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1 Introduction

Computing a representation of the meaning of a given natural-language sentence that can then be
used in some application, like testing if a sentence is a consequence of another, is one of the most
important goal that computational linguistics attempts to achieve. For instance, representing
the meaning of a sentence into some logic, like predicate logic, would allow to model textual
entailment at a logical level.

However this approach is limited by the ambiguity of some sentences, which makes it difficult
to choose just one formula (or reading) among the whole set of readings that a sentence can have
(which is in the worst case exponential in the length of the sentence, and is likely to count over
million of readings for some ambiguous sentences, like those of the Rondane Tree-bank). And
even if large-scale grammars offers today to derive underspecified representations of a sentence
(i.e compact representation of the set of readings it can have) it remains difficult to chose some
particular readings. Ideally, the chosen meaning should be the one intended by the speaker,
with respect to the context in which the sentence occurs. But there is today no sufficient way to
find this particular meaning i.e. to disambiguate the sentence in its context. Another approach
consists of trying to compute the weakest readings of the sentence, i.e those one that only retain
informations shared by all other readings. Doing this keeps only safe information, and can be
used for the particular purpose of deciding textual entailment, because if a logical formula is a
consequence of all weakest readings of a sentence, it is then a consequence of all readings of the
sentence.

To solve the problem of computing these weakest readings, Koller and Thater [KT10] have
proposed a method that allows to compute these weakest readings as a regular tree language,
without comparing all readings of the considered sentence w.r.t logical entailment. This algo-
rithm is indeed based on a approximation of logical entailment by a sound rewrite system which
normal-forms computed relatively to a regular tree language are considered as weakest read-
ings. This is an approximation to the extent that all weakest readings are actually relative normal
forms of this system, but extra non-weakest-readings normal-forms can also occur. Moreover,
this system is combined with a redundancy-elimination one, which aims at reducing the set of
computed readings using logical equivalence: over two logically equivalent readings, only one
should be kept. Both systems are instances of the same general algorithm, so redundancy elimi-
nation is also based on approximating a relation over logical formulas using a rewrite system, but
this time it approximates logical equivalence. In both cases, systems are correct but not complete,
and the set of readings still can be refined. One can think that completing the rewrite systems
using a completion procedure such as the Knuth Bendix[KB70] one would reduce the sets of nor-
mal forms and thus the computed readings. But this would also add many rules of higher depth,
and then could slow the computation. The aim of the internship was to try to complete this two
rewrite-system in some way, and then to give a concrete vision of the trade-off that we expect
between reducing the numbers of readings and increasing the cost of the computation.

In the first section we will briefly introduce some needed basic notions around terms and term
rewrite systems, precise the kind of rewrite system that we are dealing with and its relation to
the computed readings. The second section exposes the adaptation of Knuth-Bendix completion
we design for our purpose, and explains what can be expected of it. Then we will focus on two
way of using dominance graph to optimize completion and keep things manageable. The last
section presents our concrete implementation and results and shows that our work confirm the
expecting trade off and can be used to concretely quantify it.

2 Preliminaries

Let’s first see an example of ambiguity. Look at the following sentence:

Example 1. .Every students reads a book.
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Two quantifiers are present in this sentence, the first one is every, the second one is a.The
sentence is semantically ambiguous because we don’t know if the students are reading the same
book or not. In term of logic, it depends on the way the two quantifiers are interleaved: looking
at the formula ∀x(studentx =⇒ ∃ybooky ∧ readsx,y) the books can be different or not. Looking
at ∃ybooky ∧ ∀x(studentx =⇒ readsx,y) they are reading the same book. But the first formula is
a logical consequence of the second one, and is therefore less informative. Indeed the first one is
a weakest-readings of this sentence but not the second one.

First of all, let’s briefly describe the kind of meaning representations we aim at producing for
a sentence: These are first-order like formulas of a logic adapted to natural language sentence
representation. Below are the few things that it is good to know about it to fix ideas:

Used Logic The logic used for representation of meaning is not strictly-speaking first-order
predicate logic, but generalized-quantifier logic, following [BC81]. This is justified by the lack
of expressivity of the universal and existential quantifiers, which are known to be insufficient to
express some quantified proposition of natural-language like ”most of the q”. This logic contains
an extended set of quantifiers adapted to natural-language parsing. most of the, the, two and even
proper nouns are considered as quantifiers. Two assumptions are made:

1. Quantifiers of arity two are sufficient to express all sentences of natural language.

2. For each sentence, there exists a context that allows to know the exact semantic of vague
quantifiers like most of the q.

Indeed we don’t really care here about interpreting those extended quantifiers, neither Koller
and Thater’s method nor this work assume anything on these interpretations. All constructions
remain correct whatever the semantic of vague quantifiers is.

2.1 Terms

We start by giving a formal definition of Terms; which are the kind of objects constituting the
semantic representations, as (abreviated1) first-order predicate logic formulas.

Definition 1 (Ranked Alphabet). A ranked alphabet is a couple Σ = (R, arity), where R is a set
of symbol and arity is a function that assigns an integer at each symbol in R, arity : R 7→ N.
arity(r) is called the arity of r.

Symbols of arity 0 are called constants.

Definition 2 (Terms over a ranked alphabet). Let χ be a denombrable set of variable symbols.
The set T(Σ, χ) of terms over a ranked alphabet Σ = (R, arity) is inductively defined by:

• Σ ∪ χ ∈ T(Σ, χ).

