Dominances en programmation linéaire : ordonnancement autour d'une date d'échéance commune

soutenance de thèse d'Anne-Elisabeth FALQ encadrée par Pierre Fouilhoux et Safia Kedad-Sidhoum

2 Novembre 2020, LIP6, Paris

slides et tapuscrit disponibles sur http://perso.eleves.ens-rennes.fr/~afalq494/recherche-these.html

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia

Ordonnancement juste-à-temps

2016/2017 cours de M2 à l'UPMC, donné par Pierre et Safia été 2017 stage au LIP6, équipe RO, encadré par Pierre et Safia depuis thèse au LIP6, équipe RO, encadrée par Pierre et Safia

Ordonnancement juste-à-temps

Outline

1. Introduction

Scheduling around a common due date Known results about UCDDP and CDDP How to encode schedules?

2. Focus 1: A formulation for UCDDP using natural variables

- 3. Interlude : a first attempt to eliminate dominated solutions
- 4. Focus 2: dominance inequality
- 5. Conclusion and perspectives

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

• common due date : d = 10

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad p_1=4 \qquad p_2=1 \qquad p_3=2 \qquad p_4=3$$

- common due date : d = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

• common due date : d = 10

• unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

• common due date : d = 10

• unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

• common due date : d = 10

• unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

- common due date : d = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$
- unit earliness penalties : $\forall j \in J, \alpha_j = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

- common due date : d = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$
- unit earliness penalties : $\forall j \in J, \ \alpha_j = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

- common due date : *d* = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$
- unit earliness penalties : $\forall j \in J, \alpha_j = 2$

An instance =

• a set of tasks J

- a set of tasks J
- their processing times $(p_j)_{j \in J} \in \mathbb{N}^J$

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an unrestrictive common due-date d ≥ ∑_{i∈ J} p_j

d

0

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties (α_j)_{j∈J}
- their unit tardiness penalties (β_j)_{j∈J}

A solution schedule = a family of pairwise disjoint processing intervals

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties (α_j)_{j∈J}
- their unit tardiness penalties $(\beta_j)_{j \in J}$

A solution schedule = a family of pairwise disjoint processing intervals

The objective
$$= \min \sum_{j \in J} \alpha_j E_j + \beta_j T_j =$$

minimize the sum of earliness and tardiness penalties

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- a unrestrictive common due-date d
- their unit earliness penalties $(\alpha_i)_{i \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

A solution schedule = a family of pairwise disjoint processing intervals

The objective
$$= \min \sum_{j \in J} \frac{\alpha_j}{\alpha_j} E_j + \beta_j T_j =$$

minimize the sum of earliness and tardiness penalties

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

• T is a dominant set if it contains at least one optimal solution

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

In both cases,

- $\rightarrow\,$ the searching space can be reduced to $\,{\cal T}$
- $\rightarrow\,$ other solutions can be discarded

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance	
properties	

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance properties	 without idle time □□□

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance properties	• without idle time □□
	• one on time task

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance properties	 without idle time □□□
	• one on time task
complexity	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P$

Kanet, 1981, Naval Research Logistics Quaterly

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance properties	 without idle time III one on time task
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \to P \\ \forall j \in J, \ \alpha_j = \beta_j \to NP-hard $

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance properties	without idle time □□□
	• one on time task
	(+ "V-shaped")
complexity	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P$ $\forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard}$

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task III 	
	(+ "V-shaped")	
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard $	

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task 	 without idle time III one on time task or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{ weakly NP-hard} $	

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task III 	 without idle time III one on time task II or beginning at 0
	(+ "V-shaped")	V-shaped

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task 	 without idle time III one on time task or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P$ $\forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard}$	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow \text{NP-hard}$ $\forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard}$

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task 	 without idle time III one on time task II or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard} $	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow NP-hard$ $\forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard$
		arbitrary $lpha_j, eta_j ightarrow {\sf Branch-and-Bound}$ can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research Sourd, 2009, Informs Journal on Computing

6/37

Dominance properties and complexity

	unrestrictive case $d \ge \sum_j p_j$	general case
dominance properties	• without idle time	• without idle time
	• one on time task	• one on time task or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard $	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow NP-hard$ $\forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard$
	arbitrary $\alpha_j, \beta_j ightarrow NP$ -hard	arbitrary $\alpha_j, \beta_j \rightarrow \text{Branch-and-Bound}$ can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research Sourd, 2009, Informs Journal on Computing

Time-indexed variables

First let us discretize the time horizon

•

Time-indexed variables

First let us discretize the time horizon

•

Time-indexed variables

First let us discretize the time horizon

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables: $\forall i \in J, \forall t \in \mathcal{T}$: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables: $\forall i \in J, \forall t \in \mathcal{T}$: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables:
$$\forall i \in J, \forall t \in \mathcal{T}$$
: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

