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Abstract. Formal verification of security and voting protocols is a very
active field of research. However, it is very often assumed that every agent
involved in a protocol follows accurately each step of that protocol, which
ignores the nondeterminism that could arise from misbehavior. An inter-
esting attempt to include this possibility was presented in [3] by Basin et
al. where the human agents involved in security protocols are now able to
have an erratic behavior. Then, the authors designed simple constraints
that, if followed by the human agents, would ensure the correctness of
the protocol. In this study, we look at a way to generate an appropri-
ate set of constraints from the shape of the protocol of interest, instead
of applying the same simple constraints to every protocol. Specifically,
the contribution is threefold. Firstly, we apply the methodology of [3]
to include human errors in voting protocols . Secondly, we look at more
elaborate set of constraints that can be semi-automatically generated
from the protocols of interest. These constraints take the form of natu-
ral strategies (that is, strategies meant for humans, it was introduced in
[9]). Thirdly, in order to find the appropriate set of constraints, we im-
plemented a systematic search through the space of available strategies.
To formally verify the correctness of the protocols, we used the theorem
prover Tamarin that was also used in [3].

1 Introduction

Cryptographic protocols, whether they are security protocols or voting protocols,
are widely used on a daily basis. For instance, an e-banking transaction or a vote
in an electronic election require the use of such protocols. Since these protocols
are so much used, we need to have a formal guarantee that these protocols ensure
some desired properties like Message-Authentication for security protocols or
Vote-Privacy for voting protocols. See for instance [5] for the formal proof that
the voting protocol Selene [14] ensures Vote-Privacy and Receipt-Freeness.

However, very often, humans are the ones using these protocols which leads to
the possibility that some attacks that exploit the fallibility of human are enabled
even if the protocol in itself (that is, when humans act as they are supposed to)
is correct. It is very possible that humans may not know exactly what they are
supposed to do or to carelessly forget some protocol steps. Human weakness is
very well exemplified in the effectiveness of phishing websites, even when humans
are informed in a lab environment [1,7]. Hence, the necessity to include humans
in the study of crpytographic protocols.
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In [3], Basin et al. tackled that issue by studying the impact of introducing
human errors in security protocols whose correctness (without considering hu-
mans) had previously been proven. Specifically, they looked at whether or not
the correctness would still hold with human errors. Since it was not the case
for several protocols, they designed generic rules so that, if they were correctly
followed, it could restore the correctness of the protocols. These rules were ef-
fective for every protocol but one. In any case, these rules gave an indication to
the authors about the possible falws in the security protocols considered. All the
results were established with the theorem prover Tamarin [12].

In this work, we use their way of defining and implementing human errors
but we went in another direction to find the rules for the human to follow that
would restore the correctness of the model. Our idea was to adapt the rules to
the protocol of interest, and, ideally, to automatically generate them. In order
to do that, we needed to know in which set to look for the right rules. We used
an idea that was developed in [9], in the context of multi-agent system. The
idea of the authors was to define what they called natural strategies, which are
strategies designed to be understandable by humans. When translating that idea
to the context of cryptographic protocol, we came up with strategies that were
both simple enough and of bounded size. Since the authors of [3] used Tamarin,
we did the same to establish all our results.

Main contributions Our main contribution first consists in extending the notion
of human errors to two voting protocols: SimpleVote3 and SimpleSelene4. Then,
the tool we implemented is an OCaml program that takes a Tamarin model of
a specific procedure as an input and searches for a successful natural strategy.
To do so, we designed the shape of the strategies that would be adapted to
each protocol and we found an appropriate way to explore the set of available
strategies. The sum up of our results is presented in Table 1. Our tool was able to
find an appropriate strategy for every protocol (even MPAuth MA, the protocol
for which the rules defined in [3] were not enough) but SimpleSelene for which
Tamarin was not able to conclude in reasonable time on a single file (however we
were able to use the interactive mode of Tamarin to prove that the correctness
of the model does not hold with untrained humans), which implies that our tool
cannot be used on that protocol. More detailed results can be found in section 6.

Related Works There are other works that tackle the issues that could arise when
dealing with humans in the context of formal verification. In [13], Rukšėnas et
al. allow human fallibility in the context of an interface between a human agent
and a system. In that work, they do not consider any cryptographic protocol
but they look at interactions between a human, the system and an adversary.