• for all r ∈ R, for all (T1, . . . , Tarity(r)) ∈ T(Σ, χ)arity(r), r(T1, . . . , Tarity(r)) ∈ T(Σ, χ).

Vars(t) denote the set of all variable symbols of χ occurring in t. these are used to define
substitutions:

Definition 3 (Substitution). A substitution σ is a mapping from χ to T(Σ, χ) where only a finite
set of variables are not mapped to themselves. A substitution can be seen as a mapping from
T(Σ, χ) to T(Σ, χ) applying it recursively to a term: σ( f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)). The
set of all substitutions over T(Σ, χ) is called Sub(T(Σ, χ)).

1for instance ∀x(P, Q) stands for ∀x, P =⇒ Q
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If for some term C Vars(C) = {x}, C is a context over Σ. Given a term t C[t] denote σ(C)
where σ = x ← t is the substitution that maps x to t and leaves all other variables unchanged.
C(Σ) denote the set of all contexts over Σ.

In the following, we will also need the definition of a labeled tree (following the definition of
the TATA book[CDG+07]):

Definition 4 (Labeled tree over a ranked alphabet). A (ranked) labeled tree t over the ranked
alphabet Σ ∪ χ, where Σ = (R, arity) is a ranked alphabet and χ is a set of variable symbols, is a
couple (Pos(t), F) verifying the following:

1. Pos(t) is a non-empty prefix-closed subset of N∗

2. F is a function from Pos(t) into R.

3.

∀p ∈ Pos(t), if F(t) ∈ R ∧ arity(F(t)) ≥ 1 then {j | p · j ∈ Pos(t)} = J1, arity(F(t))K
else {j | p · j ∈ Pos(t)} = ∅

.

(A∗ denote the set of strings over A and · the strings concatenation).
Each index in Pos(t) is called a position.

Trees can be also be seen as finite connected oriented acyclic graph (and conversely), seeing
Pos(t) as the set of vertices, with an edge from p to p′ iff ∃i ∈N, p′ = p.i.

By t|p = (Pos(t|p), F|p) we denote the subtree at position p of a tree (Pos(t), F), defined as
follow:

Pos(t|p) = {q ∈N∗ | p · q ∈ Pos(t)}
F|p(q) = F(p · q)

t[u]p is the tree obtained by replacing the subtree at position p in t with u.
Every Term t ∈ T(Σ, χ) can be seen as a tree using the following inductive transformation:

• if t = x where x is a variable or a constant, t can be seen as the tree ({ε}, f : ε 7→ x)

• if t = f (t1, . . . , tn) where f is a symbol of R of arity n, and the terms t1, . . . tn are respectively
represented by the trees (Pos(t1), F1), . . . (Pos(tn), Fn), t can be seen as the tree (({ε} ∪ {1 ·
Pos(t1), . . . , n · Pos(tn)}), F) where F is defined as follows:

F(ε) = f
F(1 · p) = F1(p)

...
F(n · p) = Fn(p)

In the following we will assimile a term and its representation as tree. We will for instance
refer to F(p) as ”the label at position p in the term t”.
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2.2 Underspecification

One way to face the problem of ambiguous sentences is to compute and work with an under-
specified representation of the meaning, instead of deriving each single reading directly from the
syntactic analysis. Single readings can be enumerated from this underspecification: they are not
stored explicitly, but in a compact way, and a computation is needed for the enumeration. There
exists several underspecification formalisms but we will restrict ourselves here to the one of dom-
inance graphs[ADK+03] which is the one used by Koller and Thater as input for their algorithm.

Before giving the formal definition, we can draw out the underlying general idea: a dom-
inance graph is used to impose restrictions on the way to plug together the different logical
quantifiers that appear in a given sentence. More specifically, it imposes dominance constraints on
these quantifiers. If for instance the second child of A is precised to domine B, then a meaning for
the sentence can only be constructed by plugging quantifiers in a such way that B is a descendant
of the second child of A. The formal definition of a dominance graph and its configurations is
given below and figure 2.2 presents a dominance graph representing the two possibles readings
of the sentence of example 1.

Definition 5 (Dominance Graph). A dominance graph labeled over Σ = (R, arity) is a tuple
(V, E, D, L, <) where V is a set of nodes, E and V are two sets of edge of V × V, respectively
called tree- and dominance-edge, L is a labeling function L : V 7→ R, < a strict linear order over
V and the following conditions hold:

1. (V, E) is a graph which connected-components are all trees of hight 0 or 1. The roots of
these trees are called roots. Every node in V which is not a root is called a hole

2. ∀(h, r) ∈ D h ∈ holes and r ∈ roots.

3. every hole has at least one outgoing dominance edge in D.

4. L is a partial node-labeling function mapping each root to a symbol in R.

One can extract a Ranked signature Wg from a dominance graph by considering each root r
in V as a tree-constructor of arity the number of holes h such that (r, h) ∈ E and ordering this
holes w.r.t < . A dominance graph describes a set of trees called configurations of the graph, in
the following way:

Let’s first define an unlabeled configuration of a dominance graph.

Definition 6 (Unlabeled configuration). A tree t over Wg is a configuration of the dominance
graph d = (V, E, D, L, <) iff each symbol of Wg occurs exactly once in t and each dominance
edge of d is realized in t, which means that if (hi, r

′
) ∈ D where the hole hi is the ith(w.r.t <) child

of a root r in d, then there is a path from the ist child of the node r to r
′

in t.