Objective function: $\sum_{i \in J} \sum_{t \in T} c_{i,t} x_{i,t}$

where $c_{i,t}$ are pre-computed from the instance

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables:
$$\forall i \in J, \forall t \in \mathcal{T}$$
: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

Objective function:

$$\sum_{j\in J}\sum_{t\in \mathcal{T}} C_{i,t} X_{i,t}$$

where $c_{i,t}$ are pre-computed from the instance

Constraints: • $\forall i \in J, \sum x_{i,t} = 1$

•
$$\forall t \in \mathcal{T}, \sum_{\substack{i \in J \\ s \in [t, t+p_i]}} \sum_{s \in \mathcal{T}} x_{i,s} \leq 1$$

• $\forall i \in J, \forall t \in \mathcal{T}, x_{i,t} \in \mathbb{Z}$

task *i* is placed

at most 1 task is in progress at t

integrity constraint

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables:
$$\forall i \in J, \forall t \in \mathcal{T}$$
: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

Objective function:

$$\sum_{j\in J}\sum_{t\in\mathcal{T}}C_{i,t}X_{i,t}$$

where $c_{i,t}$ are pre-computed from the instance

- + easy to formulate as a MIP
- + good relaxation value
- -2np(J) binary variables = a pseudo polynomial number
- n + n p(J) inequalities = a pseudo polynomial number

Completion time variables

0

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task *j* completes

d

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task *j* completes

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task *j* completes

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{j \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{j \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{j \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{i \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$ not linear!

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{i \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$ not linear!

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{i \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$ not linear!

Earliness-Tardiness variables

Variables: $\forall j \in J, e_j = [d - C_j]^+$ and $t_j = [C_j - d]^+$

Earliness-Tardiness variables

Variables: $\forall j \in J$, $e_j = [d - C_j]^+$ and $t_j = [C_j - d]^+$ Objective function: $\sum_{j \in J} \alpha_j e_j + \beta_j t_j$

Earliness-Tardiness variables

Earliness–Tardiness variables

Earliness–Tardiness variables

Earliness-Tardiness variables

Earliness–Tardiness variables

Earliness-Tardiness variables

Earliness-Tardiness variables

Earliness-Tardiness variables

1- Introduction • 1.3 How to encode schedules?

Earliness-Tardiness variables

Variables: $\forall j \in J$, $e_j = [d - C_j]^+$ and $t_j = [C_j - d]^+$ Objective function: $\sum_{j \in J} \alpha_j e_j + \beta_j t_j \leftarrow linear function of variables e and t$

1- Introduction • 1.3 How to encode schedules?

Earliness-Tardiness variables

Variables: $\forall j \in J$, $e_j = [d - C_j]^+$ and $t_j = [C_j - d]^+$ Objective function: $\sum_{j \in J} \alpha_j e_j + \beta_j t_j \leftarrow linear function of variables e and t$

1- Introduction • 1.3 How to encode schedules?

Thesis guideline and presentation outline

Questions of the thesis:

How can we use linear programming to formulate scheduling problems for an exact solving?

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- ▶ In particular for the both problems UCDDP and CDDP?

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- ▶ In particular for the both problems UCDDP and CDDP?

Outline:

Focus 1: MIP formulations using natural variables for these problems parts of Chapter 1 and 2

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- ▶ In particular for the both problems UCDDP and CDDP?

Outline:

- Focus 1: MIP formulations using natural variables for these problems parts of Chapter 1 and 2
- Interlude: First attempt to reinforce a compact formulation for UCDDP? parts of Chapter 3 and 4

Questions of the thesis:

- How can we use linear programming to formulate scheduling problems for an exact solving?
- ▶ In particular for the both problems UCDDP and CDDP?

Outline:

- Focus 1: MIP formulations using natural variables for these problems parts of Chapter 1 and 2
- Interlude: First attempt to reinforce a compact formulation for UCDDP? parts of Chapter 3 and 4
 - Focus 2: Dominance inequalities to reinforce such a formulation part of Chapter 6

Outline

1. Introduction

- Focus 1: A formulation for UCDDP using natural variables Describing the solution set for (e, t) variables How to extend this formulation How to manage this kind of formulations in practice
- 3. Interlude : a first attempt to eliminate dominated solutions
- 4. Focus 2: dominance inequality
- 5. Conclusion and perspectives

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

ightarrow $\mathscr S$ is the set of (e,t) vectors that describe a schedule

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

ightarrow $\mathscr S$ is the set of (e,t) vectors that describe a schedule

We want to describe $\mathscr S$ with:

