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Abstract

This text presents some general aspects of the kinetic theory of hard-spheres and in partic-
ular the mathematical description of the limiting procedure known as the Boltzmann-Grad
limit by which Boltzmann’s equation and the equations of continuum physics are deduced
from a system of N interacting particles when N — +oco. The first chapter gives the basic
tools of kinetic theory we will constantly use throughout this text. Chapter [2]is largely in-
spired by the article [4] where a rigorous and complete proof of Lanford’s theorem is given.
The aim of this theorem is to give a mathematical justification of the Boltzmann equation.
The idea of the proof is reused in [2] to prove that for a system around the equilibrium, the
Brownian motion can be obtained as the limit of a deterministic system of hard-spheres.
This is the object of chapter
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Chapter 1

(GENERAL FEATURES OF THE HARD-SPHERES DYNAMICS

This introductory chapter presents the objects we will constantly work with throughout
the next chapters. Most of the results can be found in the the first two parts of [4], in the
introduction of [2] or in [3] for a more extensive view on kinetic theory.

1.1 At a microscopic scale : a Newtonian approach

Throughout this text, we will consider a system of N interacting particles, N being of
the order of 10?3. At a microscopic scale, each particle is modeled by a hard—sphereE] of
diameter £ with position and velocity denoted by z; = (z;,v;) € R x R%. In the following,
Zy = (XN, Vi) € (RHY x (RN will be the vector of all the positions and velocities of
the N particles.

In the following we will focus only on the case of monoatomic gases : we assume that all
the particles are identical (same mass, same volume. . .) and interact according to Newton’s
equations of motion,

dx; .
CZ =v, 1€{1,...,N}
(1.1)
i _,
dt

on the domain
Dy = {ZN € R2dN/ Vi 75.], |xl - ZL‘]’| > 6}.

In this model, we consider that two particles can’t overlapE] : a particle moves in straight
line until it encounters an other particle. The two particles then bounce back on each other
according to the standard laws of mechanics : a collision is instantaneous and preserves
energy and momentum. More precisely, on the boundary of Dy, given two positions x; and
x; such that |z; — x| = ¢, one has

{ vf + v = v + vy
[0il? + [ ? = [vif® + v, ?

where vz’- and U; denote the velocities after the collision. It can be shown that :

~

vy — v (v — vy

~

g g (1.2)
L= ’Uj + VZJ . (U’i — ij)VZvJ

<

!There exist more accurate models such as the short- and long-range potentials we won’t discuss here.
A complete study of short-range potentials (similar to this one) is also done in [4]. The case of long-range
potentials is a widely open question.

2The situation is slightly different for short-range potentials and very different for long-range potentials.
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where v¥ = (v; — x;)/|v; — x;] € SL. Here we implicitly assume that v; and v; are
pre-collisional meaning that

Vi (v —v;) < 0.

FIGURE 1.1: v; and v; are pre-collisional

When v; and v; are post-collisional, meaning that v%7 - (v; — v;) > 0, v} and vl will
denote the velocities before the collision. Note that v and v} also satisfy (1.2)) : since the

collision is elastic, the transformation (v;,v;) = (v;,v}) is an involution.

v =v; — v (v — vyt (13

v = vj + " - (v — )yt

FIGURE 1.2: v; and v; are post-collisional
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Note that this boundary condition is a priori not sufficient to define a global dynamics
since it is not defined in the following cases : a trajectory is called pathological when there is
either a collision involving more than two particles or a grazing collision (v*7 - (v; —v;) = 0)
or when there are an infinite number of collisions in finite time. Fortunately, the following
proposition (see proposition 4.1.1 in [4]) allows us to define a global dynamics for almost
all initial data.

Proposition 1.1. Let N, € be fixed. The set of initial configurations leading to a patho-
logical trajectory is of measure zero in R*V .

PROOF. Given p > 0,R > 0 and 0 < /2, let us define :

I:= {Z N € Bév x B / one particle will collide with two others on time interval [0, (5]}
Noticing that
Ic {ZN € BN x BN/ 3i, j,k} distinct, |o;—=;| € [, +2R6] and |z;—ay| € [5,5+2R6]}

one has :
1] < C(N, &, R)p"N—2)62.

We then have constructed a subset Ip(d, R) C Bg X Bg such that any initial configuration
belonging to (BY x BN)\ In(d, R) is well defined up to time § (since up to removing a zero
measure set, each collision is non grazing). It can be shown that the determinant of the
Jacobian matrix of the flow of is constantly equal to 1, meaning that the measure
is preserved by the flow. It is then possible to apply the same procedure starting at time
4, the positions now belonging to Bg s~ Finally, repeating this procedure t/d times, we

construct a subset
t/5—1

Ii(t,R) == |J L, R)
j=0

of Bg X Bg, of measure

t/6—1
|15(t, R)| < C(N,e, )RV =252 ™ (1 4 j5)" "2 < C(N, R, 1,¢)d
j=0

such that for any initial configuration belonging to (By x BN)\ I5(t, R) the flow is well-
defined up to time ¢. The intersection I(t, R) := Ng=ols(t, R) is of measure zero, and any
initial configuration in Bg X Bg outside that set generates a well-defined flow until time
t. We conclude the proof by taking the countable union of I(¢,, R,) for ¢, — +oco and
R, — +o0. ]

1.2 At a mesoscopic scale : the Liouville equation

A typical system in kinetic theory involves way too many particles to perform an explicit
computation of the individual trajectories. In the limit N — +oo and ¢ — 0, we can
only hope for a description of the average behaviour of the system. This point of view
is mentioned by Hilbert in his sixth problem (formulated after Boltzmann’s work) which
suggests to mathematically investigate the limiting processes ”which lead from the atomistic
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view to the laws of motion of continua”. The intermediary scale between the microscopic
and macroscopic scales is often known as the mesoscopic scale : at this scale the relevant
quantity is the distribution function of the system fn(t,Zy) which can be interpreted as
the probability at time t for the system to be in the state Zy € R?¥V. In particular, fy
takes its values in [0, 1] and satisfies the following relation : given a domain Q C R?*, one
has
PI"Ob(ZN(t) € Q) = / fN(t, ZN)dZN = / fN(O, ZN)dZN
Q Zn(0,t,9)

where Zn (t1,to, Z%) denotes the flow of at time 1, initiated at time ¢o in Z%. A
change of variables in the last integral leads to :

DZN(07t7ZN)

A
DZx N

/ In(t, Zn)dZy = / fN(O,ZN(O,t,ZN))’det
Q Q

where %’;’ZW denotes the Jacobian matrix of Zy +— Zpn(0,t, Zy). For the system ((1.1),
it can be shown that the determinant of this matrix is constantly equal to 1 (with respect
to t). Taking the time derivative of the last equation therefore leads to :

N
Oufn + > iV fn =0 (1.4)
i=1
on Dy and with the boundary condition fx(t, Zx) = fn(t, Zn) where Zx, = (21,0}, ..., TN, V).

This equation, which is the starting point of all our study, is called Liouville’s equation.

In addition, we will assume that all the particles are indistinguishable, which means that
the distribution function fy satisfies the following symmetry condition :

Vo € &n, [Nn(t Zovy) = fn(t, ZN) (1.5)
with Zo(N) = (Zg(l), e 7ZU(N))'

As explained before, our goal is to investigate the behaviour of the system in the limit
N — 400 and € — 0. Of course, since fy belongs to a functional space that depends on NV,
it isn’t possible take directly the limit, even formally. In the following, we will then focus
on the marginals of fn : for s € {1,..., N}, the s-th marginal of fy is defined by

f](\f)(t, ZS) = / fN(t,ZN)dZS+1...dZN.
R24(N—s)

Up to defining f](\f) =0fors e {N+1,N+2,...}, it makes sense to consider for each s € N
the limit

the exact meaning of the limit being of course still to define.

1.3 The Boltzmann-Grad limit and the Boltzmann equation

An other relevant quantity at a mesoscopic scale is the mean free path of the particles which
is defined as the average distance traveled by a particle between two collisions. If £ denotes
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this distance, the volume covered by particle between two collisions is then of the order of
e4=1¢. Interpreting the number N as the number of particles by unit of volume, we have
by definition of the mean free path :

Ned=1p ~ 1.

Given N and ¢, the quantity Ne?~! can therefore be viewed as the inverse of the mean free
path which is also a measure of the number of collisions per unit of timeﬂ The aim of this
text is to investigate the behaviour of the system in the Boltzmann-Grad limit N — 400,
e — 0 and Ne?=! = O(1), sometimes known as the low density limit. From now and
throughout the next chapter, we will consider Ne?~! — 1. In the last part, we will aim to
retrieve a macroscopic behaviour from a deterministic system of particles, which correspond
to the case Ne¢ ! = a — +o00 and Ne? — 0.

The main result we will prove is the Lanford theorem which states that in the Boltzmann-
Grad limit, the first marginal f ](\} ) of the distribution function will converge (in some sense)
to the solution f(t,z,v) of the Boltzmann equation :

Of +v-Vof =Q(f, f) (1.6)

where Q(f, f) is the collision operator defined by :
QN = [ [ 8= £00b0 = )i (17)
sd-1 JRd

with b(v—v1,w) = ((v—v1)-w)4+ in the hard-spheres case and where f* stands for f(¢,z,v*)
and fy for f(t,x,v1). We can split Q = Q4 — Q_ into a gain term

QN = [ [ 1 b - v w)dode

and a lose term

Q-(r.Nw)i= [ [ £hbo— @)

The gain term counts the collisions which involve a particle with velocity v* and produce
a particle with velocity v. The lose term counts the collisions during which a particle with
velocity v disappears (its velocity becomes v').

The Boltzmann equation (1872) describes the behaviour of a thermodynamic system. In
particular, it encodes the notion of irreversibility and gives a formal definition of the entropy
of a system. Physically, the main issue we have to deal with in the limiting procedure is to
show that irreversibility can be obtained from a purely deterministic and reversible system
governed by Newton’s equations.

3Up to defining the typical microscopic unit of time as the average time between two collisions, Ne?~!
can be viewed as the number of collisions per unit of time.
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1.4 The BBGKY and Boltzmann hierarchies

We are looking for a weak formulation of the system of equations satisfied by the family of

marginals ( f](\f)hgsg ~. Assuming that fy decays sufficiently fast in the velocity variable
and taking a symmetric test function ¢(¢, Zs), let us perform integrations by parts on :

N
/ (0ufn + 3 vi - Vs ) (6 Z)(t, Z3) 1z epy dZndt = 0.
R+><R2dN i—1

By definition of f](\f), the integration in time leads to

/ Onfn(t, Zn)b(t, Z)1 gy epy dtdZn = — / £2(0, 2,)$(0, Z,)dzZ,
R+><R2’1N R2ds

- / f](\?)(t7 Zs)atﬁb(t,zs)dtdzs.
R+><R2d5

The integration with respect to the space variable is a little bit more tricky since the domain
has boundaries |z; — x| = € depending on z;. Using Green’s formula, we obtain :

N
/ (/A VmifN(t, ZN)qb(t, Zs)lzNedetdZN
R+XR2dN

=1
N

- Z /R R24N IN(Y, Zn)vi - Ve, o(t, Zs)dtdZ
i=1 + X

N N
+ /R (Z /S L v ufn(t Zn) et Zs)daj”(:ci)) dtdz;
=1 j=1 je

J#i

4+ xR2IN—d

where v 1= (z; — ;) /|zj — 2], S?;l is the sphere centered in z; with radius ¢ and do?*

is the surface measure on this sphere induced by the Lebesgue measure. We write c?a;,, for
dxidvy .. .dz;—1dvi—1dv;dxiy1dviyq ... dxyduy. The boundary term on the right-hand side
of the equality is equal to :

Z 5d_1 / (*W) . UifN(tv ZN)(;S(t, Zs)dtj{;ldw
1<i#j<N R xR2dN—dxgd—1

where z; has to be replaced by x; + ew when it appears in the arguments of fy and ¢.
Now, let us split the sum into four parts :

)SEEID IETED DD 3D SRS 35 1)

1<i£j<N  1<i#j<s s+1<i#£j<N  i=1 j=s+1 i=s+1 j=1

Using the boundary condition, it is possible to show that the first two sums on the right-
hand side of the equality are equal to 0. Indeed, thanks to the symmetry condition (1.5,
one can see that

Z sd_l / wr UifN(t’ ZN)QS(ta Zs)dtj;ldw
R

l<i7$j<s +><R2dN*d><Sd*1

- % Z gd_l/ w- (v —vj)fn(t, ZN)o(t, Zs)dtdz;dw
R

1<iZI<N +xR2IN—d gd—1
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and noticing that

w- (v = vj) = —w - (v — )

the boundary condition says that the sum is equal to zero (since it is equal to its opposite).
The proof is identical when s+1 < ¢ # j < N. For the two last sums in , this procedure
can’t be applied since ¢ depends only on the s first variables. However, using the symmetry
condition and by definition of the s + 1-th marginal, the last sum is equal to :

—(N - s)edil Z/ w - v5+1f](\f+1)(t, Zs, v+ ew, Vsy1)P(t, Zs)dtdZ sdwdvsq
j=17R

+xRsxSd-1xRd
and similarly, after a change of variables, the third sum on the right-hand side of (1.8) is

equal to

(N —s)ed1y" / wevifSTV (L, Zg,mi + 6w, va41)b(t, Zo)dtdZydwduv, 1.
i=1 R

+xRIs xSd-1xRd

Gathering everything, we find that the boundary term induced by Green’s formula is equal
to :