Definition 7 (Labeled configuration). A labeled configuration of a dominance graph d =
(V, E, D, L, <) is a tree t over Σ such that there exists an unlabeled configuration u of d verifying
L(u) = t.

The main idea of computing weakest-readings of a dominance graph following [KT10] is
to approximate logical entailment using a term rewrite system. This is the reason of the next
paragraph in which we will detail what a term rewrite-system is and how it can be used to
approximate entailment and equivalence.

2.3 Term Rewrite System

The ground reason for the ambiguity we are trying to deal with here, is the many different possi-
bilities of plugging the different quantifiers together that a dominance graph can offer. Sometime
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ah1 ah2

studentx writex,y reporty

Figure 1: a dominance graph

it is easy to see that a labeled configuration of a graph is a logical consequence of another, be-
cause the permutations of two quantifiers under some logical polarity makes the global formula
satisfied by more models. To understand this, look at the following example:

Example 2. ∀x(Px, ∃y(Qy, Rx,y)) which in our logical formalism stands for ∀x P(x) ⇒ ∃y Q(y) ∧
R(x, y) in predicate logic. Permuting the existential quantifier with the universal one would
make the formula satisfied by more models: ∃y(Qy, ∀x(Px, Rx,y)) (∃y Q(y) ∧ ∀x P(x) ⇒ R(x, y)
in predicate logic).

Indeed the transformation ∀x(Px, ∃y(Qy, Rx,y)) → ∃y(Qy, ∀x(Px, Rx,y)) can be applied at any
position of a formula which is assigned a positive logical polarity: a position p in a formula has
a positive polarity if making the sub-formula at position p weaker2 makes the global formula
weaker. Conversely, a position p is under negative polarity if making the sub-formula at position
p weaker makes the global formula stronger. If we restrict to predicate logic, all position are either
in positive or negative polarity, and each position can be assigned the corresponding polarity by
starting with a positive polarity at the root of the formula and then running top-down over the
formula reverting the polarity each time a negation is encountered.

With our logical formalism, certain quantifiers have non-monotonous children positions, which
means that even if they are in positive or negative polarity, their children haven’t any polarity.
This is addressed by adding an annotation neutral to the set {+,−} which is assigned to these
non-monotonous positions.

Thus, the idea for computing weakest readings is to group all this weakening transformations
and the corresponding annotations into an annotated Term Rewrite System. Let’s formally define
that kind of object:

Definition 8 (Annotated Term Rewrite System). Let A be a finite set of annotations. An annotated
rewrite rule is an identity [a]l → r where a is an annotation of A, l and r are Terms of T(Σ, χ) such
that Vars(l) ⊆ Vars(r). An annotated Term Rewrite System is a set of annotated rewrite rules.

A Term Rewrite System induces a rewrite relation→R⊆ T(Σ, χ)× T(Σ, χ):
Before defining this, we first need to be able to compute annotations for every nodes of a tree.

To do this, we use an Annotator:

Definition 9 (Annotator). an Annotator is a function that given an annotation and a ranked
symbol of Σ and an annotation returns the annotation assigned to each children of this symbol.

Given a starting annotation, assigned to the root of all terms, such a function allows to assign
an annotation to each node of a term doing a top-down traversal of it. In the following we assume
a starting annotation and the annotator to be given, and refer to them as, respectively, a0 and Ann.

We also surcharge the symbol Ann and denote by Ann(a0, t, p) the annotation assigned by
Ann to the position p of t after annotating t running Ann top-down along it with a0 as starting
annotation.

2satisfied by more models, φ weaker than ψ iff M ` ψ implies M ` φ
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Definition 10 (Rewrite relation). let R be a Term Rewrite System, t, t′ ∈ T(Σ, χ).
The rewrite relation→ is defined as follow:

t→R t′ iff
∃([a]l → r) ∈ R, ∃C ∈ C(Σ), ∃σ ∈ Sub(T(Σ; χ)) s.t
Ann(a0, t, p) = a ∧ t = C[σ(l)] ∧ t′ = C[σ(r)].

→∗R and ↔R respectively denote the reflexive-transitive and the symmetric closure of this rela-
tion. We write [a]t← t′ when we want a to be taken as starting annotation in t instead of a0.

A rewrite system R is sound w.r.t a binary relation ∼ over T(Σ, χ) iff t →R u implies (t ∼ u).
We denote the logical entailment by �: f � g iff ( f entails g | g is weaker than f .

Now, assume we have a sound (with respect to �, the logical entailment) rewrite system W
containing all weakening rules like the one of example 2. We want to use this rewrite system
to compute weakest readings of a dominance graph d, approximating logical entailment over
its configuration by →W . According to this definition of weakest-readings, the set of terms we
aim at computing is the set containing every configurations of d such that there exists no other
smaller, according to→R, configuration, i.e the set of configurations of d that can’t be rewritten
into another configuration of d, and these are what we call relative normal forms:

Definition 11 (Normal Forms and Relative Normal Forms). A term t is a normal form of a rewrite
system R is there is no other term u such that t →R u. Given a dominance graph d, a term t is a
relative normal form of R w.r.t d if {

t ∈ Con f (d)
¬∃u ∈ Con f (d) t→R u

To reduce redundancy using logical equivalence an additional “equivalence” rewrite system
E is added to W. This one is sound with respect to logical equivalence and its relative normal
forms are the selected representant of equivalence classes that are not deleted (but there can
be more than one representant for a single class, since the rewrite-system approximation is not
complete).