- linear inequalities

 $\text{ in order to obtain: } \mathsf{UCDDP} \Longleftrightarrow \min_{(e,t) \in \mathscr{S}} g_{\alpha,\beta}(e,t)$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

 $\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P

in order to obtain:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in P} g_{lpha,eta}(e,t)$$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t) \in \mathscr{S}} g_{lpha, eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

ightarrow $\mathscr S$ is the set of (e,t) vectors that describe a schedule

We want to describe \mathscr{S} with:

linear inequalities that define a polyhedron P
 if P≠NP, it cannot be sufficient (LP-solving ∈P and UCDDP ∈NP)

in order to obtain:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t) \in P} g_{lpha,eta}(e,t)$$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

 $\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if P≠NP, it cannot be sufficient (LP-solving ∈ P and UCDDP ∈ NP)
- integrity constraints

in order to obtain:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathsf{int}(P)} g_{\alpha,\beta}(e,t)$$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

 $\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if P≠NP, it cannot be sufficient (LP-solving ∈ P and UCDDP ∈ NP)
- integrity constraints
- extremality constraints

in order to obtain: UCDDP

$$\iff \min_{(e,t)\in \mathsf{int}(\mathsf{extr}\,P)} g_{\alpha,\beta}(e,t)$$

What do we need for describing the solution set?

An instance =

- a set of tasks J
- the processing times of these tasks (p_j)_{j∈J}
- an unrestrictive common due-date $d \ge \sum p_j$
- a unitary earliness penalty for each task $(\alpha_j)_{j \in J}$
- a unitary tardiness penalty for each task $(\beta_j)_{j \in J}$

What do we need for describing the solution set?

An instance =

- a set of tasks J
- the processing times of these tasks $(p_j)_{j \in J}$
- an unrestrictive common due-date $d \ge \sum p_j$
- a unitary earliness penalty for each task $(\alpha_j)_{j \in J}$
- a unitary tardiness penalty for each task $(\beta_j)_{j \in J}$

What do we need for describing the solution set?

An instance =

- a set of tasks J
- the processing times of these tasks $(p_j)_{j \in J}$
- an unrestrictive common due-date $d \ge \sum p_j$
- a unitary earliness penalty for each task $(\alpha_j)_{j \in J}$
- a unitary tardiness penalty for each task $(\beta_j)_{j \in J}$

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_j and t_j are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints [positivity] processing intervals don't begin before time 0

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_j and t_j are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints [positivity] processing intervals don't begin before time 0

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_j and t_j are not simultaneously strictly positive

[non-overlapping] processing intervals are pairwise disjoints

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_j and t_j are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 \text{ if } j \text{ is early} \\ 0 \text{ if } j \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \ge 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} \quad \begin{array}{c} \forall j \in J, \ t_j \ge 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} \text{ where } \boldsymbol{M} = \sum_{j \in J} p_j \end{array}$$

[non-overlapping] processing intervals are pairwise disjoints

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_i and t_i are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 & \text{if } j \text{ is early} \\ 0 & \text{if } j \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \geqslant 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} \quad \begin{array}{c} \forall j \in J, \ t_j \geqslant 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} \text{ where } \boldsymbol{M} = \sum_{j \in J} p_j \end{array}$$

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule

the early tasks \leftarrow the tardy tasks

• are entirely processed before d • are entirely processed after d

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_i and t_i are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 & \text{if } j \text{ is early} \\ 0 & \text{if } i \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \geqslant 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} & \forall j \in J, \ t_j \geqslant 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} where \ \mathbf{M} = \sum_{j \in J} p_j$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule
 - the early tasks the tardy tasks
 - are entirely processed before d are entirely processed after d
 - do not overlap each other

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_j and t_j are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 & \text{if } j \text{ is early} \\ 0 & \text{if } i \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \geqslant 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} & \begin{array}{c} \forall j \in J, \ t_j \geqslant 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} where \ \mathbf{M} = \sum_{j \in J} p_j \end{array}$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule
 - \circlearrowright the early tasks \longleftrightarrow the tardy tasks \circlearrowright
 - are entirely processed before d
 - do not overlap each other

- are entirely processed after d
- do not overlap each other

Non-overlapping inequalities for $1 \mid - \mid \min \sum \omega_j C_j$

scheduling problem without due-date

Non-overlapping inequalities for $1 \mid - \mid \min \sum \omega_j C_j$

- scheduling problem without due-date
- encoding schedules by their completion times (C_j)_{j∈J}

Non-overlapping inequalities for $1 \mid - \mid \min \sum \omega_j C_j$

- scheduling problem without due-date
- encoding schedules by their completion times (C_j)_{j∈J}
- these inequalities describe the convex hull of such vectors C