+xRds x Sd—1xRd

—(N—s)sd_lz/ W (Vs41—0;) ](\}SH)(t, Zsy Xitew, Vs41)0(t, Zs)dtdZ sdwdvg 1 .
=1 R

Finally, we deduce the weak form of the Liouville equation for the marginals ( f](\f)) s>15
known as the BBGKY hierarchy :

Vs {1, N}, 8fY + Y v Vo £ = Cosrr ST (1.9)
i=1

on Ry x D, with the boundary condition f](vs) (t,2%) = fj(\f) (t,Zs) and where Cq ¢41 is the
collision operator defined by :

s
C375+1gs+1 = (N—S)Edil Z/d ) dw'(vs+1_vi)gs+1(t7 Z57$i+€wavs+1)d(ﬂdvs+1‘ (1'10)
i—1 Y51 xR

Denoting by Ts(t) the backward flow associated to the s-particles system, the Duhamel
formula for (1.9)) gives the integrated form of (1.9) :

t
(1, 7,) = To(0) (0, Zs) + / To(t = 7)C, e O (1, 2,)dr
0

Definition 1.2 (Total flow and total collision operator). We define the operators T and
Cn on finite sequences Gy = (gs)i1<s<n by :

Vs <N, (T(t)Gn)s := Ts(t)gs
Vs <N —1, (CNGnN)s :=Cs 5419541 and (CnGy)ny =0

Definition 1.3 (Mild-solution of the BBGKY hierarchy). Fy = (fz(\?))lgsgzv solution of :
t
Fi(t) = T(#)Fx(0) + / T(t — 7)C Fy (r)dr.
0

9
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Now, we can formally derive the Boltzmann hierarchy from the BBGKY hierarchy in
the Boltzmann-Grad limit. Assuming that the pre-factor of is approximatively equal
to 1 and neglecting the micro-translation in the argument of gsy1, we define the Boltzmann
collision operator :

S
0
COirgsi1 =Y W+ (Vs1 = Vi) gs+1(t, Zs, Tiy Vst1)dwdvs 1.
’ —1 S41xRd
P

The boundary condition and the change of variable w +— —w lead to

Co o OVt Z6) = / w - (Vs41 — ;i
waf 2D =3 [ et =)
% [f(SH)(t,Zz,CUi,U:H) _ f(3+1)(t, Zs,CUi,vs—s—l)} dwdvgiq. (1.11)

Denoting by S the s-particles free flow we can similarly define a mild-solution to the
Boltzmann hierarchy as a family F = (f+1),5; satisfying :

F(t) = S()F(0) + /0 'S(t — )COF(r)dr

for some initial condition F(0) = (fés))szl. Note that if f(¥) = f®5 then f satisfies the
Boltzmann equation with b(w,w) = (w-w)+. Moreover, we can easily check that if f satisfies
the Boltzmann equation with initial data fo, then (f®%)s>1 is a solution of the Boltzmann
hierarchy with initial data (f5*)s>1. This property is known as the propagation of chaos :
it means that the solution of the Boltzmann hierarchy coming from a tensorized initial data
is also tensorized. However, these observations are relevant only if we are able to prove the
wellposedness of the Boltzmann hierarchy. That is one of the purposes of section [1.6

1.5 Rigorous formulation of the BBGKY hierarchy

Before going any further, let us point out that it isn’t clear that the formulation we gave of
the BBGKY hierarchy makes sense : the marginals f ](\f) are defined only almost everywhere
(see proposition but the collision operator is defined by an integral on the sphere
S?=1 . The idea is to use Fubini’s theorem to show that for almost every t, the operator
Cs s+1Ts41(t) is well-defined from L*°(Dy11) to L>(Dy) (see [4], section 5.1).

Step 1. Construct a truncated collision operator.

Far from the boundary of Dgy1, it is possible to see ¢t as the ”missing” coordinateﬁ on
0D;11. This idea is embodied in the definition of the mappings :

o D, x [0,0] x 841 x R? — R2d(+D)
| (Zs t,w,vs41) = Zggr o= (X — 1V, Vo, @i + €w — t0s41, Vs1)

It means that in the following, [0,d] x S*~! is viewed as a manifold of dimension d whereas S ! is a
manifold of dimension d — 1 only...

10
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and
| Dy x [0,6] x ST x RY — R+
R
(Zs t,w,vs11) V= Zsy1:= (X =tV Vi m +ew —tvl 1,05, )
for i € {1,...,s}. The following lemma is the key argument of the construction : it states

that ®* is an actual change of variables. Its proof can be found in appendix
Lemma 1.4. The change of variables ®~ maps the measure
dp; = |w- (Ve41 — v;)]—dZsdtdwdvs
on the Lebesque measure dZy, 1. Similarly, the change of variables ®* maps the measure
du;r = [w - (V541 — V)| +dZsdtdwdvgs i
on the Lebesgue measure dZq 1.

We now turn to the explicit construction of the truncated collision operator : let us
consider a small parameter of time § > 0 and R > 0 such that Z,; € B%SH) (ball in
dimension 2d(s + 1) and of radius R). We define a truncated collision operator that acts
on continuous functions on Dgy; :

(C;ts’lfwsﬂ)(z ) i= (N —s)e?! /d X d(‘*’ (Vs1 — 14)) £ Ps41(Zs, i + ew, V1)
ST xR

% H 14y >er2rsdwdvsp1dZsdt.
{kvl}7é{i,s+1}

Thanks to the change of variables &~ in the pre-collisional case and ®*+ in the post-
collisional case, one has :

/ C:;161T5+1(t)cp5+1dtd25:/ _ @sr11(.)dZss1
[0,6]xDs D+ (D, x[0,8] xS¢™I xR4)

In particular the right-hand side of the last equality is well-defined, even if pgy; € L*(Ds41) C
L} (R¥(s+1)) Besides,

/[05} - ’Cgtézii s+1(t)psy1|dtdZ SC(SRQd(S+1)“(P”L°°(DS+1)
XDs

so that CS s+1 Tsi1(t)pss1 € LY([0,0] x Ds) and thanks to Fubini’s theorem, we know that
for almost every ¢ € [0,6], it defines a measurable function on D,. As in the proof of
prop0s1t10n-, 1.1} it is possible to iterate this procedure to show that for almost every ¢ € [0, 7]
(for any given T' > 0) and every ¢ € L*(Dg41), C, L;J’FITS“( )s+1 is a measurable function
defined on Ds. Moreover, the same proof shows that for any subset A C [0,7T] x Dy,

+,i ,6
/ Gt Dot (D ps1|(Zs)dtdZs < CR*|psin |l L=, 1) Al
which implies that for almost every ¢ € [0,T] and Z; € Dy,
"y
G2 o1 (t)pss1l(Zs) < CR*|| st po(p,.y)- (1.12)

11
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In conclusion, for almost every ¢ € [0,7] we have defined a bounded collision operator :
ColATapa(t) : L%(Deyr) — L®(Dy)

and we now have to remove the truncation, that is to say to ”take the limit” § — 0.

Step 2. Show that for every psy1 € L®(Dsy1), (C:;TITS“(t)%H)bO converges in
L>([0,T] x Ds) when 6 — 0.

Thanks to the bound (L.12)), the family (C;t;_fl s+1(t)@s+1)s>0 is bounded in L ([0, T| x
D;) and it is then possible to extract a weakly-* convergent sub—sequenceﬁ Given g €
LY([0,T] x Ds) it is then sufficient to prove that

</[0T] . (C;tjqi‘;l s+1(t)905+1>(23)g(t’Zs)dtdZS>
;L[ X Ds

is a Cauchy family in R to prove the weak-* convergence of the whole sequence in L ([0, T'] x
Ds). To do so, let us define for 0 < ¢’ < 6.

>0

+,i,8',6 . i +,i,0
Cs,s—l—l - Cs,s+1 - Cs,s—i—l

which satisfies, by the same arguments as before,
iv"élva
/[0 D L Tora () psar|(Zs)dtdZs < C(R,T)0|| @5t ]| oo, )-
XDy

Thanks to the Bienaymé-Tchebychev inequality, we know that the set

Liigsi={(t.2,) € [0,T] x Dy, [ Tora (Dpeal(Z0) = V5 )

is of measure O(v/§). This leads to the following bound :

|/ (C:§i6175Ts+1(t)908+1> (Zs)g(t, Zs)dtdZ,
0,7 xDsg

I ;505 Iiss

+0.8 rp
< CSUPHCSSZH s+1(O)@st1llLoo (o, x D) 19l L1 [ £ 0,67 6

IN

— 0.

Step 3. Dependence with respect to time.

When @11 depends also on the time variable ¢, it is possible to use the density of piece-
wise constant functions in time to extend the previous construction (see [4] for more details).

Note that for the Boltzmann hierarchy, it is possible to require that all functions under
study are continuous, since the free transport operator preserves continuity.

5Tt means that there exists a subsequence &,, — 0 such that for all g € L'([0,T] x Ds),

+,4,0n
/[ ! (Cs,s+1 * TS+1(t)‘PS+1)(ZS)9(t, Zs)dtdZs — 0.
0,T]xDg

12



CHAPTER 1. GENERAL FEATURES OF THE HARD-SPHERES DYNAMICS

1.6 Functional spaces and uniform estimates

This last section presents the functional spaces in which the wellposedness of the BBGKY
and Boltzmann hierarchies can be proved.

1 S
We define the hamiltonian of the s-particle system by Fo(Zs) = B Z ;]2
i=1

Definition 1.5. Givene >0, >0 and 4 € R,

— when G = (gs)s>1, gs : Ds = R is a sequence of measurable functions,

195le.0,5 := supess 19 (Z)| exp(BE0(Z,)) ) and (|G e, i= 50D (1960, exp(115))
Z, s>1

SGDS

— when G = (gs)s>1, gs R?% — R is a sequence of continuous functions,

95los.0 = sup (195(Z0)|exp(BEo(2,))) and |G

0340 = 5D (190,05 exp(115)
ZseRst 321

~ Xcsp (resp. Xosp) is the Banach space of measurable functions with finite |- |. s 3 norm
(resp. | - lo,s,8)-

~ X, 58 (resp. Xos,p) is the Banach space of sequences of measurable functions with finite
I lle.s, morm (resp. || - llo,s,5)-

These functional spaces are rather natural in statistical physics where 8 and p are
respectively called the inverse of the temperature and the chemical potential. When 8 and
1 are time dependant functions, we consider the following norms :

Definition 1.6. Given T > 0 and (3, pu two real valued functions defined on [0,T] and a
sequence G : t € [0,T] — G(t) = (gs(t))s>1, we define the norms :

IGllle,.:= sup |Gz p0)ue and [|Gllos,. = sup [|G(E)llos),u0)
0<t<T 0<t<T

and the respective functional spaces X g, and Xog,,-

The next proposition gives two continuity estimates for the collision operators we will
constantly use throughout the proof. In particular, we will use the second estimate to prove
the validity of Lanford’s theorem on a short-time interval (see section [2.2.1)).

Proposition 1.7 (Continuity estimates). Given two parameters 0 < ' < 8 and gs11 €
X¢ 541,38, we have in the Boltzmann-Grad limit :

s s
|Cs,s+1Ts+1(t)gs+1|(Zs) < Cdﬁ_d/Q <\/B + Z |UZ|> e_ﬁEO(ZS)‘gs+1|57s+1”3 (1.13)
i=1

and

_ S S
|CS,S+1TS+1(t)gs+1|€,Sﬁ’ < Cdﬁ i <\/B " \/ M) ‘95—&-1‘5,34—1,5 (1'14)

Similar estimates hold for the Boltzmann collision operator CS’SJFI with the norms | - o, 3-

13



CHAPTER 1. GENERAL FEATURES OF THE HARD-SPHERES DYNAMICS

ProOOF. Recalling the definition
Cs,s+1Ts1(t)gss1 := (N — 5)e?7!