We also define confluence of a term rewrite system because this notion will be of great use in
the following:

Two terms t and t′ are joinable w.r.t R (We write t ↓R t′) iff

∃z ∈ T(Σ, χ) t→∗Rz
t′→∗Rz

Definition 12 (Confluence). A term rewrite system R is confluent iff

∀t, u1, u2 ∈ T(Σ, χ), t→∗Ru1
t→∗Ru2

=⇒ u1 ↓R u2

[KT10] proposes a general method for computing relative normal forms over a regular tree-
language which rely on intersecting tree-automata. Since dominance-graph can be efficiently
converted into tree-automata([KRT08]), computing weakest-readings is a sub case of this general
purpose. the detail of this method are not needed to understand the work presented here, be-
cause we focus on the completion itself, and the method is leaved unchanged after performing
completion.

A last things to know, is that our rewrite system is a permutation rewrite system, which means
that it only changes position of nodes, without changing labels, or introducing or removing
nodes. Example 2 illustrates this.
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Now that we know about term rewriting, relative-normal forms, and how they are related to
the set of weakest readings we aim at computing, we can interest ourselves to the completion
of the two(equivalence and rewriting) rewrite systems. Before trying to complete the rewrite
systems in any way, one should try to fix in what could be expected from completion and how it
could be achieved. Hence, the next section presents the expectations we find out to be reasonable,
and the completion procedures we design to try to achieve it.

3 Completing rewrite systems

In the following, for every binary relation ./ and dominance graph d, ./|d denote the restriction
of R to the configurations of d, i.e. x ./|d y iff x ∈ Con f (d) ∧ y ∈ Con f (d) ∧ x ./ y. Every binary
relation over a set A is also seen as a part of A× A.

3.1 Aim of completion

The Knuth-Bendix completion procedure initially aims at building a convergent term rewrite
system that allows to decide the word problem for a given set of identities S = {(l → r)} ⊆
T(Σ, chi)2. The reflexive, transitive and symmetric closure of the set of the relation→S defines an
equivalence relation ↔∗E and the completion procedure attempts to build a convergent rewrite
system R such that t ∼ u iff t ↓ u. Although this does not particularly seems to fit our use of
the weakening rewrite system, it is perfectly adapted to the equivalence rewrite system which
we can think in term of a set of identities (since logical equivalence is symmetric). Thus, if we
could apply successfully the Knuth-Bendix completion procedure to it, we would end up with
a convergent term rewrite system reducing each term into a single normal form-representant of
its equivalence class. This would probably reduce the set of computed normal forms in a fair
manner. However the impact of completing the rewrite relation→E on its restriction→E|d to the
configurations of a dominance graph d is not clear.

Can we also complete the rewrite system in some way? This seems more difficult. Knuth
Bendix completion procedure assumes an underlying equivalence relation∼ containing→R. if it
is the case and a term t can be rewritten into two different terms u1 and u2 with R, then t ∼ u1 and
t ∼ u2, hence u1 ∼ u2 and a rule u1 → u2 (for instance) can safely be added to R without breaking
its inclusion in ∼. The weakening rewrite system has no underlying equivalence relation, but an
underlying strict order �. And if

t →W u1

t →W u2

we have t � u1, t � u2. But since neither u1 � u2 nor u2 � u1 can be deduced (without any
supplement of information) from these hypotheses, adding a rule rewriting one of the ui into the
other may break the soundness of the system and prevent us from computing weakest-readings.
Despite this, it turns out that the weakening-rewrite system can be completed in some way: when
a term can either be rewritten into an equivalent one u, using E, or a weaker one v, using W, we
can deduce u � v and thus add a rule v→W u.

We are now able to define the “best hope” we can have in completing the rewrite systems.
Formally speaking, without completion, the computed readings of a dominance graph d are the
normal forms of the rewrite relation (→W |d ∪→E|d). Using completion we can hope to com-
pute an equivalence rewrite-system Ec such that t ↔E u iff t ↓E u. We also would like to add
all possible weakening rules of the kind we presented before i.e we would like to fully use the
information that � is the strict part of �, and then that every chain like t ∼ t1 · · · ∼ tn � t′

implies t � t′. The rewrite relation →W approximates �, ↔E approximates logical entailment.
Thus the relation v= (→W ∪ ↔E)∗ approximates � (is logically equivalent or entails). This
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relation is built to takes into into account every entailment that can be deduced from →W and
↔E. The strict part of this relation w.r.t↔E, i.e @=v \ ↔E should be a better approximation of
� than →W . It would be nice to compute a completed rewrite-system which normal forms are
the minimal elements of @.

Given such a rewrite system, C and→C its rewrite relation, it is sadly not necessary that given
a dominance graph d, the normal-forms of→C|d are the minimal elements of @|d. For the same
reason and as already mentioned above, even if →Ec is confluent, a term t can have more than
one relative normal forms w.r.t to Ec. We will precise this in the following after briefly recalling
the basic completion procedure and expose its adapatation to our case.