Non-overlapping inequalities for $1 \mid - \mid \min \sum \omega_j C_j$

- scheduling problem without due-date
- encoding schedules by their completion times (C_j)_{j∈J}
- these inequalities describe the convex hull of such vectors C
- all extreme points of the polyhedron encode feasible schedules

The set of vectors (C_1, C_2) encoding a 2-task schedule

 C_1

 C_2 ,

0

n

The set of vectors (C_1, C_2) encoding a 2-task schedule

The set of vectors (C_1, C_2) encoding a 2-task schedule

The set of vectors (C_1, C_2) encoding a 2-task schedule

 C_2 $c_1 \quad C_2^{\sigma} = p_1 + p_2$ 0 C_1

The set of vectors (C_1, C_2) encoding a 2-task schedule

The set of vectors (C_1, C_2) encoding a 2-task schedule

The set of vectors (C_1, C_2) encoding a 2-task schedule

The set of vectors (C_1, C_2) encoding a 2-task schedule

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S) \ge g(S) \\ \end{cases}$$

$$\begin{array}{c} & & i \\ & & i \\ & & \vdots \\ & & & \vdots \\ & & & d \end{array}$$

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S) \ge g(S) \\ \end{cases}$$

$$p_i \times e_i$$

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T) \\ \forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E) \end{cases}$$

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16/37

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T) \\ \forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E) \end{cases}$$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 16/37

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T) \\ \forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E) \end{cases}$$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

the right-hand side term is no more a constant

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T) \\ \forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E) \end{cases}$$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

the right-hand side term is no more a constant

• variables δ appear on both side to express the intersection

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T) \\ \forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E) \end{cases}$$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection
- products $\delta_i \, \delta_j$ appear

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T) \\ \forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E) \end{cases}$$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection
- products $\delta_i \, \delta_j$ appear
 - $\,\hookrightarrow\,$ linearisation variables are needed

16/37

Formulation F^3 for UCDDP

Formulation F^3 for UCDDP

Formulation F^3 for UCDDP

$$P^{3} = \begin{cases} (e, t, \delta, X) & \forall j \in J, 0 \leqslant \delta_{j} \leqslant 1 \ (\delta) \\ \forall j \in J, e_{j} \geqslant 0 \ (e.0) \\ e_{j} \leqslant M \delta_{j} \ (e.1) & \forall j \in J, t_{j} \geqslant 0 \ (t.1) \\ t_{j} \leqslant M (1-\delta_{j}) \ (t.2) \end{cases} \\ \forall (i, j) \in J^{<}, X_{i,j} \geqslant 0 \ (x.1) \\ X_{i,j} \leqslant \delta_{i} + \delta_{j} \ (x.2) \\ X_{i,j} \geqslant \delta_{i} - \delta_{j} \ (x.3) \\ X_{i,j} \geqslant 2 - \delta_{i} - \delta_{j} \ (x.4) \end{cases} \\ \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{(i,j) \in S^{<}} p_{i} p_{j} \frac{\delta_{i} + \delta_{j} - X_{i,j}}{2} + \sum_{i \in S} p_{i}^{2} (1-\delta_{i}) \ (S2) \end{cases}$$

Formulation F^3 for UCDDP

$$F^{3}:\min\left\{\sum_{j\in J}\alpha_{j}\,e_{j}+\beta_{j}\,t_{j}\ \left|\ (e,t,\delta,X)\in\operatorname{extr}(P^{3})\ \text{and}\ \delta\in\{0,1\}^{J}\right\}\right\}$$

where:

$$P^{3} = \begin{cases} (e, t, \delta, X) & \forall j \in J, 0 \leqslant \delta_{j} \leqslant 1 \ (\delta) \\ \forall j \in J, e_{j} \geqslant 0 \ (e.0) \\ e_{j} \leqslant M \delta_{j} \ (e.1) \\ & \forall j \in J, t_{j} \geqslant 0 \ (t.1) \\ t_{j} \leqslant M (1-\delta_{j}) \ (t.2) \end{cases} \\ \forall (i, j) \in J^{<}, X_{i,j} \geqslant 0 \ (x.1) \\ & X_{i,j} \leqslant \delta_{i} + \delta_{j} \ (x.2) \\ & X_{i,j} \geqslant \delta_{i} - \delta_{j} \ (x.3) \\ & X_{i,j} \geqslant 2 - \delta_{i} - \delta_{j} \ (x.4) \end{cases} \\ \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{j \in S} p_{i} p_{j} \frac{\delta_{i} + \delta_{j} - X_{i,j}}{2} \ (S1) \\ & \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{j \in S} p_{i} p_{j} \frac{2 - (\delta_{i} + \delta_{j}) - X_{i,j}}{2} + \sum_{i \in S} p_{i}^{2} (1 - \delta_{i}) (S2) \end{cases}$$

