
ParamILS/MO-ParamILS – Quick Start Guide

September 2016

1 Introduction
ParamILS [3, 2, 1] is a tool for Automatic Algorithm Configuration (AAC),
whose workflow is recalled in Figure 1. Given a target algorithm, together with
(i) a description of its parameters, (ii) some training instances, (iii) a dedicated
wrapper outputing performance indicators, ParamILS will automatically per-
form evaluations of possible configurations on possible instances, to ultimately
propose an optimised configuration of the target algorithm.

ConfiguratorConfiguration space
Instance set

Target algorithm

Return best
configuration(s)

instance,
configurationperformance

Figure 1: General workflow of Automatic Algorithm Configuration (AAC)

2 Getting ParamILS
ParamILS can be downloaded from its project website1. This quick start guide
refers to the current latest version of ParamILS (3.0.0), which introduces the
first version of MO-ParamILS.

Once the archive downloaded, extract it. You should find inside: lib folder,
containing the necessary code to use ParamILS, four bash scripts (paramils,
moparamils, validate, movalidate) used for starting ParamILS, and some
example files for you to copy and modify.

1http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

3 Scenario Files
The following presents a very simple use case.

3.1 Scenario File
The scenario file describes the automatic configuration scenario. It precises
essential informations such as the target algorithm command line or the paths
of the other configuration files.

my_scenario.txt

algor i thm path
exe cd i r = .
any output i s put in the "output" f o l d e r
outd i r = output

algor i thm command l i n e
a lgo = ruby my_algo . rb
parameters are d e t a i l l e d here
paramf i l e = my_params . txt

in s tance f i l e s
i n s t a n c e_ f i l e = my_training_l ist . txt
t e s t_ in s t an c e_ f i l e = my_test_list . txt
i f the a lgor i thm i s not de t e rm in i s t i c , s e ed ing i s used
1=true ; 0= f a l s e
d e t e rm i n i s t i c = 1

qua l i t y | time
run_obj = qua l i t y
use a r i thmet i c mean
overa l l_ob j = mean
ta rg e t a lgor i thms maximum runtime
cutof f_t ime = 1
con f i gu r a t o r s tops a f t e r 10 seconds
tunerTimeout = 10

3.2 Target Algorithm Parameter File
The parameter file describes the possible configurations of the target algorithm.
For each parameter, the possible values are indicated between curly braces and
the default value between brackets. Conditional parameters and forbidden com-
binations are also precised here. Note that the default value must necessarily
be one of the possible values of the parameter.

2

my_params.txt

any l i s t o f a r b i t r a r y va lue s
a {0 , 1 , 2 , 3 , 4 , 5 } [0]
b {1 . 0 , 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5 } [1 . 0]
c { foo , bar , baz } [bar]
d {none , 10 , 25 , 50 , a l l } [1 0]

automatic expens ion
e { 0 , 2 . . 1 0 } [6] # expends to {0 ,2 ,4 ,6 ,8 ,10}
f { 1 . 0 , 1 . 1 . . 1 . 5 } [1 . 0] # same as above

no r e s t r i c t i o n on parameter and va lues
my_parameter {my_first_value , 0 , −1, 9 9 . 9 9 } [0]

cond i t i o na l parameter
c | b in {1 . 0 , 1 .1} # c only e x i s t s i f b i s 1 . 0 or 1 . 1

forb idden combinat ions
{a=0,b=1.0 , c=foo } # w i l l avoid matching c on f i g u r a t i o n s

3.3 Instance Files
Both training instance set and test instance set are precised in the scenario file
by the parameters instance_file and test_instance_file, respectively, and
follow the same format.

my_training_list.txt

an_instance
another_instance
path/ to / th i rd / in s t ance

If the algorithm is deterministic, seeds are automatically associated to each
instance as needed. To otherwise manually fix the seeds for each instance, use
instance_seed_file and test_instance_seed_file instead in the scenario
file and specify before each path the corresponding seed.

my_seeded_training_list.txt

0 an_instance
1 an_instance
41 another_instance
43 another_instance

Additionally, in both case, you can add instance-specific information after
the path, which will be passed to the target algorithm wrapper.