3.2 Adapting the basic completion procedure

The basic completion procedure(as presented in [BN99]), as well as more sofisticated completion
procedures3, relies on the notion of critical pair, which are at the source of non-confluent deriva-
tions. The notion of critical pair is legitimated by the following remark: if t →R t1 using a rule
l1 → r1 and t →R t2 using l2 → r2, then either t1 ↓ t2 or l1 and l2 have to overlap, which means
that l2 occurs at non-variable position of l1 (or symetricaly l1 in l2). More details and a proof of
this can be found in [BN99]. We extend here this notion for annotated rewrite systems. It is easy
to see that the assertion above still holds with this definition of critical pair, the only change is
that we impose the annotation of the second rule to be coherent with the annotation of the first
one, which is a necessary condition for both rules to remain applicable when they overlap:

Definition 13 (Critical pair). An annotated couple of terms of T(Σ, χ), [a](t1, t2) is a critical pair
of a rewrite system R iff

∃([a1]l1 → r1) ∈ R, ∃([a2]l2 → r2) ∈ R, σ ∈ Sub(T(Σ, χ)), ∃p ∈ Pos(l1) s.t
σ(l1)|p = l2 ∧ Ann(a1, l1, p) = a2 ∧ t1 = σ(r1) ∧ t2 = l1[r2]p.

We denote by Crit(R) the set of all critical pairs of R.

The following lemma is the key interest of critical pairs:

Lemma 1 (Critical Pair lemma). An [annotated] rewrite system R is confluent iff
∀[a](t1, t2), [a]t1 ↓R [a]t2.

The basic completion procedure, assumes as input a given order >, which is used to orient
new generated rules. Given an arbitrary order over quantifiers (like string comparison), we ori-
ented rules by recursively top-down comparing quantifiers symbols.

Basic completion procedure with annotations
Require: > a well founded order over T(Σ, χ), a set of annotated identities S ⊆ A× T(Σ, χ)×

T(Σ, χ).
Ensure: ∀([a]l → r) ∈ S, l > r.

R0 = R
i = 0
while Crit(Ri) 6= ∅ do

Ri+1 = Ri
for [a](t1, t2) ∈ Crit(Ri) do

Reduce t1 and t2 to some Ri+1 normal-form: ((t̂1, t̂2)).
if t̂1 6= t̂2 then

if t̂1 > t̂2 then
Ri+1 = Ri ∪ {[a]t̂1 → t̂2}

3Like Huet’s completion precedure, allowing for rules simplification
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else if t̂1 < t̂2 then
Ri+1 = Ri ∪ {[a]t̂2 → t̂1}

else
FAIL

end if
end if

end for
i = i + 1

end while
Output Ri

There are three possible way for this procedure to behave:

• It can successfully terminates and outputs a confluent rewrite system R where all critical
pairs are joinable.

• It can fail because encountering an orientable pair of term using >

• It can run forever generating infinitely many new critical pairs.

Anyway, according to our preliminary analysis in paragraph 3.1 we should be able to apply
this procedure to the equivalence rewrite system.

We previously examinated the possibility of completing the weakening rewrite-system when
a term can either be rewritten into a logically equivalent term or a weaker one. There are two pos-
sible cases for this: either this two rewrites are an instance of a critical pair outstanding from the
overlap between a weakening and a equivalence rule (or conversely), or it is always possible to
apply the two rules separately one after the other in any order with the same result. In the latter
case, there is no need to add a new rule. We propose the following adapted completion proce-
dure to complete the weakening system. Crit(R1, R2) denote the sets of critical pair obtained by
unifying a rule of R2 with the subtree at some position of a rule of R1.

Weakening rewrite system completion
Require: A rewrite system W sound w.r.t a strict order >. A rewrite system E.

W0 = W
i = 0
while Crit(W, E) ∪ Crit(E, W) 6= ∅ do

Wi+1 = Wi
for [a](u1, u2) ∈ Crit(W, E) ∪ Crit(E, W) do

if (u1, u2) ∈ Crit(W, E) then
(t1, t2) = (u1, u2)

else if (u1, u2) ∈ Crit(E, W) then
(t1, t2) = (u2, u1)

end if
Reduce t1 to some Wi+1 normal form t̂1, reduce t2 to some Wi+1 normal form t̂2.
if t̂1 6= t̂2 then

Reduce t2 to some E normal form t̃2.
Wi+1 = Wi+1 ∪ {[a]t̃2 → t̂1}

end if
end for
i = i + 1

end while
Output Wi

If the input equivalence system E is confluent, then, if this procedure terminates, the com-
puted rewrite system WC is such that the normal forms of WC ∪ E are the normal forms of E
which are minimal elements of the @, the strict part of (→W ∪ ↔E)∗.
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Proof: Notice first that, at any completion step i of the procedure above, →Wi ⊆ @. This is
trivially true for→W and remains true each time a rule [a]t̃2 → t̂1 is added during completion:
t2 →∗E t̃2 thus t̃2 ↔ t2 →∗W t̂1 and it follows t̃2 @ t̂1. This will help us at proving that a term t
which is a minimal element of @ and a normal form of E, is a normal form of Wc ∪ E: Assume t a
minimal element of @ but not a normal form of Wc ∪ E then either t→Wc t′ and thus t @ t′ which
is a contradiction, or t→E t′ and thus t would not be a normal form of E.

Conversely assume that t is a normal form of→Wc ∪E. Assume that t @ t′ by definition of @
t′ is obtained from t after a chain of derivation t rel1 t1 rel2 t2 . . . reln tn where ∀i ∈ J1; nK, reln ∈
{→Wc ,↔E} and there is at least one i such that ri = →Wc . Moreover, rel1 = ↔E or t would
not be a Wc normal form. Then consider the longest sub-chain of ↔E starting with rel1 before
encountering a→Wc : t ↔E t1 . . . tk−1 ↔E tk →Wc u. Using the confluence of E we have t ↓E tk,
and since t is a E normal form, tk →∗E t. Hence either (tk, u) is an instance of a critical pair and a
weakening rule with left-hand side a subtree of t should have been added and t could be reduced.
Otherwise tk−1 can also be weakened using the same rule as tk and the same reasoning can be
applied to the strictly smaller chain t↔E t1 . . . tk−1 →Wc u′.