- validity proof
 - is not based on a geometrical proof
 - must be compatible with additional inequalities

validity proof

- is not based on a geometrical proof
- must be compatible with additional inequalities

first lemma:

a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others

validity proof

- is not based on a geometrical proof
- must be compatible with additional inequalities

first lemma:

a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others \hookrightarrow is not extreme

validity proof

- is not based on a geometrical proof
- must be compatible with additional inequalities

first lemma:

a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others \hookrightarrow is not extreme

second lemma:

a point satisfying non-overlapping ineq. that corresponds to a schedule with a late task is larger that another

validity proof

- is not based on a geometrical proof
- must be compatible with additional inequalities

first lemma:

a point satisfying non-overlapping ineq. that corresponds to a schedule with an overlapp is the middle of two others \hookrightarrow is not extreme

second lemma:

a point satisfying non-overlapping ineq. that corresponds to a schedule with a late task is larger that another \hookrightarrow is not minimal

How to adapt the formulation for the general case ?

unrestrictive case: d-blocks are dominant

How to adapt the formulation for the general case ?

unrestrictive case: d-blocks are dominant

general case: d-or-left-blocks are dominant

How to adapt the formulation for the general case ?

unrestrictive case: d-blocks are dominant

▶ general case: *d*-or-left-blocks are dominant → new variable *a* for a new reference point: *d*-*a*

How to adapt the formulation for the general case ?

unrestrictive case: d-blocks are dominant

▶ general case: *d*-or-left-blocks are dominant → new variable *a* for a new reference point: *d*-*a*

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

→ block with a task completing at d^{\square} or d^{\square} are not dominant \hookrightarrow a straddling task can occur over d^{\square} (resp. over d^{\square})

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

→ block with a task completing at d[□] or d[□] are not dominant
 → a straddling task can occur over d[□] (resp. over d[□])
 → two half-axes with flexible reference point

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

→ block with a task completing at d^{\Box} or d^{\Box} are not dominant \hookrightarrow a straddling task can occur over d^{\Box} (resp. over d^{\Box}) \Leftrightarrow two half-axes with flexible reference point

The two proposed formulations are linear formulations with:

• integer variables

- integer variables
 - $\hookrightarrow \mathsf{Branch}\mathsf{-and}\mathsf{-}\mathsf{Bound} \mathsf{ algorithm}$

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
 - $\, \hookrightarrow \, \, \mathsf{Branch}\text{-and-Cut algorithm}$

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
 - $\,\hookrightarrow\,$ Branch-and-Cut algorithm $\,\rightarrow\,$ polynomial separation algorithm

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
 - $\,\hookrightarrow\,$ Branch-and-Cut algorithm $\,\rightarrow\,$ polynomial separation algorithm
- extremality constraints

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ (and γ) variables
- exponential number of inequalities
 - $\,\hookrightarrow\,$ Branch-and-Cut algorithm $\,\rightarrow\,$ polynomial separation algorithm
- extremality constraints
 - \hookrightarrow ensuring the solutions extremality in spite of the branching scheme

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

Counter-example:

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

Counter-example:

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

Counter-example:

This kind of formulation with natural variables and non-overlapping inequalities allows to:

 $\rightarrow\,$ formulate both UCDDP and CDDP

This kind of formulation with natural variables and non-overlapping inequalities allows to:

- $\rightarrow\,$ formulate both UCDDP and CDDP
- \rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)

This kind of formulation with natural variables and non-overlapping inequalities allows to:

- $\rightarrow\,$ formulate both UCDDP and CDDP
- → formulate other similar problems (e.g. common due window, multi-machine common due date...)
- $\rightarrow\,$ solve UCDDP instances up to size 40 within one hour

This kind of formulation with natural variables and non-overlapping inequalities allows to:

- $\rightarrow\,$ formulate both UCDDP and CDDP
- \rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)
- $\rightarrow\,$ solve UCDDP instances up to size 40 within one hour
- $\rightarrow\,$ solve CDDP instances up to size 20 or 30 within one hour

This kind of formulation with natural variables and non-overlapping inequalities allows to:

- $\rightarrow\,$ formulate both UCDDP and CDDP
- \rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)
- $\rightarrow\,$ solve UCDDP instances up to size 40 within one hour
- ightarrow solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient?

This kind of formulation with natural variables and non-overlapping inequalities allows to:

- $\rightarrow\,$ formulate both UCDDP and CDDP
- \rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)
- $\rightarrow\,$ solve UCDDP instances up to size 40 within one hour
- ightarrow solve CDDP instances up to size 20 or 30 within one hour

Why it is not so efficient? poor linear relaxation value

Outline

1. Introduction

2. Focus 1: A formulation for UCDDP using natural variables

3. Interlude : a first attempt to eliminate dominated solutions

- 4. Focus 2: dominance inequality
- 5. Conclusion and perspectives

A compact MIP formulation for UCDDP...