In [4], Beckert et al. work on a similar setting: they look at an interface
between humans and machines. They use a psychological model for humans

3 A simple voting protocol designed to test our tool.
4 A simplified version of the implementation of the Selene voting protocol done in [5]

in Tamarin that includes human errors.
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Protocol Untrained Humans Rule Based Humans Strategic Humans

Cronto_EA 3 − −
Cronto_MA 7 3 3

Google2Step_EA 3 − −
Google2Step_MA 7 3 3

MPAuth_EA 7 3 3

MPAuth_MA 7 71 3

MPAuth_VC 7 3 3

SimpleVote 7 3 3

SimpleSelene 72 ? ?
1The authors of [3] proved that no combination of the available rules could lead to the
correctness of the protocol.
2This was proven by using the interactive mode of Tamarin.

Fig. 1: The correctness of security protocols (from Cronto EA to MPAuth VC)
and of voting protocols (SimpleVote and SimpleSelene). Untrained humans are
fallible human who do not follow any rule. Rule based humans follow the rules
defined in [3]. Strategic humans follow a strategy that was generated and selected
among all strategies available by the tool we implemented.

that is a variant of the GOMS model [10]. In their model, they explicitly take
into account the possibility that humans do not behave as they should.

As for reasoning about strategic ability, apart from [9] that deals with strate-
gies simple enough to be practically carried out by humans and their inherent
mental operations, they are other papers considering humans with limited pos-
sibilities. See for instance [11] where the effect of bounded memory for players in
games is studied. However, this approach is entirely mathematical without any
grasp on the practical aspect of decision making.

Finally, in all this work, we use the Tamarin theorem prover that allows
verification of cryptographic protocols. See [12] for an overview of the tool and
its applications.

Structure of the paper Sect. 2 introduces how to define a protocol in Tamarin.
Sect. 3 defines the interesting properties we want cryptographic protocols to en-
sure. Sect. 4 shows how we can introduce human errors in a protocol. Sect. 5
considers the way we define our strategies. Finally, Sect. 6 covers the implemen-
tation and results we got.

2 Security and Voting protocols in Tamarin

In this section, we present how to model a protocol (we do not make a distinction
between a voting and a security protocol for now).
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2.1 Messages in Tamarin

The messages that are exchanged in a protocol follow a specific term algebra.
A message is a term which is either a variable or a function applied to other
terms. Some classical functions are available in Tamarin such as the pairing
function < , >, or the signing function sign( , ). Some cryptographic functions
are also available. For instance, the symmetric encryption senc and the symmetric
decryption sdec can be used in Tamarin. The variables can either be taken from
a infinite set of fresh constants (often preceded by ˜) or an infinite set of public
constants (often preceded by $). The equality between messages is modulo an
equational theory. For example, in the case of symmetric encryption, we have
the equality sdec(senc(m,k),k) = m. The details of this equational theory can be
found in [2].

Fig. 2: Two rules defining a protocol
P in Tamarin.

Fig. 3: A possible execution of the
protocol P .

2.2 Specifying a protocol in Tamarin

The execution model of Tamarin is a multiset term-rewriting system. A state of
the system is a multiset of facts. A fact is either linear or persistent. A linear fact
can be added to the state of the system, and it can also be removed. However, a
persistent fact can only be added. A persistent fact’s symbol is preceded by an
exclamation point. The initial state of the system is the empty multiset. The way
facts are added and removed to the system state is defined by transition rules of
the following shape, rule Example: [{Consumed}] −−[{Actions}]−> [{Generated}].
For such a rule to be applied, the system state must contain every fact in
{Consumed}. Then, the consumed linear facts are removed from the system state
and the facts in {Generated} are added. A trace is a finite sequence of multiset of
actions that come from the application of transition rules. In the case of the rule
Example, the multiset {Actions} is stored in the trace. Some rules are initially
defined in Tamarin. For instance, the fresh rule []−−[]−>[Fr(˜x)] produces the
fact Fr(˜x). Moreover, the rules defining the possibilities of the adversary are
also defined. The adversary (or attacker) follows the classical Dolev-Yao model
[8]. That is, the adversary can intercept any message that is exchanged on the
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insecure channel (that is a message that is outputted with the fact Out()). The
adversary can generate fresh constants, use public ones and construct any mes-
sage with these and public functions. Then, he can send it to the insecure channel
(which generates the fact In()). A protocol P consists in a set or rules. We denote
by Traces(P ) the set of all traces that can occur in P . In Figure 2, a protocol
P is defined by two rules in Tamarin. The facts are in green, and the actions
are in red. Then, in Figure 3, we see a possible execution that could arise from
protocol P , where R1 is executed once, and then rule R2 is executed twice. The
trace corresponding to that execution can be seen in Figure 4.