Now that we have detailed the completion procedures, we can more easily illustrate the prob-
lem that can occur when restricting the rewrite relation of a completed rewrite system to the
configurations of a dominance graph d. Look at the following derivation scheme:

t ∈ Con f (d) → t1 ∈ Con f (d) · · · → t̂1 /∈ Cond(d)
t ∈ Con f (d) → t′1 ∈ Con f (d)→ · · · → t̂′

Where (t1, t′1) is an instance of a critical pair, d a dominance graph and t̂1, t̂2 are normal forms. If
a derivation like the one above happens, the basic completion will had a rule with t̂1 as left-hand
side. Even if the completion procedure terminates and output a confluent rewrite system, the
restriction to the configurations of d of this rewrite system will not be confluent, because t will
not be rewritten into t̂1 but in another relative normal-form which is not a non-relative normal
form and the added rule will never be applied.

We can even give a concrete example of this situation in the context of our permutation rewrite
system:

Example 3. Consider tree symbols of arity two A, B, C. with the following rules (applicable
whatever the annotation):

A(P, B(Q, R)) → B(A(P, Q), R) (1)
B(P, C(Q, R)) → C(B(P, Q), R) (2)
B(P, C(Q, R)) → C(Q, B(P, R)) (3)

(1) and (3) overlap in t = A(P, B(Q, C(R, S))) which yield the following critical pair:
[B(A(P, Q), C(R, S)), A(C(R, B(Q, S)))]. The completion procedure could then choose to rewrite
the first member of this pair using (2): B(A(P, Q), C(R, S)) → C(B(A(P, Q), R), S). But this last
term, can’t be a configuration of any dominance graph that has an instance of t and the corre-
sponding instance of the critical pair among its configurations: A dominance graph has at least
one outgoing dominance edge for every hole. If the graph has an instance of the second member
of the pair (σ(A(C(R, B(Q, S)))) for some σ ∈ Sub(T(Σ, χ))) among its configuration, the second
hole of the root B has to domine one node of σ(S). Hence σ(C(B(A(P, Q), R), S)) cannot be a
configuration of the same dominance graph, because it doesn’t realize this dominance edge.

Computing the critical pairs of the two rewrite systems points out another problem: there
are around 30000 of them for the equivalence rewrite system and 50000 equivalence-weakening
or weakening-equivalence pairs. Normalizing them with a bottom-up or top-down strategy to
eliminate those which yield the same normal forms only decrease the number of critical pairs up
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to the half of the original ones. This number should be compared with the size of the original
rewrite system; around 600 rules, much less. For the equivalence rewrite system, this means that
running only one step of completion procedure without any further modification would add
around 15000 rules. This is not manageable. Moreover explicitly computing all normal-forms for
the left and right hand side of each critical pair and testing the two obtained set for intersection
shows that only 2.6% of the equivalence-only critical-pairs are actually unjoinable (around 12%
and 13% for the weakening-equivalence, which is still very small regarding the total numbers of
pairs). However, this approach becomes too slow when the depth of rules increases a little, for
instance after one step of completion.

We have pointed out two issues: the first one concern the possible loss of confluence occurring
when restricting the rewrite relations of the completed rewrite-systems to the configurations of a
dominance graph, the second the dramatically grow of the size of the rewrite system when using
a "naive" normalization strategy. The following presents optimizations of the completion that
partially address these two issues.

4 Optimizations relative to dominance graphs

4.1 Filtering rewrite by existence of a common accepting dominance graph

Going back to example 3 we can discuss the legitimity of applying rule (2) to rewrite
B(A(P, Q), C(R, S)) when rule (3) could have been applied to the same term leading to u =
C(R, B(A(P, Q), S)) and it would not have been true that for all dominance graph d and substi-
tution sigma, instantiating the overlap-term t, its two critical rewrites and u with sigma gives at
least a term that is not in Con f (d).

Indeed it turns out that this property can quite easily be checked on a list of linear terms
ranging over the same variables, with the same sets of labels, and such that every label occurs
only once in it. The latter assumption is a bit annoying in our case, but even after any number
of completion steps, our systems remains a "permutation" system to the extent that applying a
rule only change the positions of the nodes of the tree. Thus assigning a unique name to each
node of the tree we can split a label that occurs at two different position into two different labels
and assume that every label of a term occurs only once in it, and that it remains true for any
of its rewrite. (for instance ∃(P, ∃(Q, R)) can be specialized as ∃#1(P, ∃#2(Q, R)) and applying a
equivalence rule it becomes ∃#2(Q, ∃#1(P, R))).

for a given dominance graph d and set S of such terms Let Vars denote the common set of
variables (Vars = Vars(t)∀t ∈ S), L the common set of labels and Common(S, d) be the following
property:

∃C ∈ C(Σ), ∃σ ∈ Sub(T(Σ, Vars), ∀t ∈ S, C[σ(t)] ∈ Con f (d).

and let ExistsCommon(S) = ∃d : dominance graph , Common(d; S).
∀ f ∈ L s.t , ∀i ∈ J1; arity( f )K we define domVars( f , i) =

⋂
t∈S Vars(tpos( f ,t)·i) where pos( f , t)

is the position at which the label f occurs in t. We claim that ExistsCommon(S) iff ∀ f ∈ L, ∀i ∈
J1; arity( f )K, domVars( f , i) 6= ∅.