... using the V-shaped dominance property

- consider only the V-shaped *d*-blocks since they are dominant

A compact MIP formulation for UCDDP...

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block

A compact MIP formulation for UCDDP...

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block

A compact MIP formulation for UCDDP...

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block

A compact MIP formulation for UCDDP...

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block
- same early/tardy partition $(E,T) \Leftrightarrow$ same penalty f(E,T)

A compact MIP formulation for UCDDP...

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block
- same early/tardy partition $(E,T) \Leftrightarrow$ same penalty f(E,T)
- formulate UCDDP as a partition problem

$$\min_{\{E,T\} \text{ bi-partition of } J} f(E,T)$$

A compact MIP formulation for UCDDP...

... using the V-shaped dominance property and δ and X variables.

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block
- same early/tardy partition $(E,T) \Leftrightarrow$ same penalty f(E,T)
- formulate UCDDP as a partition problem

$$\min_{\{E,T\} \text{ bi-partition of } J} f(E,T)$$

A compact MIP formulation for UCDDP...

... using the V-shaped dominance property and δ and X variables.

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block
- same early/tardy partition $(E,T) \Leftrightarrow$ same penalty f(E,T)
- formulate UCDDP as a partition problem

$$\min_{\{E,T\} \text{ bi-partition of } J} f(E,T)$$

A compact MIP formulation for UCDDP...

... using the V-shaped dominance property and δ and X variables.

- consider only the V-shaped *d*-blocks since they are dominant
- define the early/tardy partition of a V-shaped *d*-block
- same early/tardy partition $(E,T) \Leftrightarrow$ same penalty f(E,T)
- formulate UCDDP as a partition problem $\min_{\{E,T\} \text{ bi-partition of } J} f(E,T)$

- formulate UCDDP as a MIP $F^2: \min_{(\delta,X)s.t.(X.1-X.4)} h_{\alpha,\beta}(\delta,X)$ where $h_{\alpha,\beta}$ is a linear function depending on α and β

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

 δ variables \longleftrightarrow vertices

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

 δ variables \longleftrightarrow vertices

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

 δ variables \longleftrightarrow vertices

X variables \longleftrightarrow edges

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

 δ variables \longleftrightarrow vertices

X variables \longleftrightarrow edges

 $({"\delta_j = 1"}, {"\delta_j = 0"}) \longleftrightarrow$ a vertices bipartition

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

 δ variables \longleftrightarrow vertices

X variables \longleftrightarrow edges

 $(\{ \delta_j = 1^{"}\}, \{ \delta_j = 0^{"}\}) \longleftrightarrow$ a vertices bipartition

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

 δ variables \longleftrightarrow vertices

X variables \longleftrightarrow edges

 $(\{ "\delta_j \!=\! 1"\}, \{ "\delta_j \!=\! 0"\}) \longleftrightarrow \text{ a vertices bipartition}$

 $\{ X_{i,j} = 1 \} \longleftrightarrow$ a **cut** in K_n

Link between F^2 and the Cut Polytope

in Formulation F^2 in the complete graph K_n

 δ variables \longleftrightarrow vertices

X variables \longleftrightarrow edges

 $({"\delta_j = 1"}, {"\delta_j = 0"}) \longleftrightarrow$ a vertices bipartition

 $\{ X_{i,j} = 1 \} \longleftrightarrow$ a **cut** in K_n

 $(\delta, X) \in P^2 \longleftrightarrow X \in \mathsf{CUT}_n$ the cut polytope for K_n

Eliminate an extreme point corresponding to a "bad" solution according to the objective value,

Eliminate an extreme point corresponding to a "bad" solution according to the objective value,

Eliminate an extreme point corresponding to a "bad" solution according to the objective value, using **facet defining** inequalities to avoid the apparition of new extreme points

Eliminate an extreme point corresponding to a "bad" solution according to the objective value, using **facet defining** inequalities to avoid the apparition of new extreme points

Application to P^2 , elimination of $(\delta, X) = (0, 0)$, $\widetilde{P}^n_{\delta,X} = \operatorname{conv}\left\{ (\delta, X) \in \{0, 1\}^J \times \{0, 1\}^{J^<} \mid (X.1 - X.4) \text{ and } \delta \neq 0 \right\}$

Example of a new facet defining inequality family

for C an hamiltonian cycle in K_n , $\underline{\delta_u + \delta_v} - X_{u,v} + X(C) \ge 2$

Example of a new facet defining inequality family

for C an hamiltonian cycle in K_n , $\underline{\delta_u + \delta_v} - X_{u,v} + X(C) \ge 2$

Too many and too various inequalities appear ightarrow change of strategy

Outline

1. Introduction

- 2. Focus 1: A formulation for UCDDP using natural variables
- 3. Interlude : a first attempt to eliminate dominated solutions
- 4. Focus 2: dominance inequality Neighborhood based dominance properties Insert inequalities
- 5. Conclusion and perspectives

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Consequence: The set of solutions **non-dominated** in their neighborhood is a strictly dominant set.