X Z/ Tsi1 )gs+1(t, Zs, Ty + Ewavs-i-l)w : (Us+1 - Ui)deUerl

d—-1yRd

- follows from the direct calculation of a gaussian integral (since Ty preserves the
norm) - ) follows from ((1.13]) 3) xef' Eo(Zs) and the Cauchy-Schwarz inequality which im-
plies that il vl £ V/sv/Eo(Zs). The loss in § comes from the fact that the cross-section
is unbounded (but with polynomial growth). O

We can now state and prove the following wellposedness results :

Theorem 1.8 (Existence and uniqueness for the BBGKY hierarchy). Given two parameters
Bo > 0 and pg € R, there exists a time T > 0 and two non-increasing functions 3, u
[0,7] = R with B > 0, B(0) = Sy and u(0) = uo such that in the Boltzmann-Grad limit,

for all bounded initial datum Fn(0) = ( ](\,S)(O))lgsgN € X gy, there exists a unique

solution Gn(t) = (TS(—t) ](\}9) (t))1< € Xe g, to the BBGKY hierarchy, satisfying

e < QHFN<0)H€,/307M0 (1-15)

Theorem 1.9 (Existence and uniqueness for the Boltzmann hierarchy). Given two param-
eters Bg > 0 and pg € R, there exists a time T > 0 and two non-increasing functions
Byp:[0,T] - R with > 0, B(0) = By and p(0) = po such that in the Boltzmann-Grad
limit, for all bounded initial datum F(0) = (f()(0))1<s € Xo g0, there exists a unique

solution G(t) = (Ss(ft)f(s) (t)> P € X8, to the Boltzmann hierarchy, satisfying

IGw]

G o.8. < 211E(0)llo,50.410 (1.16)

PROOF (SKETCH). Let us first point out that the conservation of energy implies the con-
servation of the norm :

|Ts(t)gs|6,s,ﬂ = |gs|€,s,6 and |Ss(t)gs|0,s,ﬁ = ‘gs|0,s,6
The idea of the proof consists in using the continuity estimates to show that in the

Boltzmann-Grad limit,

V0 < e < gp, H

/0 T(—7)CNT(7)GN(T)dT

< IGNlleps  (117)
&,8,p

for some function 8 and p as in the statement of the theorem. This proves that the operator

£:GyN € ngu — / T)CNT(7)GN(T)dT € XE,/B»N

has norm < 1 so that Id— £ is invertible and (Id—£)Gxn = Fy(0) has a unique solution. The
proof of the theorem then relies on the proof of : this result is proved in great detail
in lemma 5.4.3 of [4]. In particular, they prove that thanks to the continuity estimates, one
can choose §(t) = By — At and p(t) = pg — At for an appropriate choice of X\. The proof of
the wellposedness of the Boltzmann hierarchy is identical. O

14



Chapter 2

FROM NEWTON TO BOLTZMANN : LANFORD’S THEOREM

This chapter is devoted to the statement and the proof of Lanford’s theorem which gives a
mathematical framework whereby the formal limiting procedure of section can be justi-
fied. We follow the original outline of the proof given by Lanford in the 1970s. However, the
presentation is largely inspired by the rigorous completion of the proof due to I. Gallagher,
L. Saint-Raymond and B. Texier in [4].

2.1 Admissible Boltzmann data and Landford’s theorem

In this first section, we emphasize the fact that the convergence result only holds for a
certain class of initial data called admissible. In particular, the definition of such data will
show the intrication between the notion of independence and the functional spaces previ-
ously defined.

We define the set
Qs = {Zs e R Vi # j,x; # 2}
2.1.1 Admissible Botzmann data

An admissible Boltzmann datum is defined as the limit of a sequence of distribution func-
tions of a N-particles system when N — +o0o. More precisely :

Definition 2.1 (Admissible Boltzmann datum). An initial datum Fy = (fés))sz1 satisfying

1. Foralls > 1, fés) s continuous over (s, nonnegative and integrable

2. Forall s> 1,

R fés+1)(ZSa Zerl)dZerl = fOS) (2.1)

is said admissible when there exist BBGKY initial data Fnog = (fj(\f)())lﬁsgN € X 8.0
satisfying :

1. supy>1 [[ENolle,go,u0 < 00 for some Bo and po as Ned=l=1

2. Foralll<s<N,

Wh(Zs) = / Urnenn SO (Zn)dzesn . dox
R2d(N—s)

and for all s > 1, fJ(\f,)o — fés) locally uniformly in Qg in the Boltzmann-Grad limit.

15



CHAPTER 2. FrROM NEWTON TO BOLTZMANN : LANFORD’S THEOREM

The following proposition gives a useful characterization of the notion of admissibility.

Proposition 2.2. Given Fy = (fés))szl such that for all s > 1, fés) is continuous over g,
nonnegative and integrable and satisfies (2.1), the following assertions are equivalent :

(i) Fy is an admissible Boltzmann datum
(ii) There exist o > 0 and po € R such that || Follo,8y,u < o0

(iii) There exist By > 0, po € R and m a probability measure over

P = {g :R?? - R measurable, g > 0, / g(z)dz = 1}
R2d

such that
Supp(7) C {g € P, lglo1,, < e "} (2.2)

and

Vs > 1, fés) = / g%%dn(g).
P

Remark 2.3. A bounded initial datum (i.e. satisfying (ii)) is quasi-independent in the
sense that it belongs to the convex hull of tensorized initial data (and for such initial data,
the particles are said independant).

PROOF. (i) = (i) is obvious since the associated BBGKY initial data sequence (Fy)n is
bounded.

(i4) = (iii). The existence of 7 is a consequence of the Hewitt-Savage theorem [B.6] together
with remark about densities of probability. The only thing that remains to check is
(2.2) : assume by contradiction that there exists o > 0 such that

m(Aa) = Kkq >0, where Ay ={g9€P, |g9lo1,5 =€ " +a}.

We then have by definition of «, for all s > 1 :

fés) — / g@sdﬂ'(g) > / g®sdﬂ'(g)
P Ag
hence
1Follo oo = 0P ) > i (1 + aet)*
which cannot hold for all s > 1 since 1+ ae”® > 1 and || Fpl|o,8y,u0 < ©-
(i1) = (). Let us first sketch the proof when © = dy, for a given fy : in this case, we

have to prove that the family (f&*)s>1 is admissible (eventually without the assumption of
continuity). Let us define for N > 1 :

fZ(V],VO)(ZN) = 2y 1z,epy [N (Zn) with Zy = /sz 12,enx f6 N (ZN)dZN
R
and its marginals :
Vi<s<N, [ (z,)= N (Zx)d d
<s< N, fyo(Zs) g (Zn)dzsyt ... dzy.
’ R2d(N—s) ’
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CHAPTER 2. FrROM NEWTON TO BOLTZMANN : LANFORD’S THEOREM

Then a direct calculation based on the bound
Vse{l,...,N}, 1<Zy'Zy_, < (1 - CelfolporaLi(ra))

shows that Fiyg := ( f](\f)o)lg s<n satisfies the conditions of definition for Fy := ( fg<> )s>1
(see propositon 6.1.2 in [4] for more details). The generalization of this statement to convex
combinations of tensor products follows the same ideas, as explained in proposition 6.1.4
of [] O
2.1.2 Statement of the convergence result

Before stating the main result of this chapter, we need to define a good notion of conver-
gence.

Definition 2.4 (Convergence). Given a sequence (hy)i1<s<n of functions hy, € L>(Ds, R)
and a sequence (h®)s>1 of functions h® € C°(Qs, R), we say that (hi;)1<s<n converges in
the sense of observables to (h®)s>1, denoted by

(PN )1<s<n — (h%)s>1

when for any fixed s, for any test function s € C’g(Rds, R), there holds

Is(hyy — b%)(Xs) == /Rds os(Va) (W = 1*)(Z5)dVs  — 0

locally uniformly in Q.

Theorem 2.5 (Lanford). Given By > 0 and po € R, there ezists a time T > 0 such that for
any admissible Boltzmann datum Fy € X g, ., associated to Fy o € X g, 40, the following
convergence in the sense of observables holds :

Fy — F

uniformly in [0,T], where Fy and F are the solutions to the BBGKY and Boltzmann
hierarchies.

Remark 2.6. In particular, if Fy = (f$°)s>1, then fj(\}) converges to the solution [ of the
Boltzmann equation (in the sense that the observable I1(t, Xs) converges locally uniformly
to the observable IV(t, Xy)).

Remark 2.7. If Fy = ( (?8)321 with fo Lipschitz, we will prove that the convergence holds
at a rate O(e®) for any o < (d—1)/(d+1).

2.2 Strategy of the convergence proof

For a given s > 1, let us recall the integrated form of the BBGKY hierarchy (/1.9
f](\}g)(tvzs) fNO / T, t_T ss+1f(s+1( )dT

In this formula, the only quantity we know everything about is the initial datum f](\?)o
(s+1) (

However, it is still possible to reuse this formula to get rid of f we will obtain a
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formula for f](\f) that depends on f (s+2) ) Since fj(\f )= 0for k> N , we can iterate this

procedure a finite number of time (this number going to +o0o with N) and we obtain :

S) t1 tp_1
(t,Zs) Z / / / T(t —11)Cs,s+1Ts11(t1 — t2)Coq1,542 -

Cs+k—1,s+kTs+k(tk)f]\ig dty...dty.

For a given test function ¢p4(V;), the quantity we are interested in is the observable

+oo t i1 te—1
Xs) = Z d‘/:@@s(‘/;) cee Ts(t - tl)cs,s+1T5+1(t1 - 752)Cs+1,s+2 ce
Pt 0 Jo 0

Cs+k71,s+kTs+k(tk)f](\i—gk) dty...dty

up to defining f J(\f+k) =0 for k > N — s. Similarly for the Boltzmann hierarchy :

+00 t1 te—1
I°(t, X,) /dVSgps / / / s(t—11)CY 118541ty )Cs+1 s+2 -

Cs—i—k—l,s—i—kss—l-k(tk)f(g Rt . dty
The strategy is to use the dominated convergence theorem to prove that :
00
kZ:O L (¢, X,) = Z 0, (t,X,)

the convergence being uniform in Xj.

In order to keep lighter notations let us define :

7743(15) = {Tk = (tl, ..,tk)/ t; > tit1 and ty = t, thy1 = 0}.

2.2.1 The easy part of the proof : domination

Thanks to the continuity estimate (1.13)), the domination part is the easiest one (see [9]).
let us define a finite arithmetic sequence :

Bo Bo . JBo
=7 <..<y= 7+]27k< < =Bo
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and note that the transport operator preserves the | - |. s 3 norm. One has :

s(t - tl) s,5+1 - f(8+k

€,5,7%0

Lt X < [sllimmas) / av, / AT~ 0Fo(7)
Tr (1)

< * H Ol (i Ry
= A\ V-

t — k—1
< ofxlx H Vot [TV 7+ VAG+ ) IFvole pono

T j=0 J=0
o1 s+k—1
< Vi (T vl
o, VE

< (Ct)" x ﬁHFN,OH&BOMO

k
k
and thanks to the Stirling’s formula : \\/fy < C*, so that I, 1 (t, X;) is (uniformly) smaller

than a geometric term. The domination is therefore proved for ¢ sufficiently small (we can
compute the bound explicitly).

2.2.2 Before the proof : technical reductions

To carry out the proof, it will be necessary to work with truncated observables. More
precisely, we will assume that two collisions are separated in time by at least 6 > 0, that
there is a finite number of collisions n > 1 and that the energy remains bounded by R > 0.
Of course, at the very end, n and R will go to +00 and ¢ will go to 0. This leads to the
following definitions :

E}g(t) = {Tk = (tl, ..,tk)/ ti - ti—i—l > 6 and to == t, tk‘—i—l = 0}

and the truncated observable I2°(t) = Yo IR 5( t) where :

Ij]’f(ta Xs) = /Sos(vs) /7’ ) Ts(t - tl)cs,erlTerl (tl - t2)cs+1,s+2 cee
k,6

k
CSJrkfl,erkTerk(tk)lEo(Zs+k)§R2f](\f:(g_ JdTyadv,

The error term between I,(t) and I ’5(75) can be controlled by :
Proposition 2.8. Given s € N*, t € [0,7], 3C,C" > 0,

n
R,6 —C'BoR? 5
1:(0) = 3 LE Ol ey < € (2 e R g T) el o Rty | ol oo
k=0
PROOF (SKETCH). The error 27" comes from the estimate (1.17), as well as the error
e~C'PoR? Moreover, it can be proved that the complement of Tr,5(t) in Ti(t) is of measure

< Cék (Zk 11), If t < T, summing for k from 0 to n leads to the error n?5/T. O

Of course, we can similarly define a truncated Boltzmann observable Ig’,f  with the
same estimate for the error.
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2.2.3 The notion of pseudo-trajectory

This paragraph presents the main idea of the proof, namely the notion of pseudo-trajectory.
We are going to see that each term If,f(t) and Ig’]f“ “ has a nice geometric interpretation
which will allow us to couple the two hierarchies (see [4] section 7.4 and [2] section 5.1).

Splitting the cross-section into its positive and negative parts, we can write the collision

operator (1.10)) as :
S S S
— i — +77/ _7i
Cs,s+1 = ch,erl - ch,s+1 - ch,erl'
i=1 i=1 i=1

For J := (j1,...,jx) € {—, +}F and M := (mq,..,my) with m; € {1,...,s +i — 1}, let us
write :

k
I (x) =Y (H]) 70t J, M) (X))

JM \i=1

where we define the elementary truncated observable :

IRt 0, M)(X,) = / A / )Ts(t—tl)ngTfTS“(tl —B)CETR,
Tr,s(t

j k
Cm o Tosk(te) ez, <refNg dTkdVe  (2.3)

with a similar formula for the Boltzmann hierarchy :

1ot J, M) (X,) = / 0s(V) /T “ Su(t — t1)Coll T Sap1 (ty — t2)Co3 T2, .
k,0

1,1 s+k
CoT Stk () gz, <refo ATV, (2.4)

In this last expression, the characteristics associated with the operators Ty (t;—1 — ;) and
Ss+i(ti—1 —t;) are followed backward in time and the collision operators C; ;41 and Cgi 41 are
seen as source terms in which ”additional particules” are adjoined to the system. This leads
to the definition of the two following flows (respectively called the Boltzmann and BBGKY
pseudo-trajectories) : given an initial configuration Zs, a k-tuple of collision times T}, a
k-tuple of signs J, a k-tuple of indexes M and a k-tuple of deflection angles and velocities

(Vsgir vsri) € 8471 x Bl‘é, ie{l,..., k}}, we can inductively define two flows :

o fori € {1,...,k}, Z2, ;(r) will denote the position of the Boltzmann free-flow at time
tir1 < T < t;, initiated from Z; and constructed by adjunction at each time t; of a
particle (Vsyi, vsti) to the particle m; (the position of the additional particle at time ¢;
is precisely @z, (t;) since the particles are points).