A proof is proposed in annex.
Computing DomVars( f , i) for all labels f is easy, and we can use this proposition to check

ExistsCommon(S). We can modify both completion procedures as follows without break-
ing their validity because all critical pairs are still joinable after completion. When a critical
pair (t1, t2) occurs outstanding from a term t in which two rules overlap, we can first, check
ExistsCommon({t, t1, t2}) and leave this critical pair in case of negative answer, because no dom-
inance graph can allow this three terms to be instantiated together and so to lead to an uncon-
fluent rewrite. Then in case of positive answer, instead of normalizing t1 and t2 w.r.t some term
rewrite system, we use the following:
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Require: S, t
while t→ t′ ∧ ExistsCommon(S ∪ {t; t′}) do

t = t′

S = S ∪ {t}
end while
Return (t, S)

First with S = t, t1, t2 to rewrite t1 into some t̂1 with a set S′, then with S = S′ to rewrite t2 into
some t̂2.

Experimentally, this works very well: first because it basically rejects some useless critical
pairs, then because it seems to offers a very good compromise between normalizing with a naive
but quick strategy, and computing the set of all normal-forms: the rewrite of the second term is
"directed" by the restriction built by rewriting of the first one, and in much cases it seems to orient
rewrite of the second term in the good direction to find out that the two sides of the critical pair
are joinable without explicitly computing and comparing all normal forms.

Moreover, we get with this only chain of rewrites such that there exists a common dominance
graph verifying that all elements of the chain are within its configurations. It is not sufficient to
reach relative confluence but makes loss of confluence due to restriction to a dominance graph
like the one of example 3 more unlikely to arise.

Since the beginning we deal with completion procedures that depend of a particular given
dominance graph. The advantage of this is to allow to complete a rewrite system once, and then
only use it. But we can still refine the way to rewrite left-hand sides and right-hand sides of
critical pairs, using specific informations given by a dominance graph.

4.2 Fully relative completion

Given a dominance graph d we can adapt the idea presented in the previous subsection in a
way than strengthen it using the information of actually knowing the dominance graph. Indeed,
knowing d it is feasible for a Set of term S to check whether there exists a context C and a substi-
tution σ such that for all t in S, C[σ(t)] ∈ Con f (d)4 let SameContextCon f igurations(S, d) denote
this property.

Thus we do exactly the same as before but this time filtering critical pairs, as well as rewrites
by the existence of a common context and substitution keeping things into configurations of a
dominance graph:
Require: S, t, d

while t→ t′ ∧ SameContextCon f igurations(S ∪ {t; t′}, d) do
t = t′

S = S ∪ {t}
end while
Return (t, S)

First with S = t, t1, t2 to rewrite t1 into some t̂1 with a set S′, then with S = S′ to rewrite t2 into
some t̂2.

Relative completion often drastically reduces the numbers of critical pairs, and then allow
to really focuses completion on the subset of the rules that applies to configurations of a domi-
nance graph. However, this is still insufficient to guarantee that restricting the completed rewrite
systems to the set of configurations of a dominance graph even if it still makes us closer from a
relatively confluent system. However, doing completion for every graph is an expensive coun-
terpart.

Using these optimizations we were able to implement reasonably fast and efficient completion

4using a tree-automaton recognizing the set of all configurations of d and checking for a common states assigned to
leaves and to the root of all t ∈ S and allowing a full run over every t. We do note detail this because introducing
tree-automata here would takes too much place and would not be very relevant regarding all other parts of this report
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procedures. It remains to check in what proportion completion reduces the number of rules and
increase computation time. The next section exposes implementations results obtained at the end
of the internship.

5 Implementation results

All results presented here were obtained using the relative completion procedures(equivalence
and weakening) of above, because implementation of global completion was not put to an end at
the end of the internship (principally because of the need of assigning node names to each labels
and respecting these assignations after permutating as we saw in subsection 4.1).

We have performed two experiments over the same corpus of dominance graph than the one
used in [KT10]. First two general remarks:

• Relative equivalence completion terminates over all dominance graph of the corpus

• This is not the case for the weakening completion: Even if it terminates for the most of the
graphs, it still needs to be bounded for graphs that have a very big number of readings (like
around a billion).

The first experiment was completion with a bound of no more than 1000 rules added in
each completion procedure. We computed an average number of 3.5 readings in a total time
of 2719665 ms. Reducing the corpus without completion takes only around 90000 ms but com-
putes an average number of readings of 9.9 readings. Since it is useless to complete a rewrite
system that already have only one reading before completion and there are a lot of graph of the
corpus that are found to have only one readings in an almost negligible time of computation
(without completion), it is also interesting to see the results for graph with a number of readings
greater than 2: without completion the average number of readings is 27.6 with completion, it is
8.5 with completion (and in a time of 2055286 ms which represensant 75% of total computation
time for only 33% of the data).

The second experiment consisted in doing just one step of relative completion in each proce-
dure, we found an average of 4.6 readings with a total computation time of 312659 ms which is
much faster and still reduced a lot the number of readings.

We can draw two conclusions out of these results: first, both experiments, especially the first
one, confirm our expectation that completion actually reduces the number of readings. It is also
very expensive in term of computation time. Then, the difference between the results of the two
experiment confirm that there is a trade off between precision and computation time: the second
experiment do a very superficial and therefore much faster completion but still reduces a lot the
number of readings. So one should try to adapt the depth of completion with its need in term of
precision.

