arbitrary dimension

- proposing a new kind of inequality to improve some MIP formulations solving
- providing dominance inequalities for F 2 based on insert and swap operations
- implementing and testing the impact of these insert and swap inequalities on F 2

- deriving a heuristic algorithm for UCDDP from insert and swap operations
↪→ writing a journal paper submitted to EJOR, currently to review

+ listening and speaking in seminars or conferences, attending summer school,
teaching, writing final report...

34 / 37

5- Conclusion and perspectives

Generic frameworks (tools to take away)

I About natural variables and non-overlapping inequality formulations:
→ a methodology to formulate some scheduling problem
→ a scheme of validity proof for such formulations
→ two key lemmas about non-overlapping inequalities

I About facet defining inequalities:
→ a ready-to-use property to transpose facet defining inequalities

I About dominance inequalities:
→ a theoretical framework
→ a recipe to obtain a dominance inequality from a given operation

35 / 37

5- Conclusion and perspectives

Generic frameworks (tools to take away)

I About natural variables and non-overlapping inequality formulations:
→ a methodology to formulate some scheduling problem
→ a scheme of validity proof for such formulations
→ two key lemmas about non-overlapping inequalities

I About facet defining inequalities:
→ a ready-to-use property to transpose facet defining inequalities

I About dominance inequalities:
→ a theoretical framework
→ a recipe to obtain a dominance inequality from a given operation

35 / 37

5- Conclusion and perspectives

Generic frameworks (tools to take away)

I About natural variables and non-overlapping inequality formulations:
→ a methodology to formulate some scheduling problem
→ a scheme of validity proof for such formulations
→ two key lemmas about non-overlapping inequalities

I About facet defining inequalities:
→ a ready-to-use property to transpose facet defining inequalities

I About dominance inequalities:
→ a theoretical framework
→ a recipe to obtain a dominance inequality from a given operation

35 / 37

5- Conclusion and perspectives

Perspectives

About dominance inequalities:
→ How do insert and swap inequalities improve formulation F 2?
→ Can we provide dominance inequalities useful for other combinatorial

problems?

36 / 37

5- Conclusion and perspectives

The end

Thank you for your attention

37 / 37

	Introduction
	Scheduling around a common due date
	Known results about UCDDP and CDDP
	How to encode schedules?

	Focus 1: A formulation for UCDDP using natural variables
	Describing the solution set for (e,t) variables
	How to extend this formulation
	How to manage this kind of formulations in practice

	Interlude : a first attempt to eliminate dominated solutions
	Focus 2: dominance inequality
	Neighborhood based dominance properties
	Insert inequalities

	Conclusion and perspectives