Neighborhood based dominance properties : generic idea

Remark: If a solution is dominated by one of its neighbors, then it is not an optimal solution.

Consequence: The set of solutions **non-dominated** in their neighborhood is a strictly dominant set.

Our approach:

- define a neighborhood based on operations
- translate the associate dominance property by linear inequalities

Operation-centered

= consider **one** given type of neighbor for **all** the solutions

Operation-centered

= consider **one** given type of neighbor for **all** the solutions

Operation-centered

Operation-centered

Operation-centered

Operation-centered

Operation-centered

Operation-centered

$$A(u) = \left\{ i \in J \mid \frac{\alpha_i}{p_i} > \frac{\alpha_u}{p_u} \right\} \text{ and } \bar{A}(u) = \left\{ i \in J \mid i \neq u, \ \frac{\alpha_i}{p_i} \leqslant \frac{\alpha_u}{p_u} \right\}$$

$$A(u) = \left\{ i \in J \mid \frac{\alpha_i}{p_i} > \frac{\alpha_u}{p_u} \right\} \text{ and } \bar{A}(u) = \left\{ i \in J \mid i \neq u, \ \frac{\alpha_i}{p_i} \leqslant \frac{\alpha_u}{p_u} \right\}$$

$$A(u) = \left\{ i \in J \mid \frac{\alpha_i}{p_i} > \frac{\alpha_u}{p_u} \right\} \text{ and } \bar{A}(u) = \left\{ i \in J \mid i \neq u, \ \frac{\alpha_i}{p_i} \leqslant \frac{\alpha_u}{p_u} \right\}$$

$$A(u) = \left\{ i \in J \mid \frac{\alpha_i}{p_i} > \frac{\alpha_u}{p_u} \right\} \text{ and } \bar{A}(u) = \left\{ i \in J \mid i \neq u, \ \frac{\alpha_i}{p_i} \leqslant \frac{\alpha_u}{p_u} \right\}$$

$$A(u) = \left\{ i \in J \mid \frac{\alpha_i}{p_i} > \frac{\alpha_u}{p_u} \right\} \text{ and } \bar{A}(u) = \left\{ i \in J \mid i \neq u, \frac{\alpha_i}{p_i} \leqslant \frac{\alpha_u}{p_u} \right\}$$
$$B(u) = \left\{ i \in J \mid \frac{\beta_i}{p_i} > \frac{\beta_u}{p_u} \right\} \text{ and } \bar{B}(u) = \left\{ i \in J \mid i \neq u, \frac{\beta_i}{p_i} \leqslant \frac{\beta_u}{p_u} \right\}$$

$$A(u) = \left\{ i \in J \mid \frac{\alpha_i}{p_i} > \frac{\alpha_u}{p_u} \right\} \text{ and } \bar{A}(u) = \left\{ i \in J \mid i \neq u, \frac{\alpha_i}{p_i} \leqslant \frac{\alpha_u}{p_u} \right\}$$
$$B(u) = \left\{ i \in J \mid \frac{\beta_i}{p_i} > \frac{\beta_u}{p_u} \right\} \text{ and } \bar{B}(u) = \left\{ i \in J \mid i \neq u, \frac{\beta_i}{p_i} \leqslant \frac{\beta_u}{p_u} \right\}$$

$$A(u) = \left\{ i \in J \mid \frac{\alpha_i}{p_i} > \frac{\alpha_u}{p_u} \right\} \text{ and } \bar{A}(u) = \left\{ i \in J \mid i \neq u, \frac{\alpha_i}{p_i} \leqslant \frac{\alpha_u}{p_u} \right\}$$
$$B(u) = \left\{ i \in J \mid \frac{\beta_i}{p_i} > \frac{\beta_u}{p_u} \right\} \text{ and } \bar{B}(u) = \left\{ i \in J \mid i \neq u, \frac{\beta_i}{p_i} \leqslant \frac{\beta_u}{p_u} \right\}$$

dominance constraint for the early-insert of $u \in J$ $\Delta_u^{early}(E,T) \ge 0$ if $u \in E$

4- Focus 2: dominance inequality • 4.2 Insert inequalities

Conclusion on dominance inequalities

Insert and swap inequalities allow to:

 \rightarrow reinforce F^3 in a different way as usual strengthen inequalities no improvement of the linear relaxation value