S
tir1 < T < t;, initiated from Z4 and constructed by adjunction at each time t; of a particle

(Vs+i, Vs+i) to the particle m; (the additional particle is added, according to vey;, at a
distance € of x,, (t;) since the particles are modeled by hard-spheres).

o fori e {1,...,k}, Z;,;(7) will denote the position of the s + i-particles free-flow at time
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FIGURE 2.1: A collision tree. Each branching point represents the adjunction of a particle.
The indexes of the particles is indicated between brackets. Here, we start at time ¢ with one
particle. At time t1, m1 = 1 ; at time ¢9, mo = 2 and at time t3, m3z = 1. When a particle
is added in a post-collisional way at time ¢;, the velocities at time ¢;" are the velocities after
scattering n (here, it happens at time ¢; only).

We will call recollision a collision that occurs between two times ;11 and t; (note
that there is no recollision in a Boltzmann pseudo-trajectory). The fundamental idea of
Lanford is that if the particles are added in such a way that there is no recollision, then
the Boltzmann and BBGKY pseudo-trajectories will remain close and the convergence of
the observables can easily be proved since we are able to write them as integral over the
pseudo-trajectories. When a recollision occurs, the situation is illustrated below :
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Here th‘p Boltzmann and BBGKY ﬂ()'u;.s’ coincide for particle 1

RECOL

LANFORD’S THEOREM

LISION

BBGKY flow

t t

=

FIGURE 2.2: At time ¢, particle 2 is added next to particle 1 (in a pre-collisional way). At

time t1, particle 3 is added next to particle 2

(in a post-collisional way). Due to a recollision

at time to < 7 < t1, the Boltzmann and BBGKY pseudo-trajectories of particle 1 are no

longer close to each other.

2.2.4 Outline of the proof

Prop. 23]
l

Is(t)(Xs) = le,k(t)(Xs) R
k=0

ROXs) = Y LX) =~
k=0

S (x)

k

ZIORé

k

Section 2.4]

l

~
~

DI T M) (X)

k
lSection

DI, g M)(X,)

In section we will slightly modify the truncated elementary observables in order to
avoid recollisions. To do so, we will have to remove smalll] bad sets of deflection angles
and velocities in the domain of integration of the collisions operators so that the
adjunction of a particle never leads to a recollision. The exact control of the size of these
small bad sets is based on some elementary geometrical considerations presented in section
2.3] It is one of the main contributions of [4] and will be reused in [2] (see chapter [3)
to retrieve the macroscopic behaviour of a deterministic system of hard-spheres. Finally,

'The Boltzmann-Grad limit being a low density limit, it is heuristically reasonable to think that two
particles which already met won’t never interact again. This tends to explain why recollisions are rare

events.
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the term-by-term convergence can easily be proved (see section [2.5)) once the bad sets are
removed.

2.3 Good configurations

From now, let us consider three new small parameters a, £y (they have the scaling of a
position) and 7 (it has the scaling of a velocity) such that :

e<a< ey <Lnd. (2.5)
We define the sets :
Ag(g0) :={Zs € R x B3/ Vi, 4, |x1 — x| > e0}

and
AX(g0) == {Xs € R/ VI, j, |v; — xj| > €0}

A good configuration is a subset of Ag(egp) stable by the free-transport :

Gs(eo) :={Zs € R% x B/ VT >0, Vi,j, |x;—xj — (v, —vj)| > e}

2.3.1 Two fundamental propositions

Proposition 2.9 (How to add a new particle). Given Z) € Gi(go), there exists Bp(Zy) C
S?=1 x Bp such that :

o Bi.(Zy) is small :

d—1
7\ < d—1 df @ €o
By(Z1)| < Ck (Rn +R <so>+R<6)

o A good configuration close to Zy, is stable by adjunction of a particle not belonging to
Br(Zy) : for all Zy, € R x B3, such that Vi, = Vi, and | X, — Xi| < a and for all
(I/,U) S CBk(Zk),

-ifv-(v—uvg) <0 then

vrzo0, { V7T €Lk i - = (o = )] 2 €
VJE{l,...,k}, |:Ek+5V—TU—(CCj—T’Uj)|25

Moreover, after time d, the k 4+ 1 particles are in a good configuration :
(Xk — 6Vk,7k,a:k +ev — 51),'0) S gk+1(€0/2).
-ifv- (v —uvg) >0 then

ViZje{l,....,k}, |zi—70; —(2; — 7)) > ¢

>
VT_Oa{VJG{l,,kT}, |J}k—{—€]j—7-v_(xj_7-5;‘f)’2€

Moreover, after time 0, the k + 1 particles are in a good configuration :

(Xk - 5V:,V:,$k +en— 61}7@) € gk+1(50/2)'
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Remark 2.10. In the statement, we have assumed that the additional particle collides with
the particle numbered k. Of course, an analogous statement holds if the particle is added
close to any other particle my in Zy. In this case, BZL’“ (Zk) will denote the bad set of
deflection angles and velocities defined in the statement of the proposition.

Proposition 2.11 (How to prepare the initial configuration). Given X; € AX (o), there
exists a subset of velocities M(Xs) C R such that :

o M (Xs) is small :

IM(X,)| < CRs? (<R;>d_1 n (550>d1>

e Defining Ps :={Zs € As(e0)/ Vs & Ms(Xs)}, one has :
V7 >0, 1p, o Ts(7) = 1p, 0 S4(7)

and
VT Z 57 17)3 o SS(T) = 17)3 o SS(T) 0 1g5(50)'

The proof of these two propositions is based on a simple geometrical lemma presented
in the next paragraph.

2.3.2 Geometrical considerations

In the following, K (w,y,p) will denote a cylinder of origin w € RY, of axis y € R? and
with radius p > 0.

Lemma 2.12 (Bad trajectories by free transport). Consider Ty and Ta two positions such
that |T1 — Ta| > eo and two velocities v and ve in Br. Then for all x1 € By(T1) and
To € BQ(EQ),

o Ife ¢ K <v1,a:1 — T, 6€Ra> then : Y7 >0, [(x1 —v17T) — (x2 — v2T)| > €.
0
_ _ ©6eg

o Ifug ¢ K |v1,T1 — To, 5 then : Y7 >0, |(x1 —v1T) — (w2 — va7)| > £0.

ProoOF. We want to avoid the velocities such that there exists 7 > 0 satisfying :
|(z1 —22) — T(v1 —v2)| <e. (2.6)

Provided that € is small enough, the ball centered at x1 — x2 and of radius € is embedded
in the ball centered at T; — To and of radius 3a. therefore implies that v; — v9 belongs
to the cone of center O based on the ball Bs,(Z1 — T2). Recalling that the velocities are
bounded by R, the intersection of this cone with the ball of radius 2R is embedded in a
cylinder of radius smaller than 6Ra/eg. The first part of the lemma is proved.

24



CHAPTER 2. FrROM NEWTON TO BOLTZMANN : LANFORD’S THEOREM

FI1GURE 2.3: The proof.

To prove the second part of the lemma, let us introduce n the unit vector such that
n - (T1 —T2) = 0. The conclusion follows by writing that

T’n‘ (U1 —U2)| = |n . ((51 —52) —T(Ul —1)2))‘ < 3¢e9

when 7 > § satisfies |(x1 —v17) — (22 — v27)| < ¢ and provided that a is small enough so
that
|(fl — 1117') — (52 — UQT)| < 3¢p.

O]

When a particle is added in a post-collisional way, the velocities that will eventually
lead to a recollision are the velocities after scattering [I.3] The size of the subset of deflec-
tion angles and velocities that lead to a recollision after a ”post-collisional adjunction” is
controlled by the following lemma (which is based on lemma .

Lemma 2.13 (Bad trajectories by hard-spheres reflection). Consider p < R and (y,w) €
R? x Bg. For any v1 € Bg, define

N*(w,y,p)(v1) := {(v,v2) € ST % Br/ (va—v1)v >0, vj € K(w,y,p) or vj € K(w,y,p)}.

Then
IN*(w,y, p)(v1)| < CRp*™.

PROOF (SKETCH). Noticing that r = |v; —va| = |v] —v3], the conclusion follows by control-
ling the measure of the intersection of a sphere of radius r with the cylinder K(w,y,p). O
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2.3.3 Proof of propositions 2.9/ and [2.11|

PROOF OF PROPOSITION [2.9] Let us first notice that

€0

i — @y = 70 = Ty)| 2 |7 — T = 7(0i ~ V)| — 20 2 5

so that Zy, € Gi(c0/2). In the pre-collisional case, it is clear that for all 7 > 0,
|(xp +ev — vg17) — (T —xT)| > €
and if 7 > 4, provided that 7 is chosen according to [2.5] one has

&
[vk1 — Tk >0 = (2% + eV — vpa7) — (T — TRT) 27—|Uk+1—5k‘—52775_5>50’

Moreover, for any j € {1,...,k — 1}, lemma indicates that we have to remove the set

6R 6
BRfWKf<QﬁJU<—1%,a‘+EO>
€0 )

which is of measure smaller than

o(m(2)m()").

Finally, in the pre-collisional case, a bad set we should remove is :

— 6Ra 6e
-  @d—1 _ = om. 0
B, (Z)) =87 x Bn(vk)UKLle <BRﬁK<vj,x] Thy o + )>

which is of small measure given in the statement of the proposition. In the post-collisional
case, the proof is almost identical but we use lemma to see that we have to remove the
set

- _ _ «(_ _ _ 6Ra 6¢ _
B (Z0) =5 x Bym) U U A (-3 0 4 50) )
J<k—1

O]

PROOF OF PROPOSITION [2.11] (SKETCH). The existence of the subset M(X,) follows by
the same arguments as before. Outside this set, the backward nonlinear flow is actually the
free-flow and the particles remain at a distance larger than ¢ for all time and larger than
go after a time §. The result then follows by definition of Ps. O

2.3.4 A third fundamental proposition

Proposition 2.14 (The pseudo-trajectories remain close). Assume that the initial config-
uration Zs is in Ps(co) and that for alli € {1,..,k}, (Vsi, Vsri) € “Bowi( Z2,;(t:)), then for
e sufficiently small, for all 1 € {1,...,k} and for allm < s+ 1,

|25, (ti1) — @0, (tis1)| < i and v (tig1) = v, (i)
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PROOF (SKETCH). Gathering the results of the previous section, the result is almost ob-
vious : the particles are initially in a good configuration and the successive additional
particles don’t perturb this state (except during a small interval of time [t; — ¢, ¢;] following
a collision). As a consequence, the only error between the two pseudo-trajectories appears
when a particle is added since, in the case of hard-spheres, the center of the additional
particle is at a distance e of the center of the particle next to which it is added. Finally,
each time a particle is added, the error grows of at most ¢ and the conclusion follows. A
more explicit proof can easily be carried out by induction since initially Z¢(t) = Z%(¢). O

We are now reaching the heart of proof, that is to say the definition of the Boltzmann
and BBGKY approximated functionals (section and the term-by-term convergence

(section [2.5).

2.4 A matter of good approximations

2.4.1 The Boltzmann system

In the Boltzmann case, the elementary truncated observable can be approximated by :

JOFA (8, M) (X,) = / Vips(V2) / dT,
Br\M;(Xs) Th,s5(t)

/Bml(ZO(t ) dvsy1dvgy1((vse1 — ’U (tl)) : Vs+1)j1
¢ 1

/ - AV 1 Qs 1o (Vs — VO, (E1)) * Vi)
CBs+kk_1(Zg+k_1(tk))

x 1y 20, on<refy T (Z84(0)) (27)

as shown in the following proposition, which proof is a direct consequence of propositions

2.9 and 111 :

Proposition 2.15. Given a,e,n,d satisfying (2.5), the following estimates holds :

| Z 3 (H ;Z) Las(e) (947 = T580) (1, 0, M)

k=0 J,M

d—1
- a cay d—1
< Cn2(s + n) <Rnd L4 Rd () +R<—D> ) 1Fol0,60,120
€0 0
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2.4.2 The BBGKY system
In the BBGKY case, the elementary truncated observable can be approximated by :

N —s)!
mg’c(dﬂ / dVyps(V7) / I}
n—s—k)! Br\M,(Xs) Ti,s(t)

/ Avsy1dvs i1 ((vsp1 — v, (t1)) - vsr1) i
By (Z9(t1))

T (4,0, M)(X,) =

~~j[BMk Ay 1 QUg s (Vsk = Oy (8)) - Vst

s+k—1(Zg+k—1(tk))
X Lz, op<refNo " (ZE4(0))  (28)

as shown in the following proposition, which proof is a direct consequence of propositions

2.9 and R.111:
Proposition 2.16. Given a,e,n,d satisfying (2.5), the following estimates holds :

122 (H J) 1A (e0) (If;;‘; - Jf;f) (t, 1, M)]

k=0 J,M \ i
a d—1 £0 d—1
<Cn?*(s+n) | Rp®™ '+ R? (50> +R<?> 1 EN,0ll<, 80,10

Note that in the definition of Jf,’f, we integrate over CBZ&(ZS 1:(t;)) and not over

°Byi(Z5,,(t;)) as we could expect. Of course, it will be really useful to prove the con-

vergence JSR,;S — Jg’,f 9 Tt is made possible by proposition which allows us to work with
a system close to a good configuration : it is the case thanks to proposition !