It turns also out that the time lost at completion itself is not the only one making things slower.
Increasing the number and the depth of rewrite rules is also very expensive: over this two ex-
periments, another interesting thing to see was how increasing the depth of the rules slows the
method itself, without taking the time spent at completing into account.

Considering only the time spent at computing weakest readings with Koller and Thater’s
method, it takes 8109 ms on the whole corpus, with an average of 6.51 ms without completion.
With the rules added in the first experiment, it takes 54167 ms for all tests, and the average be-
comes 43, 5 ms, about 6.7 times longer. With the second experiment, testing on the whole corpus
takes 25421 ms, with an average of 20, 4 ms, about 3 times longer. This shows that adding a lot
of rules of high depth, makes the method itself rather slower. Once again, the further completion
is done, the bigger depth the rewrite-rules have, and the slower the algorithm is, but the smaller
the set of readings is.
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6 Conclusion

The work presented here precises in what extent completion can be useful to compute weak-
est readings of an ambiguous sentence and defines a reasonable hope we can have in it which
consists in getting rewrite systems that better approximates logical entailment and logical equiv-
alence. We have designed two optimized adaptations of the basic completion procedure to our
case: a global one, that completes the rewrite system without taking a particular dominance
graph into account and thus allows to complete only once the rewrite system and use the output
for any dominance graph, and a relative one, that does completion for any different graph but
add rules in a more accurate way and is more likely to terminate. Both completion always add
rules in a fair manner (i.e never breaking soundness), and tend to achieve the previously defined
expectation. We have fully implemented the second one, and obtained results that allows us to
answer the initial question: using completion actually reduces the number of found readings but
at the cost of a considerably increase in term of computation time, even when not taking the time
spent at completion into account. This means that even global (non-relative) completion should
increase a lot the time needed to reduce a dominance graph.

However, a lot of open question and future works remain: first, it would be very interesting to
implement the non-relative completion that works independently of any dominance graph, to see
if it would actually save the completion time or if the globally completed rewrite system is too big
and slows Koller and Thater’s method too much. Then although our two experiments highlight
the trade off between the number of readings and computation time, it does not clearly quantify
it, but our implementation could be used to perform more experiments and try to achieve this.
Moreover, we have shown that Koller and Thater’s method becomes very slow when the depth of
rules increases. Since Koller and Thater’s method was designed for rules of depth two, we could
try find out if the method could be modified for a better support of high-depth rules. Another
open question concern the difference between normal forms and relative normal forms. As we
noticed, what happens when computing relative normal forms of the completed rewrite systems
is not clear. Even if the rewrite system is confluent, a term can have more than one normal
forms. This yield two possible investigations: we could first try to find a way of completing that
preserve a relative confluence. On the other hand, it could be interesting to see if another kind
of relative normal that allows to step out of the configurations of a dominance graph could be
computed: given a dominance graph D, we could try to consider terms obtained rewriting a term
t ∈ Con f (D) into another one t′ /∈ Con f (D), and then rewrite t′ into a normal forms in Con f (D)
as relative normal forms.
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8 Annex

Proof of ExistsCommon(S) iff ∀ f ∈ L, ∀i ∈ J1; arity( f )K, domVars( f , i) 6= ∅:

=⇒ Assume

ExistsCommon(S) ∧ ∃ f ∈ L, ∃i ∈ J1; arity( f )K, domVars( f , i) = ∅

. Let d be the dominance graph that satisfies Common(d, S) and n=arity( f ) and t ∈ S. We
denote by Ld the subset of the roots of d corresponding to the symbols of t (they are the same
whatever the choice of t among S), and let fd be the node of Ld which is assigned the label f .
There is a subterm f (t1, . . . , tn) at some position in t. If ti is variable x, because each root in
d has at least one outgoing dominance edge from each hole, and C[σ(t)] ∈ Con f (d), there
is an outgoing edge from the ith hole of fd and it has to be incident to some node of σ(x).
But since domVars( f , i) = ∅ there must be at least one tree t′ ∈ S s.t x /∈ Vars(t′|pos( f ,t′)·i).
Hence f is not a parent of any node of σx in C[σ(t′)] and the previous dominance edge is
not realized, which is contradictory. If ti is not a variable, then either there is a variable
x and a node of σ(x) such that there is a dominance edge from the ith hole of fd to this
node in d and the same reasoning can be applied, or there is a dominance edge from the
ith hole of fd to some other node of Ld corresponding to another label of L. Let gd be
this node and g the corresponding label. Since in every tree u of S, f is a parent of g,
Vars(u|pos(g,t)) ⊆ Vars(u|pos( f ,t)) thus, ∀i ∈ J1; arity(g)K, domVars(g, i) = ∅, and we can
starts again at the beginning replacing f with g. Since the numbers of label in L is finite, we
end up in one of the other cases at some point.

⇐= Consider a dominance graph d containing |Vars| roots labeled with arbitry constant sym-
bols (not necessary different) of Σ, and assign one of this node (cx) to each variable symbol x
of Vars. assume that d also contain a root fd for each symbol f in L, with arity( f ) holes. For
every symbol f in L, for every i in J1 . . . arity( f )K we can chose a variable x in DomVars( f , i)
because it is not empty, and add a dominance edge from the ith hole of f to cx. Using a con-
text C reduced to a single variable, and a the subsitution σ that assign to each variable x of
Vars the constant-label of cx, C[σ(t)] is in Con f (d) for all t ∈ S.

19