Conclusion on dominance inequalities

Insert and swap inequalities allow to:

- \rightarrow reinforce F^3 in a different way as usual strengthen inequalities no improvement of the linear relaxation value
- \rightarrow solve UCDDP up to size 180 within one hour (instead of size 60 without them)

Conclusion on dominance inequalities

Insert and swap inequalities allow to:

- \rightarrow reinforce F^3 in a different way as usual strengthen inequalities no improvement of the linear relaxation value
- \rightarrow solve UCDDP up to size 180 within one hour (instead of size 60 without them)
- \rightarrow illustrate the dominance inequality concept

Outline

1. Introduction

- 2. Focus 1: A formulation for UCDDP using natural variables
- 3. Interlude : a first attempt to eliminate dominated solutions
- 4. Focus 2: dominance inequality
- 5. Conclusion and perspectives

5- Conclusion and perspectives

Done during the thesis

- providing formulation F^3 for UCDDP, F^4 for CDDP
- establishing two lemmas about non-overlapping inequalities
- proving validity of F^3 and F^4
- finding a separation algorithm for non-overlapping inequalities in F^3 and F^4
- providing another formulation F^2 for UCDDP
- implementing and testing F^2 , F^3 and F^4

 \hookrightarrow writing a journal paper submitted to DAM, $\mathit{currently}\ accepted$

- proposing a framework to "transpose" facet defining inequalities
- testing formulation F^2 when known facet defining inequalities are added
- using PORTA on small-dimensional "non-trivial cuts" polytopes
- identifying some family of facet defining inequalities for arbitrary dimension
- proposing a new kind of inequality to improve some MIP formulations solving
- providing dominance inequalities for F^2 based on insert and swap operations
- implementing and testing the impact of these insert and swap inequalities on F^2
- deriving a heuristic algorithm for UCDDP from insert and swap operations → writing a journal paper submitted to EJOR, *currently to review*
- + listening and speaking in seminars or conferences, attending summer school, teaching, writing final report...

5- Conclusion and perspectives

Done during the thesis

- providing formulation F^3 for UCDDP, F^4 for CDDP
- establishing two lemmas about non-overlapping inequalities
- proving validity of F^3 and F^4
- finding a separation algorithm for non-overlapping inequalities in F^3 and F^4
- providing another formulation F^2 for UCDDP
- implementing and testing F^2 , F^3 and F^4

 \hookrightarrow writing a journal paper submitted to DAM, $\mathit{currently}\ accepted$

- proposing a framework to "transpose" facet defining inequalities
- testing formulation F^2 when known facet defining inequalities are added
- using PORTA on small-dimensional "non-trivial cuts" polytopes
- identifying some family of facet defining inequalities for arbitrary dimension
- proposing a new kind of inequality to improve some MIP formulations solving
- providing dominance inequalities for F^2 based on insert and swap operations
- implementing and testing the impact of these insert and swap inequalities on F^2
- deriving a heuristic algorithm for UCDDP from insert and swap operations → writing a journal paper submitted to EJOR, *currently to review*
- + listening and speaking in seminars or conferences, attending summer school, teaching, writing final report...

Generic frameworks (tools to take away)

- About natural variables and non-overlapping inequality formulations:
 - $\rightarrow\,$ a methodology to formulate some scheduling problem
 - $\rightarrow\,$ a scheme of validity proof for such formulations
 - $\rightarrow\,$ two key lemmas about non-overlapping inequalities

Generic frameworks (tools to take away)

- About natural variables and non-overlapping inequality formulations:
 - $\rightarrow\,$ a methodology to formulate some scheduling problem
 - $\rightarrow\,$ a scheme of validity proof for such formulations
 - $\rightarrow\,$ two key lemmas about non-overlapping inequalities
- About facet defining inequalities:
 - ightarrow a ready-to-use property to transpose facet defining inequalities

Generic frameworks (tools to take away)

- About natural variables and non-overlapping inequality formulations:
 - $\rightarrow\,$ a methodology to formulate some scheduling problem
 - $\rightarrow\,$ a scheme of validity proof for such formulations
 - $\rightarrow\,$ two key lemmas about non-overlapping inequalities
- About facet defining inequalities:
 - $\rightarrow\,$ a ready-to-use property to transpose facet defining inequalities
- About dominance inequalities:
 - \rightarrow a theoretical framework
 - $\rightarrow\,$ a recipe to obtain a dominance inequality from a given operation

Perspectives

About dominance inequalities:

- \rightarrow How do insert and swap inequalities improve formulation F^2 ?
- $\rightarrow\,$ Can we provide dominance inequalities useful for other combinatorial problems?

5- Conclusion and perspectives

The end

Thank you for your attention