2.5 Term by term convergence

The term-by-term convergence is now easy to carry out. There are three sources of error
which lead to the three steps of the proof. We are going to prove that :

R,6 R§ 0,R,6
Jop & J ~ Jsk = Jk

these quantities being defined in the followmg paragraphs.

2.5.1 Error coming from the initial data

Let us define :

~ —3)!
T g M) = Ay WipuVe) [ amy
(n—s—F)! BR\M(X,) T ()

/ Avs11dvs1 ((Vsp1 — Vo, (B1)) * V1))
By (Z9(t1))

. / n sy 1 B0s 1 (Vs — Vo, (ER)) * Vo) jy
B

k
s+k71(Zg+k71(tk))

s+k)
X 1Ey(zz,,.(0) R2fo N s+£(0))

where fn o has been changed into fp compared to (2.8)).
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Proposition 2.17. The following estimate of the error holds :

s+k) s+k)
‘1A§(80) (Jfké—Jff) (t, , MY(X3)| < crnllla, o (P = I8 oo (rates

where Z Z(Hji)ck,LM < 4o00.
k |JM

The proof of this result follows from the same calculations as in section[2.2.1] Besides, for
tensorized initial data, the explicit estimate that could be found in the proof of proposition
2.2 leads to :

s+k s+k
1120 em00ds ™ = 135 Nz < Cels + R Follo,go o
2.5.2 Error coming from the prefactor
Define Jh (£, J, M)(X,) by
= —R,§
T (40 M)(Xs) = aed o (t, J, M)(X,)

where

In the Boltzmann-Grad limit,

N-—s—k+1 ’“<a _(N-s k
N =Tke=\"N

s+k—1 (s +mn)?
-1 <Ck < .
|l e | <C N <C N

Proposition 2.18. The following estimate of the error holds :

so that :

2
Lo 30 ST (75 - 750) (1 200)x0)| < B Ry

k=0 J .M

2.5.3 Error coming from the divergence of trajectories

Here is the conclusion of the proof :

(IO~ TR @, 0, M)(X,) < / AVipu(V2) / aT}
BR\M.(X) Tos ()

/ dvsi1dvgsy1((vse1 — Ugml (t1)) - Vst+1)j,
B (Z29(t1))

. / st+kdUs+k((Us+k - U (tk)) : Vs-i—k)jk
CBs+k 1(Z9+k 1(tk))

x 1y z0,, op<re(fs 0 (2200(0) = £5°0(Z2,4(0)))
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and since féerk) is continuous, we conclude thanks to proposition m :

RS FR6
(Jf,k — Js )t J, M)(Xs) 50
Ned—1l=1

uniformly in X and ¢ < T'. Besides, for tensorized Lipschitz initial data, we know that

stk s+k (3
15 Z200) = 175k ()] < Crell follnap.

This concludes the proof of theorem since the error coming from all the previous ap-

proximations can be made as small as we want provided that a good choice of parameters
(2.5)) is made.

2.5.4 Rate of convergence for tensorized Lipschitz initial data

When the initial data is tensorized and Lipschitz, we can explicitly estimate the rate of
convergence. Gathering everything we find :

_ '8 R2 1)
L0 =201 < € (27O 12D ) oo ol

d—1
- a 0\ 41
+ Cn2(s 4+ n) (Rnd e (2) (%) ) lollze I Excollesose

(s —|—n)2
+ CT‘|@S|’LW“F0|’0,ﬁO,M0

+ Cnel| foll Lipll@s | e | Fol

0,80,u0 "

Choosing n ~ Ci|loge|, R? ~ Cy|loge|, § ~ e@=D/@+1) and g5 ~ %@+ we find
that the error is smaller than Ce® for all o < (d — 1)/(d + 1) (choose a ~ (¢+@)/(d+1) and
n ~ /(@) with the appropriate a,7 < 1).
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Chapter 3

FROM HARD-SPHERES TO BROWNIAN MOTION

In [2], T. Bodineau, I. Gallagher and L. Saint-Raymond proved that, following the same
pruning procedure presented in [4] (see chapter [2)), the Brownian motion can be obtained
as the limit of a deterministic system of hard-spheres. The fundamental idea is that if the
system is initially around an equilibrium then it is possible to iterate the proof of Lanford’s
theorem to retrieve the linear Boltzmann equation on a time interval diverging with the
number of particles. An explicit estimate of the rate of convergence is obtained (theorem
and with an appropriate macroscopic scaling, it will be the key to prove the diffusion
limit (section and the convergence of the stochastic process associated to a tagged
particle to the Brownian motion (section [3.5).

3.1 The linear Boltzmann equation and the main theorem

Let us define the Maxwellian distribution by
d/2 s
Mpg(v) == L] / exp —é\v|2 and M$*(Vy) := HMg(U,-).
2m 2 A 41

We note that Mg is a stationary solution to the Boltzmann equationEI with « collisions per
unit of time :

hf +v-Vof =aQ(f, f)

and that any function of the energy fy = F(Ey(Zy)) is a stationary solution of the Liouville
equation. In particular, an invariant measure for the gas dynamics is given by the Gibbs
measure with distribution in T x R :

1

RN
S MY () 3)

dAN/2
Mypg(ZN) = ZlN (fﬂ) exp (BEo(Zn))1py(ZN) =

2y / Loy (Zn)MEN (Vi) dZy = / I tposedXn.
TdN wRaN TN 1§’L§£jSN

In the following, we consider one tagged particle labeled by 1 with position and velocity
z1 = (z1,v1). Initially the system is a perturbation of the density (3.1)) with respect to the
position z1 of the tagged particle :

fno(Zn) = p"(21) My g(ZN) (3.2)

'In fact, it is possible to show that the equation Q(f, f) = 0 is only satisfied by the so-called Maxwellian
distributions.
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where p¥ is a continuous density of probability on T¢. The goal of the next sections is to
prove that the distribution f](\,l) (t,x,v) of the tagged particle remains close to Mg(v)pa(t, x, v)
where ¢, is the solution of the linear Boltzmann equation with hard-spheres cross-section :

Orpa + v+ Vapa = —aLlpg

3.3
Coal@ = [ Il a0 (0 ) V) e

and with initial data p". Compared to (1.7)), the distribution of the particle with velocity
vy with which the particle with velocity v collides is given by the Maxwellian Mg. The goal
of the next sections is to prove the main theorem of this chapter :

Theorem 3.1. For allt > 0 and all o > 1, in the Boltzmann-Grad limit N — +oo, € — 0,
Ne@=la=t =1, one has :

2

Hfr(Ll)(taxvv) - Mﬁ(v)gpa(tﬂx?”)”L‘X’(TdXRd) <C

A-1
at
(log log N)‘”‘Al]
where A > 2 can be taken arbitrarily large and C depends on A, 3, d and ||p°| p.

In particular, it is possible to keep a small error even for large concentrations « and
large time ¢, provided that

A—1
A

at < (loglog N)

3.2 Setting and a priori estimates

3.2.1 A priori estimates

Let us define the operator :

t t1 tn—1
QS’S+n(t) = / / e / Ts(t - tl)csys+1Ts+1(t1 - tQ) NN T3+n(tn)dtn e dtl.
0 JO 0

With this notation, the iterated Duhamel formula for the BBGKY hierarchy can be rephrased
as :

N—s
V(0 =D a" Qe T(0).
n=0
Similarly, the iterated Duhamel formula for the Boltzmann hierarchy takes the form :

g (t) =Y a"Qesn(t)gsT™(0)

n>0

where
t t1 tn—1
O en(t) = / / . / Ss(t —11)CY 41 1Ss41(t1 — t2) ... Seun(ty)dty . .. dty.
0o Jo 0

Note that the family (g8)s>1 defined by

9Dt Zs) = palt, 21) ME*(V5)
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is a solution to the Boltzmann hierarchy with initial data
05" (Zs) i= p"(21) M (V). (3.4)
The following proposition is a consequence of the calculations performed in section [2.2.1

Proposition 3.2 (Continuity estimates for the operators Qs s and QY . ,,,). There exists a
constant C' depending only on d such that for allt > 0 and s,n € N*, given fo1, € X s1n
and Gs+n € XO,S—H’L,)\

. ct \"
1Qlestn @ Fetnlle < (St ) Ifoinlieins

_ ct \"
H’Q0‘373+n(t)gs+nH0787)\/2 <e’ ! <)\(d+1)/2> Hgs+n‘|0,s+n,)\

where |Q|s.s+n and |Q°|s sin are the operators obtained by summing the absolute values of
all elementary contributions.

The maximum principle for the Liouville equation leads to the following proposition :

Proposition 3.3 (Maximum principle). For any fized N, the marginal f](\f) of order s of
the solution fn to the Liouville equation (1.4) with initial data (3.2)) satisfies the following
bounds :

sup fi7(1, 23) < Mp(Z)|° [ < O MG (V)|

for some C > 0, provided that ae < 1.

Remark 3.4. Thanks to proposition we have for allt € R :

£ (1)

(BN
s 2 C () 1l (35)

Similarly, the mazimum principle for the linear Boltzmann equation leads to :

95 ()

3\ /2 .
o,k,ﬁg<2ﬂ> 101l (3.6)

These uniform bounds are directly related to the existence of a stationary measure and they
will be the key argument to obtain a lifespan diverging with the number of particles.

3.2.2 Collision trees of controlled size

Fixing a small parameter h > 0, we will study the dynamics up to time ¢ := Kh for some
large integer K by splitting the interval [0, ¢] into K intervals. Choosing h sufficiently small
will allow us to iterate Lanford’s argument. We define a tree of controlled size by the con-
dition that it has strictly less than ny branch points on a time interval [t — kh,t — (k — 1)h],
where (ng)r>1 is a sequence of integers to be tuned later. The following paragraph shows
that we can neglect trees with to many branch points : since we expect the particles to
undergo on average « collisions per unit of time, the growth of such pathological trees is
typically exponential.
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The iterated Duhamel’s formula between ¢ and t — h gives for the first marginal :

ni—1 )
V0 =" 07 Quawy (WFP(t — h) + Ry, (t— hot)
J1=0

where
N—k

k
Rin(t'1) = 3 aPQuuip(t — )5 (1),
p=n
Iterating this argument K times leads to the following decomposition :

P = 15w + RE®@)

where
ni—1 ng—1
VOO0 =33 @ U Qs (h) - Quie e () FVE
J1=0 Jrk=0
and

K ni—1 nE—1

RN =Y "> ... ol Qun(h) . Quy g Ry (E = kRt — (k= 1)k)

k=0 j1=0 Jk=0
with
Jo:=1and Jp:=14+7j1+jJo+ ...+ ji-

From now, we define n; = A* for some A > 2 and we let h — 0.

Proposition 3.5 (Estimate of the remainders). There exist ¢,C,~vy > 0 depending on d,
A and B such that for any t > 1 and any v < 7, choosing

ey
h < QA/(A—1)1/(A-1)

and K =t/h integer

we get
IRR (6| oo (raxcray + 1RE™ ()] oo (axcray < CY10°|oe-
PROOF. let us estimate

H’th]kfl((k - 1)h’)RJIc—1:nk- (t —kh,t — (k- 1)h)”L°°(Rd><Rd)'

Thanks to the continuity estimate given in proposition we know that this quantity is
smaller than

C(k —1)h\ =171
<5(d+1)/2> | Ry (t = kht — (k= 1)R)|e 1, 8/2-
And thanks to proposition and uniform bound (3.5)) :
N—Jp—1
Cah \P T
IRyt = kbt = (k= Dh)legy o2 < Y (W) sup LA ) e s
p=ny =
N=Ji1 Jk—1+p)d/2
Cah \? Dt B (Je—1tp 0
< 2 (W) c p(% 17 o
p=ng
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CHAPTER 3. FROM HARD-SPHERES TO BROWNIAN MOTION

Finally,

O‘Jk_l_1|||Q’1,Jk71((k; - 1)h)RJk71,nk (t —kh,t — (k- 1)h)HLOO(RdXRd)

Y N_zjf_l O\ Je-1tp—1
< 1=t S0 ()T any
— \VB
Assuming from now that
Cah 1
- < —
VB 2

we find

O‘Jk_l_1|||Q’1,Jk71((k - 1)h)RJk71,7Lk (t —kh,t — (k- 1)h)HLOO(RdXRd)
C

Jp_1+ni—1
< (167 BY2 () i1 (ﬂ) (ah)™

Note that ]\/J =14+n+...+nj= Ai:_ll_l < ﬁnﬂl. Then, since J,_1 < Np_1, we get

O‘Jk_l_1|||Q’1,Jk71((k - 1)h)RJk71,nk (t —kh,t — (k- 1)h)HLOO(RdXRd)

< 0% oo %2 exp(AF (log C +

i 1_ . log(at) + log(ah)))

Therefore, choosing

Cy
h < QA/(A—1)41/(A-1)

for v small enough so that the previous bound holds, we find

ol QI g (k= DR)Ry, o (t = kbt = (k= D) L (maxcra)
< |p° | o= 8 exp(A* log )

Summing all these contributions leads to the following bound :

K k
”R%HLOO(deRd) < 5d/22 <an> eXP(Ak 10%7)||P0||L°°
k=1 \i=1

K
B2 0% oo " exp(k(k + 1) log A+ A log )

<
k=1
K
< B2 Y exp(Aklogn) < CB 0 1o
k=1
The argument is identical in the Boltzmann case. O

3.3 Proof of the convergence

The proof of theorem is based on the same arguments presented in the last chapter.
Some adaptations of the geometrical considerations are needed since we are working on the
torus T and not in the whole space R%.
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3.3.1 Reformulation in terms of pseudo-trajectories

ni1—1 ng—1

R0 =Y Y IO ), T = G )

Jj1=0 Jjx=0

where
LK J
F](V )(J) = Qi (h)QJ1,J2(h) . "QJKflaJK(h‘) ](V,g)
= / dTJTl(t—h)CLQTQ(tQ—tl)...TJK(tJK_l) ](\;{6()
Ti(h)
with
T](h) = {TJ = (tl, L. ,tJK_l)/ t; < t;—1 and tyeso sty 41 € [t — kh,t — (k‘ — l)h]}

In terms of pseudo-trajectories and with slightly more compact notations than in the
previous chapter :

d—1\ Jx—1
(1,K) € (N =D 1,k
T S R T
meM,y « (N — JK)
where
My={m=(mi,....mse-1), 1 <m; <i}
and
K Tt J
L o
B m) = [y [ avdV T [wisr = ome(8)) - via) 5 (Ze (0))
T (h) (8§ 'xRd) /K1 i=1 7
with B
v=(v,...,v5) and V = (va,...,0),).