3

3.4 Target Algorithm Wrapper
The partial target algorithm command line is precised in the scenario file by the
parameter algo, here “ruby my_algo.rb”. The full command line is computed
by ParamILS as “cd <path> ; <algo> <instance name> <instance-specific
information> <cutoff time> <cutoff length> <seed> <params>”. Param-
eters are given as a list of parameters and values, parameters being prefixed by
a dash and values between single quotes.

For example, the following is a full command such as computed by ParamILS:
“cd /your/absolute/path/.; ruby my_algo.rb my_dummy_instance.txt 0
1.0 2147483647 -1 -a ’3’ -b ’1.0’ -c ’foo’ -d ’25’ -e ’10’ -f ’1.4’
-my_parameter ’-1’”. The absolute path is here automatically computed by
ParamILS using the current path and the relative path given in the scenario
file.

This command line must result by a valid output, parsed by ParamILS. The
expected format is “Result: <status>, <runtime>, <quality>, <seed>”.
The depreciated format using “Result for ParamILS: <status>, <runtime>,
<runlength>, <quality>, <seed>” is still accepted among few others. The
term “<status>” must be either “SUCCESS”, “TIMEOUT”, “ABORT” or “CRASHED”.
The term “<quality>” can either be a scalar value or a vector of comma-
separated values between brackets. Note that even if multiple qualities are
returned by the wrapper, you can still use ParamILS in single-objective mode,
which will then only consider the first quality.

The wrapper can be written in the language of your choice. However, if
your target algorithm has a really small runtime, take care to use a language
that won’t induce too much overhead (e.g., perl is really fast and recommended,
while both python and ruby interpreters are quite slow to start).

4 ParamILS Configuration
A list of basic ParamILS parameters can be obtained using the --help param-
eter. Additionnaly, the --help-level parameter can be set to either BASIC,
INTERMEDIATE or ADVANCED to show the description of more or fewer parame-
ters. The main ParamILS parameters are:

• --MO ∈ {TRUE, FALSE}: to either use ParamILS (using the first quality if
multiple are returned) or MO-ParamILS

• --approach ∈ {BASIC, FOCUSED}: to either use BasicILS or FocusedILS

• --R ∈ N: the number of initial random configurations

• --max-run ∈ N: the maximum number of runs allowed for a single con-
figuration

• --min-run ∈ N: the minimum number of runs required for a single con-
figuration

4

• --random-restart ∈ [0, 1]: the probability to restart from a random
configuration

5 Using ParamILS
Once you have you scenario file, your parameter file, your instances files and
a working wrapper for your target algorithm, you can launch ParamILS by
using either the paramils or moparamils executable, by precising the scenario
file using --scenario-file and the other ParamILS parameters. ParamILS
store all outputs, results and data in the folder specified in the scenario file
(see “outdir”), in a sub-folder named after the scenario file. The name of this
subfolder can be changed using the --rungroup parameter.

Additional data stored by ParamILS include the final training and validation
configurations, the trajectory of the run (i.e., the best configurations at any
moment of the run), and logs of the output.

Example: “./moparamils --scenario-file my_scenario.txt --rungroup
training --seed 1 --tunerTimeout 3600” will run the my_scenario.txt sce-
nario with MO-ParamILS for 1 hour, the seed being fixed to 1, and the output
folder name changed to training instead of my_scenario.

References
[1] Aymeric Blot, Holger H. Hoos, Laetitia Jourdan, Marie-Éléonore Marmion,

and Heike Trautmann. MO-ParamILS: A multi-objective automatic algo-
rithm configuration framework. In Proceedings of LION 10, 2016.

[2] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle.
ParamILS: An automatic algorithm configuration framework. JAIR, 36:267–
306, 2009.

[3] Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm
configuration based on local search. In Proceedings of AAAI 2007, pages
1152–1157, 2007.

5

	Introduction
	Getting ParamILS
	Scenario Files
	Scenario File
	Target Algorithm Parameter File
	Instance Files
	Target Algorithm Wrapper

	ParamILS Configuration
	Using ParamILS