Here Zi(7) denotes the pseudo-trajectory associated to the BBGKY hierarchy.

3.3.2 Geometrical considerations : summary and adaptation

As in the previous chapter, the heart of the proof consists in neglecting pathological trajec-
tories that lead to recollisions and prevent the two flows to remain close. The same pruning
procedure performed in section will be used to remove small bad sets of deflection an-
gles and velocities that lead to recollisions. In this paragraph we simply sum up the key
arguments developed and proved in the previous chapter. We will need a simple adaptation
of lemma in the case of the torus (that is the main difference between the two proofs).

Recall that when g9 > ¢, a good configuration with k particles for a time ¢ is the set :
Gr(eo) := {Zx € T x R¥*/ V7 € [0,1], Vi # j, d(x; — Tvi, 25 — Tvj) > €0}

where d denotes the distance on the torus T?. From now, let us assume that all velocities
take value in the ball By := {v € R?, |v| < E} and let us fix three parameters a, €9 and §
such that

AfTle w4 < g9 < min(SE, 1).

The next proposition is identical to proposition
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Proposition 3.6. Given Z, € Gi(co), there exists By(Z)) C ST x By such that :
o Bi.(Zy) is small :

wen s (o (2) 0 3))

o A good configuration close to Zy, is stable by adjunction of a particle not belonging to
Bi(Zy) : for all Zy € T x B3, such that Vi, = Vi and | X — Xi| < a and for all
(v,v) € °Bi(Zk),

-ifv-(v—ug) <0 then

VT >0, W,7éj€{1v"-vk}a d(w; — TU;, x5 — TU) 275
V]G{l,,k}, d($k+6y_707xj_71)j)|28

Moreover, after time d, the k + 1 particles are in a good configuration :
(Xk — 6Vk,7k,mk +ev — (S’U,U) S Qk+1(50/2).
-ifv-(v—uvg) >0 then

Vi#je{l,....k}, d(zi— 0], 2 —TV;) > ¢

>
VT_O’{VjG{l,...,k’}, d(mk+sz/—7'v,xj—7-ﬁ;)25

Moreover, after time 0, the k + 1 particles are in a good configuration :
(X — 6V 3, Vi, xp + en — 0v,0) € Gry1(e0/2).

The proof of this proposition relies on the following lemma which is an adaption of

lemma 2.12 :

Lemma 3.7. Consider T1 and Ty two positions such that |T1 — Ta| > €¢ and two velocities
vy and vy in Bg. Then there exists a subset K (T — Ta,0,a) of RY with measure bounded

by
a d—1
|K(fl — T2, €0, CL)| < CE? <<> + (Et)dad1>

€0

and a subset K5(T1 — Ta,£0,a) of R with measure bounded by
. d [ (g0\4 ! d prd—1 _d—1
|K5(T1 — T2,€0,a)] < CE 5 + (Et)"E " €j

such that for all x1 € Bo(T1) and xo € B, (T2),
o Ifvy —ve ¢ K (T1 —Ta,e0,a) then : Y7 >0, d(x) —v1T, 23 — v2T) > €.
° If’l}l — V9 §é K (Tl —fg,é‘o,a) then : N1 > 6, d(xl — V1T, T2 — 1)27') > £0.

Since we no longer work with observables, we can skip proposition and adapt
directly proposition

Proposition 3.8. Fiz J = (ji,...,jk), m = (my,...,mj.—1) € My and T € Tj5(h).
Assume that for alli € {1,..,k}, (Vsqi, Vori) € “Bsti(Z2,,(t:)), then for e sufficiently small,
forallt < Jg —1 and for all ¢ <i+1

|25 (tir1) — 2 (tiv1)| < i and vy(tigr) = vf (tir1)-
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3.3.3 Technical truncations

From now, ) ; will stand for 2?11:_01 e Zj}fz_ol

Energy truncation. Given E > 0, define :

d—1\ Jx—1

(LK) _ Jr—1 £ (N =-1!

w2 2 ( a ) (N =T e )
m J

where

FYR(Tm)(t,21) =
Jr—1

TPAY, o Y. (Jri)
[If](h) dTy /(S‘lilde)JK—l dvdV g [('UH»I Umi(tz)) yl+1]1{Eo(ZJK(O))§E72}fN70 (ZJK(O))
Similarly :
g =3l N G (gm)
J meMy
where

9 (1 m)(t, 1) =
T (JK)
vdV =Y (), JK 0
/TJ " dT; /(SiHXRd)JKldudv ];[1 [(Vig1 =, (t:)) ”1+1]1{E0(ZJK (o))< 2290 (23,.(0)).

Proposition 3.9. There is a constant C depending only on 8 and d such that, as N goes
to infinity in the scaling Ne®ta~! = 1, the following bounds hold :

1,K 1,K 1,K
IFS) = £ N poe qopemascreay + 1985 — 082 oo (0w ma)

< AR a0 .

PROOF. We need to estimate the contribution of pseudo-trajectories such that {Eg(Z, ) >
E?/2}. Since

B8Fo(Zs) _

= Lmazazmm i e 3 Zo)

Uz, 2822 NG €

IA

J _BE2
1{E0(ZJK)2E2/2}f](ng)eﬁE0(ZJK)e )

we get thanks to (3.5

_ B2 _Bp2
e pe T < CTem |00 e

J J
| 1{EO(ZJK)2E2/2}fJ(V,6() le,aic,8/2 < Hfz(v,g)

Now in the limit Ne?~! = a we have thanks to proposition

d—1\ Jx—1 _
S () o

(6%
meMy L=([0,]x Tdx R4)
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IN

J
1@ ke D1 gy(z,, )2 272 F 5K = (0,05 TR

Ct Jr—1 .
< (Gmar)  Nwezen i o,

K+1 _ B2
AR+ B

< (C1) 1”1l 2=

recalling that Jx < Nxg < AX*1 In conclusion

1L,K LK AK+1 _ T—1
150 = 10 e ogxrixrey < (CF) )10 Za K-
< (O e i uLmaAK“AMM
A similar estimates holds for the Boltzmann hierarchy so the proposition is proved. ]

Time separation. Given a small parameter 6 > 0 such that AX§ < h, we define :

d—1\ Jx—1
K _ € (N —1)! LK
; :;aJK Y < - > 7(N_JK)!F](V7E7§(J,m)

mEM‘]
where
Fyn)(Jm)(t,z1) =
Jr—1 i)
= Y/ . _ . 1/ JK
/7"]75(h) dTy /(S‘li_lde)JKl dvdV Zl_[l [(Ul-i-l vm2<tl)) VZ-‘rl]]-{EO(ZJK(O))SETQ}fN,O (ZJK (0))
and
7}5 = {TJ = tl,...,tJK_l)/ t; <ti_1— 90 and ty,---sty,_,+1 € [t—k‘h,t— (k’— l)h]}
Similarly :
aE6 _ZaJK 1 Z G(lK)
meMy
where
Gg”?)(l], m)(t,z) :=
kg (Vi)
AV a0 VY, JK 0
/mw) dTJ Asilde)JKldde [[ a—om @) vl i, oty (2500

Proposition 3.10. There is a constant C depending only on B and d such that, as N goes
to infinity in the scaling Ne®ta~! = 1, the following bounds hold :

(1,K)

lK 1,K
1FSR) — £ A oo o emaxcray + gt

N,E.6

- ga E5||L<>°( [0,t] x TdxR4)

< A(K+1)(K+2)(C t)AKH‘S

1”2 -
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PROOF. Given J, as in proposition [2.8] the error term comes from the integration over two

0
consecutive times such that |t;11 —¢;| < § which has a contribution —Jx with Jx < AKHL

The conclusion of the proof follows by the same arguments as in the proof of proposition

. AK+L ARHLS 0 Jr_1—1
3.9/ : the sum over M is smaller than (Ct) THp ||zeo, the prefactor a/x-17" is
smaller than oA and summing over all possible choices of ji leads to an extra factor
AK(K+1) 0

3.3.4 Conclusion of the proof

Neglecting pathological pseudo-trajectories. As in the previous chapter, let us define :

eI\ NS gk
Rifb= o S (T0) (e M

meMy
where
FO (1m)(t 21) =
bt ( )
/T;,g(h) 7 [— £[1 [(vit1 (ti))-vit1] (Bo(Zs, (0))<E2) 0 (Z1,(0))
Similarly :
=Y ol 37 G (m)
J meMy
where
Gt (J,m)(t,21) =
AT (JK)
Lol [T (st ) v, ey 96™ (25 0)

The following proposition is a direct consequence of the results proved in section [3.3.2]

Proposition 3.11. There is a constant C depending only on B and d such that, as N goes
to infinity in the scaling Ne@la~1 =1, the following bounds hold :
1 K (LK) -~
||f( fNE(sHLoo [0,f]xTdxRd) T Hga Eg ga E(5HL°° ([0,t] x T4 x R4)

d—1
S A(K+1)(K+2)(Cat)AK+l (Ed <€a) +Ed(Et)d€d_1 + E (650)6[1> .
0

Discrepency between f](vl g(); and g}](\}’gzs. The following proposition is a simpler version of

what is done in section

Proposition 3.12. There is a constant C depending only on B and d such that, as N goes
to infinity in the scaling Ne@la~! =1, the following bounds hold :

K) -~ ki1 [ A2EFD
17858 = 385l (o axmaxme < AKX (Cat)*™ <N+ae %]l .
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PrOOF. For a fixed Ji and in the limit Ne'a~! = 1, the error due to the prefactors in
the collision operator can be bounded by :

(1(N—1)...(N—JK+1)> SC%.

NJKJrl

Summing all contributions and following the same lines as before, it leads to an error of

the form :

2(K+1)
K(K+1) Ax+1 A
A (Cat) N

Besides, note that :
J J
95" (Zs,e) = 98" (25,)

since by construction, both pseudo-trajectories have the same velocities and x1 = 2. And
since Zj,.(0) € Gy, (0/2), proposition ?7 gives :

(Jk) (JK))

||1QJK(60/2)( No Y llo,7x,8 < ||p0||L°°CJKa5-

The result follows by the continuity estimates 3.2 O

Estimate of the main term. Gathering all the previous estimates, we get

Proposition 3.13. In the scaling :

A1 loglog N
loglog N K< —=2—"=_
at < (loglog N) @ and K < 210z A4
then, as N goes to infinity
LK =1
A = 985 Lo o xmascrey < 10°Loe T exp(Cllog N)/?loglog N).  (3.7)

PROOF.

LK
”f](\[ )~ gél’K)HLoo([o,t]dede)

< AK(K+1)(COét)AK+1€_§E2||p0||Loo +A(K+1)(K+2)(Cat)AK+15

t

d—1 d—1
+ ABEFDES) (O AT (Ed <a> + EYE T+ B (8—0) )

12”1l 2=

€0 1)

A2(K+1)
+ AKERD) (0 A" (N +ae | [|p°)|

Choosing
d—1 d
§~edit gy ~edtl, En~o/|loge|, a=AKTle
the conclusion follows since AX < \/log N. O

We can now prove theorem
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PRrROOF OF THEOREM [3.Il Gathering the results of propositions [3.5] and 313} we get

1Y = gall o oagsmixrsy < C(7* + Coe Tt exp(C(log N)/*loglog N)) | 0° 1o

< C oo
< (1og10gzv ) 162

(at)A/(A—l)
CK

where we used the relation
")/ =
with the choice

_ |loglog N
| 2logA

3.4 Diffusion limit

In the macroscopic limit, the trajectory of the tagged particle is defined by

[1]

(1) = z1(aT)

where 7 is the typical macroscopic time. In this section we show that the distribution of
=(7) given by f ](V} )(on', x,v) can be approximated by the diffusion in the following sense.

Theorem 3.14. Given N hard spheres on the space T¢ x R® initially distributed accord-
ing to fno defined in (3.2)) with p° a continuous function on T%. Then the distribution

fj(\})(OéT,ﬂc,v) satisfies :

1S (o, 2,v) = p(7, 2) M (0) | o (0 1y screty — O

in the limit N — oo, with o = Ne@ ! going to infinity much slower than /loglog N and
where p(T,x) is the solution of the linear heat equation :

Orp— kgAp =0 in T p_g=p".

Thanks to theorem it is sufficient to prove that ¢, (a7, x,v) can be approximated by
a diffusion. Indeed, we proved that for any 7 > 0 and any « > 1, then in the Boltzmann-
Grad limit :
_AZ
a?r ] A1

LAY (e, 2, 0) — Mg(v)palaT, ,v)||peo(raxray < C | ——————4
(loglog N) 4

where A > 2 can be taken arbitrarily large. The limit o« — oo can therefore be taken,
A—-1
provided that o < (loglog N) 24 . let us define

Pa(T,2,v) = polaT, x,v),

which satisfies
OrPa + v - Vo + a2 Lpg = 0. (3.8)
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Theorem [3.14] then follows directly from the following result :

sup sup  |Mp(v)(@a(T,2,v) — p(T,2,0))| — 0. (3.9)
7€[0,T] (z,0)€T2xR4

The proof of this estimates is classical and relies on some properties of the operator £
which can be proved by standard functional analysis (see for example [I]). The starting
argument consists in writing (@, as a formal power series in terms of a~! (called Hilbert’s
expansion) :

- - 1. 1
9004(7-71‘7”) = po(T,ﬂ?,U) + apl(T,fE,U) + EPQ(T,[L‘,'U) Tt

Then, replacing this expansion in equation leads to the following set of equations for
the first three terms :
Lpg = 0.
v-Vepo+Lpr = 0. (3.10)
Orpo+v-Vepr +Lpy = 0.

In the following we will prove that pg is the solution to the heat equation. To do so, we
need to investigate more carefully the algebraic properties of the operator £. The proof of
the following proposition can be found in a more general setting in [IJ.

Proposition 3.15. For any 8 > 0, the operator L is self-adjoint on LQ(Rd,Mde) with
domain 2(L) = L*(RY, (1 + |v|>) Msdv). Ker L reduces to a.e. constant functions and L is
invertible on the set

{g € L*(RY, Mgdv), /Rd g(v)Mg(v)dv = 0} :

PROOF. let us write
L=ag(v)ld—-K

where
ag(v) := / Mpg(vi)((v —v1) - v)4dvdo
Sd-1xRd

and
Ko(v) :== /sdlde (V") Mp(v1)((v — v1) - V) +dvdos.

Step 1. Prove that K : L*(R%, (1 + |[v|*)Mgdv) C L*(RY, Mgdv) — L*(R%, Msdv) is well-
defined.

can easily be shown using Cauchy-Schwarz inequality and the fact that |v|> + |v1|? =
|v'|? + |v]|?. Note also that the change of variables (v,v1) + (v/,v]) has unit jacobian.

Step 2. Prove the following inequality :

Vo € L*(RY, (1 + |v|?) Mpdv), /Rd P(v)Lp(v)Mp(v)dv > 0 (3.11)

with equality if and only if ¢ is constant a.e.
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Using the change of variables (v, v1,n) — (v, v}, —v) and the equalities :
[0 + o1 |* = [o']? + o1 [* and (v — 1) v = —(v' =) v,

one has :

/ ﬁ(v)2ag(U)M3(U)dU — ﬁ (’[})2M (’U)M (’Ul)((v vl) ) V)ervdvldy
! Sd-1xRIxRA4
/// (ﬁ(vl)2MB(vl)M5(vll)((vl - Ui) : 1/)+d'l),d'l)/1dy
Sd-1xRIxR4
/// - (U)QMIQ(U)J 45(1)1)((7/ Ul) . V)+dUd’U1dV
Sd-1xRIxR4

= [ oloPaso)Ms(w)de
Rd
This shows that
_ 1 v) — d(v')?*Ms(v v1)((v = v1) - V) rdvdoidy
[ sweswntsiae = 5 [[[ @) = o) Ma@Maen) (= 00) ) dvdond
> 0

with equality if and only if ¢(v) = ¢(v') a.e. with respect to v, vy, v, i.e. ¢ is constant a.e.
Step 3. Prove that K is self-adjoint for the scalar product inherited from L?(R% Mpgdv)

Let ¢1 and ¢ be two elements of L2(R%; (1+ |v|?)Mgdv). The same change of variables
used in step 2 shows that :

(K1, p2)m, = /Rd K (v) 2 (v) Mg (v)dv
N /// ¢1(v")2(v) Mg (v) Mg (v1)((v — v1) - v) 1 dvdvydy
Sd-1xRIxR4

- ///sd—l R xR P1(v)p2(v) Mg (v") Mg (v1) (v — v1) - v)dv'dvydy
= <¢1) K¢2>Mﬁ
Step 4. Conclusion.

Gathering the previous results leads to :
Im £ = Ker(£*)+ = (Ker £)* = {g € L*(RY, Mgdv), / g(v)Mg(v)dv = 0}
Rd

since Ker £ is reduced to constant functions. O

We can return to the proof of theorem The first equation in together with
proposition [3.15| reflects the fact that gy does not depend on v. Thanks to proposition
we also know that the identity function on L?(R%; M 5dv) has a unique pre-image by £ in
(Ker £)* : let us define b(v) € R? as the solution to the Poisson equation :

Lb(v) =v and /Rd b(v)Mg(v)dv = 0. (3.12)

We will need the following lemma to conclude the proof :
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Lemma 3.16. There exists a measurable function v : R — R such that :

b(v) = ~(|v])v.

PRrROOF. Let @Q € O4(R). It follows from the definition of £ that :
LIQb)(v) = QLb(v) = Qv and / Qb(v)Ms(0) = Q / B M) =0 (3.13)
Rd Rd

Let O4(R), == {Q € O4(R), Qu = v} be the stabilizer of v. We know that O4(R),
is isomorphic to the group of orthogonal matrix of the hyperplan (Rv)L and therefore
04(R), acts transitively on each sphere of (Rv)" centered at the origin. Moreover, if P
denotes the orthogonal projection on v, one has for all @ € O4(R), :

QP = PQP = PQ.

By definition of b(v) as the unique solution to the Poisson equation in (Ker £)* we have,

thanks to :
¥Q € O4(R)y, b(v) = Qb(v)
and since P and @ commute : for all Q € O4(R),, (I — P)b(v) = Q(I — P)b(v). It implies
that b(v) and v are collinear : indeed, if not, we can find Q € Oy4(R), and 0 # w € (Rv)*
such that
QU — PYb(v) = w # (I — P)h(v).

We deduce that b(v) = S(v)v for some function 8. In order to prove that 5 depends only
on |v|, let us write for all @ € O4(R) :

LloQ) = asN@) = [ HQMs)((0 =) - v)sdordy

— asbQU ~ [ HQOMHQu)(Qv - Qu)- Qv)sdurdy

Sd—-1yxRd

as(bQ0) = [ b(Qu= v (Qu= ) Ma(wr)(Qo = v0) ) sy

= Lb(Qu) = Qu

where the third line follows from the change of variables (vq,v) — (Qu1,Qv). The same
argument shows that

/ b(Qv)Mg(v)dv:/ b(Qv)Mlg(Qv)dv:/ b(v)Mg(v)dv = 0.
Rd Rd

R

The unicity of the solution to the Poisson equation in (Ker £)* therefore shows that for all
Q € O4(R), b(Qv) = Qb(v) which implies :

VQ € Oq(R), B(Qu) = B(v)
and the conclusion follows. ]

We can now go back to the proof. The second equation in (3.10) allows us to write
p1 = p1 + p1 with

p1(m,x,v) := —=b(v) - Vgpo(r,z) and p; € Ker L.
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The last equation in (3.10) tells us that d;pg + v - V;p1 has to belong to the range of L,
which gives :

O-po + /Rd v - Vepi(1,2,v)Mg(v)dv = 0.
Replacing p1 by p1 + p1 leads to :
drpo — z]: 02,0, o /Rd vivy(|v]) Mg (v)dv + Vo - /Rd vMg(v)dv = 0
and we retrieve the heat equation after simplifications : po(1,z) = p(7, ) where
Orp— kgAp =10

with
g = ;/R oL (0) M (v)do = ;/R (ol (Jo]) M (v)do. (3.14)

Finally, an easy computation shows that
52(7-7 x, U) = pg(T, €, U) + 52(7—7 JI) - b(v) ) vxﬁl(Tﬂ x)
where
p2(1,z,v) := D(v) : Hess p(7,x) and pg € Ker L
where the matrix D(v) is defined by

LD(v) = v & b(v) — /

v ® b(v)Mg(v)dv and / D(v)g Mg(v)dv =0
R4 R4

PROOF (THEOREM [3.14]). To conclude the proof, we need to check that ¢, can be approx-
imated by the first three terms of the Hilbert’s series expansion, which is a consequence of
the maximum principles that hold for the heat and Liouville equations. More precisely, let

us define ) )
Uy (r,z,v) := p(r,2,v) + apl(T,x,v) + gpg(T, x,v).

Then W, satisfies :
0:Vo 4+ av - VU, +?LT, = S,

where

1 1
Soc(Ta z, U) = a(anl <T7 z, U) tov- vach(T? z, U) + EanQ(Ta z, U))
Defining Ry (7, x,v) := VUo(T,2,v) — §o(T, x,v), we have
O:Ro +av-V,Ry +a*LR, = S,

and the maximum principle implies :

[MpRall oo jo,r1x e xRy < C(T)(|MpRa(0)|| oo (i xray + [MpSall Lo (0,71 xTax RY))-
And the maximum principle for the heat equation implies that MgS, is bounded in L*°
norm by a~! provided that p is sufficiently smooth (up to regularizing p°). It follows that
c(T)

«

IN

[Mp(Ya — Pa)ll oo (jo,7)x T xR
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3.5 Convergence to the Brownian motion

In the macroscopic limit, it is even possible to adapt theorem to prove that the process
describing the motion of the tagged particle defined by

E(1) = z1(aT)
converges to a Brownian motion. To do so, one needs to check :

e the convergence of the finite-dimensional marginals sampled at different times :
Jim_Exy (m(EE) - he(2(r) ) =E(m (B(r)) .. he (B(7) ). (3.15)
where {hq,...,h} is a family of bounded continuous functions in T< and B is a brownian
motion.

e the tightness of the sequence, that is for any 7 € [0,7] :

VE >0, lim lim IP’N< sup |E(0) — E(7 )|>§)

n—0 N—+oo TOLT+N

where Ex and Py refer to the expectation and probability with respect to the initial data,
that is to say that

EN<h(E(t))) = /rNdeNd dZn 4 (Zn)h(E(L)).

In order to prove the convergence , we are going to re-write the expectations in
term of collision trees and then adapt the proof of theorem First, let us consider an
increasing collection of times t; < ... < t; and Hy = {hy,...,hy} a collection of bounded
continuous functions on T¢. Thanks to Radon-Nikodym theorem, we can define a biased
distribution at time ¢ > ¢, as follows :

/ dZNfNyHZ(t,ZN)(I)(ZN) = EN<h1(x1(t1))...hz(l’l(tg))q)(ZN(t))>
TNdyRNd

= [ s o AZNBZ (1 (0) (o (10) D (2 (1)

for any test function ®. By construction, fu p, satisfies the Liouville equation for ¢ > ¢,
and its marginals obey the BBGKY hierarchy :

PN, (6 Z2) ZQS wpm(t = o) F i (k).

But, since fn u,(t, Zn) = fnH,_,(te, Zn)he(21), we can write the first marginal fj(\})H[ in
terms of a weighted collision tree :

N-1

Na®= > Quitm(t—t) (heQ1+m1,1+m2 (te —te1) (he—l e

mi+...+mp=0
I+mi+..+
Q1+Tn1+..‘+mg,1,1+M1+...+mg(tl)) ](V " me)(o). (3.16)

In the Boltzmann-Grad limit and with the appropriate time scaling, the behaviour of the
tagged particle can be approximated by a Markov process which converges to a Brownian
motion. Let us define the limit process as follows :
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- {v1(t), t > 0} is a Markov process with generatorﬂ —L, initially distributed according to
Mpg(v).

- The rescaled process v1(7) = v1(a7) is a Markov process with generator —aL initially
distributed according to Mz (v).

- In the macroscopic limit, the behaviour of the tagged particle Z(7) is equivalent to the
one of T1(ar) where T} (t) is defined as an additive functional of the Markov process v (t)

Z1(t) :=71(0) +/0 v1(s)ds

where (z1(0),71(0)) is initially distributed according to p°(z)Mpg(v). The expectation
associated to the Markov process z1(t) = (71(t),v1(t)) is denoted by Ejy,.

A biased distribution g, g, of this Markov process can be defined as before as :

Lo it 20z = B, (ma(ma(0) e 10) 0 (20))
TixR4

for any test function ®. The marginals of this measure are

ggj)lfg (t’ ZS) ‘= YJo,H, (tv Zl) H Mﬂ(’l}l)
=2

Note that by construction, ga, m,(t, 2)Mg(v)~! satisfies the linear Boltzmann equation and

then, as in ((3.16]) :
o0

0 0
Yo H,(t) = E Q7 14m, (t —t0) (heQ1+m1,1+m2 (te —te—1) (hz_1 .
mi+...+mp=0

1+mi+...+
Q(l)—i-ml—i-...—i-mg_l71+m1+...+mg (t1)> gé,H;nl me) (0). (3-17)

Suppose now that the collection Hy satisfies the uniform bounds on T¢ :
Vi § f, 0 S hl(ml) S m

then the marginals f](\}S)Hz satisfy the maximum principle with an extra factor m’ and it

is therefore possible to compare f](\,1 )Hz and gq,m, in the same way as before. The conclusion

of theorem leads to the following bounds :

_AT

A-1
Ta2
A—1
A

1
1SSk, (@, 2,0) = gam, (@, 2, 0)| poo (pacpay < O’
(loglog N)

which implies the convergence :

lim EMﬁ(hl(fl(aﬁ))...hg(fl((m))) —EN<h1(x1(aﬁ))...hg(:cl(ong))) —0. (3.18)

a—r—+00

2Note that the proof of proposition also shows that — L satisfies all the hypotheses of the Hille-Yosida

and Lumer-Phillips theorems and
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Finally, (3.15) follows from (3.18) and a central limit theoremlﬂ for additive functionals that

states that :
1 a27' aT
/ 51(5)ds:/ v1(s)ds
a Jo 0

converges in distribution to a Brownian motion of zero mean and variance given by (3.14]),
which implies that :

lim EMB (h1 (fl(an)) .. hy (fl (OzTg))) =Ey (hl (B(Tl)) . hy (B(Tg))) .

a——+00

3See [6] theorem 2.32 for a precise statement. The hypotheses are verified by the proof of proposition

ETH
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Appendix A

PROOF OF LEMMA (1.4

We want to show that the change of variables

o Dy x R x [0,0] x 81— R2d(s+1)
‘ (ZS7US+17t7w) — ZS+1 = (XS —t%,%,$i+€w—tvs+1,vs+1)

maps the measure

dp; = w- (Vep1 — v;)|—dZsdtdwdvs 1
on the Lebesgue measure dZs 1. The idea is to use the d-dimensional spherical coordinates
to compute explicitly the jacobian. If w € S%!, one can write :

cos(61) cos(6) .. .cos(04-1)
sin(#1) cos(#s) . . .cos(04-1)

w=0¢01,...,04-1) = sin(f2) cos(03) . .. cos(04-1)

sin(fg—2) cos(f4—1)
sin(fg_1)

(01,02,...,04_1) €[0,27) x (—71'/2,7T/2)d_2.

2w /2 w/2
/ u(w)dw = / / / u(gf)(@l,...,Hd_l))|J]d91...dc9d_1
gd-1 0 —7/2 —7/2

|.J| = cos(62) 608(93)2 ces COS(del)d_Q-

So that :

where

With a slight abuse of notations, we will write
Zs = (T1,T2, ..., Ts,VU1,...,Vs).

And the jacobian determinant of ®~+ is therefore:
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Id I I I I U1 0
[ [ [ [ [ [
1 [ [ [ [ I —vy |
[ [ [ [ [ [
[ [ [ [ [ : [
| | o —tlgs | : |
[ [ [ [ [ . [
\Id\ [ [ [ : [
[ [ [ [ [ . Lo
[ [ [ [ [ : I
[ [ [ [ [ [
| | I | i —vs 1 0
,,,,,,,, ) P P [
dep = |det| I | | | 0 10
[ [ [ [ [ [
[ [ [ [ [ . [
I I I Ids I I : (.
[ [ [ [ [ 0 0
77777777 e L et LT o i
[ [ [ [ [ [
[ [ [ [ [ [
| Id | | | —t[d | —UVUg+1 | M
e __ L o ___ .
[ [ [ [ [ [
[ [ [ [ [ [
| | | v I 0 0 1 0
[ [ [ [ [ [
where M is the jacobian matrix of ¢ :
—81C2...Cq—1 —C182C3...C4q—1 —C1C2...8d-1
C1C2...Cq—1 5182C3...C4—1 —81Cs ... Sd—1
0 C2C3 ...Cq—1 ce. —89C3...84-1
M= f 0
: . —S8d—25d-1
0 0 Cd—1

with ¢g := cos(0x) and si := sin(fy). The size of M is d x (d — 1).

Al| B

where A, B, C, D are square matrices of size d(s + 1). Since A is invertible and commutes
with C, one an write

To compute dg, we write

do = | det(AD — BC)|

and a complicated calculation shows that

’UZ-1 — ’U;_H —81C2...Cq—1 —C182C3...C4q—1 —C1C2...8q-1
7)22 - 1}§+1 —C1C2...C4—1 §182C3...C4q—1 —81Cs ... 8541
0 C2C3...Cq—1 c.. —892C3...84—-1
de = ‘ det ‘ 0
—8d—28d-1
v;i - ng 0 0 Cd—1
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where vf is the k-th coordinate of v; € R%. Finally we can prove by induction that
do = [(vi = vsy1) - || ]|

and the conclusion follows.
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Appendix B

ABOUT SPACES OF PROBABILITY MEASURES AND THE
HEWITT-SAVAGE THEOREM

This appendix takes the results of [7].

Let E be a polish space (i.e. a separable completely metrizable topological space) and
P(E) the space of probability measures on E. A sequence (py,), in P(F) is said to converge
weakly to p € P(F) as n — 400 when for all ¢ € Cy(E), one has (p,, ¢) — (p, ) where

(p,p) = /Esodp-

Definition B.1 (Lévy-Prokhorov metric). The Lévy-Prokhorov distance on P(E) is defined
by

Drp(p1,p2) =inf{e > 0: p1(A) < p2(A°) + ¢, and p2(A) < p1(A®) + € for all A € BE}
where Bg, is the o-algebra of Borel sets of (E,d) and
A® ={x, d(z,A) < e}.

Theorem B.2. (P(FE), Dyp) is a polish space and Dypp is a metrization of the topology of
weak convergence on P(E), i.e :

Drp(pn:p) = 0 if and only if Vo € Cp(E), / @ dpy, —>/ pdp.
E E

Remark B.3. There exist other metrizations of the weak convergence on P(E), for instance
the Monge-Kantorovich- Wasserstein and Zolotarev distances.

Proposition B.4. The two following o-algebra on P(E) are identical :
(i) The o-algebra of Borel sets Bp gy associated to the Lévy-Prokhorov distance Dpp.

(ii) The o-algebra formed from the sets
Cani={p € P(E), p(A) <A} or Cly,i= {p€ P(E), pl(4) < A}
with A € Bg and X € [0,1].

Definition B.5. Let E be a polish space. E> denotes the space EN of infinite sequences
on E.
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THEOREM

o A sequence (my)k>1 of measures of P(E¥) is said to be compatible when :
Vk < N, Hygmn = 7,
where Iy oy = my is the k-th marginal of mn defined by

VA € Bk, (Hkﬂ'N)(A) = 7TN(A X EN_k).

o A measure m € P(EN), N € N* is said to be symmetric when
VA=A x...x Ay € BN Vo € G, m(A,) =m(A)

where Ay = Ag1 X ... X Ag(ny- Psym(EN) will denote the space of symmetric measures
on EN.

o A measure m € P(E®) is said to be symmetric when all its marginals are symmetric.
Py (E*°) will denote the space of symmetric measures on E*°.

o A measure m € P(E*) is said to be a product measure when there exists a measure
u € P(E) such that for all N € N*,

N
VA=A x...x Ay € BN, m(Ca) = [[ u(4))
j=1

where Cq = AX E X E X ... € B is the cylinder of basis A. P(E®) will denote the
space of product measures on E*°. Note that P(E>) C Psym(E).

Theorem B.6 (Hewitt-Savage). Let E be a locally compact polish space. Let (my)r>1 be a
sequence of measures of P(EF). The following assertions are equivalent :

(i) (mk)k is symmetric and compatible.
(i1) There exists m € Py, (E>) such that for all k > 1, m, = Iljm.

(iii) There exists # € P(P(E)) such that for allk > 1 :

mo= [ o%tan(p)
P(E)

(iv) There exists T € P(P(E)) such that for all k> 1 :
e = / (Ipa)dA ().
P(E>)

PRrROOF (IDEA). The equivalence between (i) and (éi) is given by Kolmogorov’s extension
theorem, the implication (ii7) = (i) is trivial and the equivalence (iii) < (iv) relies on some
more standard arguments of measure theory. There are two ways of finishing the proof :

1. One can prove the implication (i7) = (4i7) using Stone-Weierstrass theorem with the
family of polynoms :

R,:P(E) =R, m — Ry(m) := / o(x1, ..., xp)m(dzy) ... m(dzy)
Ek
with ¢ € Cy(E¥) and k € N*.
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THEOREM

2. One can use the Krein-Milman theorem to prove the implication (ii) = (iv).
O

Remark B.7. The integrals in (iii) and (iv) have to be understood in the following sense :

Vo € Cy(E), (n. ) = /P L

where the function p — (p®F @) is measurable (in fact it is even continuous for the topology
previously defined) so that the Lebesque integral is well-defined.

Remark B.8. When E = R? and when (my)y is a sequence of probability density func-
tions, one can prove using Radon-Nikodym theorem that Supp 7 is a subset of the space of
probability density functions. Indeed, let A C R® be a subset of zero Lebesque measure. We
can write for the first marginal :

0= (m,14) = /P (P

where p — (p,14) = p(A) is a non-negative continuous function for the Lévy-Prokhorov
distance. We deduce that for all p in Supp 7, (p,14) = 0, that is to say that p is absolutely
continuous with respect to the Lebesgue measure and the conclusion follows.
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Appendix C

ABOUT MARKOV PROCESSES AND THEIR GENERATORS

This appendix sums up elementary results that can be found in [10] and [5].

Definition C.1 (Transition probability). Let (E,&) be a measurable space. A transition
probability 7 is a map from E x & into Ry U {400} such that :

1. for every x € E, the map A — w(x, A) is a positive measure on &
2. for every A € &, the map x — w(x, A) is &-measurable
3. for everyx € E, n(z,E) =1

If f is a positive &-measurable function, we define the function 7f on E by

wf(x) = /E w(x,dy) ().

Definition C.2 (Homogeneous transition function). A transition function on (E,&) is a
family Ps;, 0 < s <t of transition probabilities on (E,&) such that for every s <t < v,
the Chapman-Kolmogorov equation holds :

Vee E, VAe &, /P57t(x,dy)Pt7v(y,A) = P (z, A).

The transition function is said to be homogeneous if Ps; depends on s and t only through
the difference t — s. In this case, we write Py for Py;. The Chapman-Kolmogorov equation
then says that the family {P;, t > 0} forms a semi-group of operators which acts on positive
&-measurable functions.

Definition C.3 (Markov process). Let (Q,. %, (%), Q) a filtered probability space. A time
homogeneous Markov process with respect to (¢;) with transition function P, is a process
(X¢)e>0 that satisfies :

E[f(Xt)‘gs] = Pt—sf(Xs)

for any positive &-measurable function f and any pair s < t.

Assume that initially X, is distributed according to a measure v. The expectation
associated to a time homogeneous Markov process with initial distribution v is defined by

E,[f(X)] = /E v(dr) Pof ().

Definition C.4 (Feller semi-group). A Feller semi-group on C(E) is a family Ty, t > 0 of
linear operators on C(E) such that
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(i) To = Id and ||T;|| < 1 for every t
(ii) Tiys = Ty o Ty for any pair s,t > 0
(111) limy o | T3 f — f|| = 0 for every f € C(E)

More generally, when {7}, ¢ > 0} is a family of linear operators on a Banach space
X satisfying (i), (ii), (éii), we say that {T}, ¢ > 0} is a strongly continuous contraction
semi-group.

Proposition C.5. With each Feller semi-group on E, one can associate a unique homo-
geneous transition function Py, t >0 on (E, &) such that

Tif(z) = P f(z)
for every f € C(E) and every x in E.

PROOF. Since for any = € E, the map f — Ty f(z) is a positive linear form on C(FE), the
existence of P; follows from Riesz’s theorem. The fact that P; is a transition function is a
consequence of the semigroup property of T3 and of the monotone class theorem. ]

Definition C.6 (Feller process). A transition function associated to a Feller semigroup is
called a Feller transition function. A Markov process having a Feller transition function is
called a Feller process.

Definition C.7 (Infinitesimal generator). Let Xy, t > 0 be a Feller process. The infinites-
imal generator of Xy is the operator A: 2(A) C C(F) — C(E) defined by
1 .
2(A) = {az €E, lt%l Z(Ptf - f) emsts}

o1
Vfe2(4), Aleggz(f’tf—f)
If f e Z2(A). we may also write :

AF(X) = lim 2 E[f(Xian) - £(X0) | 4]

Proposition C.8. If f € 2(A), then
(i) Pif € 2(A) for everyt
(ii) the function t — P.f is differentiable and

d
%Ptf = AP f = PAJ.

Given a linear operator A on C(FE) it could be useful to know whether A is the infinites-
imal generator of a Feller semigroup. The answer is generally given by the Hille-Yosida
theorem (see [g]).

Theorem C.9 (Hille-Yosida). Let A be a closed linear operator defined on a linear subspace
P(A) of a Banach space X. Then A is the infinitesimal generator of a unique strongly
continuous contraction semigroup if and only if :
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1. 2(A) is dense in X

2. Every real A > 0 belongs to the resolvant set of A and for such A

I(Ad = A)7H <

>| =

If X is a Hilbert space, the Lumer-Phillips theorem is a special case of the previous one,
as explained in [§].

Theorem C.10 (Lumer-Phillips). Assume that X is a Hilbert space. Let A be a linear
operator with dense domain P(A) in X. Then A is the inifnitesimal generator of a unique
strongly continuous semigroup of contractions if and only of A is dissipative i.e. :

Ve e X, (Az,x) <0.
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