Fig. 4: The corresponding trace to the execution of the protocol P . i, j and k are
ordered timepoints

Defining a secure channel in Tamarin In Tamarin, messages can be outputted
by using the fact Out(), and then the adversary has access to these messages and
can modify what is received. However, it is sometimes required in a protocol to
use a secure channel, that is a channel that is not accessible to the adversary.
Specifically, the adversary cannot see any message exchanged and he is unable
to send any message of his own on this kind of channel. In [2], the authors define
the HISP model extension of Tamarin, in which secure channel are defined. A
fact Out S($A,$B,xn,x) is generated in a rule if agent $A sends the message s of
type xn to agent $B. The use of In S($A,$B,xn,x) is similar. The implementation
in Tamarin of secure channel (as well as other kind of channels) can be seen in
appendix A.

3 Desired properties

Up until now, we have not made any distinction between a security and a voting
protocol. However, there is an inherent difference between these two kinds of
protocol. A voting protocol contains far more non determinism than a security
protocol. For instance, the voters can choose their candidates, and they can
choose if and when they want to try to verify their vote. Whereas in a security
protocol, the role of each agent is specified so that there is not much choice left for
the agent. It has to be noted that this difference fades away when these protocols
are modeled in Tamarin, since the non determinism of a voting protocol is almost
entirely resolved in the way the protocol is implemented. Nonetheless, there is
still a difference between a security and a voting protocol in the properties that
these protocols should ensure.

3.1 Security protocol

The properties of interest for the security protocols are the ones that were de-
fined in [3], where the formal definition of each of these properties can be found.
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Generally speaking these properties deal with authentication. Let us consider,
for instance, the property of Message authentication. We have Message authen-
tication if a given agent is sure that another agent sent a certain message. More
specifically, a protocol ensures Message authentication for an agent A to an agent
B if whenever the agent B commits to a message m, then agent A has previously
sent that message m. The properties of Device or Entity authentication are also
defined.

For every security protocol, we also require that a functionality property
holds. That is, we require that it is possible that the protocol is executed up to
its very end. For instance, in the previous example where Message authentication
has to be ensured, it has to be possible for an agent B to commit to a message
m.

3.2 Voting protocol

In the context of voting protocols, the most common property is Vote-Privacy.
It requires that the protocol does not disclose the vote of any of the voter. In
[6], the authors defined that property to be an equivalence in the possibilities
of the adversary between two cases where two voters choose a candidate A and
B respectively and then swap their votes. This is the usual way that this prop-
erty is verified. In Tamarin, it can be verified by using observational equivalence
with the keyword diff. This technique is also the one used to verify the prop-
erty Receipt-Freeness. This is another very classical property to verify in voting
protocols, it specifies that a voter cannot prove to a coercer that he has voted
in a particular way. However, when Tamarin is running on a protocol that uses
the keyword diff, it takes a lot of time to conclude. Since our tool is supposed to
launch Tamarin on a lot of different files, it is not viable to have properties that
take that long to verify. Therefore, we do not consider that property. However,
we do require that our protocols ensure Verifiability. This means that whenever
a voter has voted and has verified his vote, then what he gets is the vote he
intended to cast.

As for the security protocols, we also require that the protocol can be ex-
ecuted up to its very end. In this case, we require that it is possible for every
voter to verify his vote.

3.3 Using Tamarin to verify these properties

In Tamarin, we can define lemmas that express the properties we mentioned
earlier. A lemma is defined in the following way in Tamarin : lemma L: Q ’’F’’
where Q is a quantifier over traces, either equal to exists−trace (then, we have
an existential lemma) or it can be equal to all−traces (in that case, we have a
universal lemma). F is a guarded first order formula over actions (that appear
on the traces) with a sort on timepoints. We denote by Traces(F) the set of
traces that comply with the formula F. In Figure 5, it is shown how some of the
properties we discussed earlier can be expressed with lemmas in Tamarin.
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lemma Verifiability: all−traces
’’All #i v id. Verified(<id,v>)@i ==> (Ex #j. Vote(v) @j & j < i)’’

lemma Functionality: exists−trace
’’Ex #i id v. Verified(<id,v>)@i’’

Fig. 5: Lemmas in Tamarin that express Verifiability and Functionality.

The universal lemma Verifiability expresses that whenever an action Verified(<id,v>)
appears on a trace (which corresponds to the verification by a voter that he cast
the vote v), then that voter has previously (since the timepoint of the action
Verified (resp. Vote) is j (resp. i), and we have j < i) voted for v. A protocol P
ensures that lemma if the corresponding first order formula is verified by every
trace in Traces(P ).

The lemma Functionality is a little bit different since it requires that at some
point, the action Verified(<v,i>) occurs. That lemma expresses the possibility to
execute the protocol up to its very end. A protocol P ensures that lemma if the
corresponding first order formula is by verified at least one trace in Traces(P ).

Let us define formally at which condition a protocol P ensures a lemma L (de-
noted P |= L). Let lemma L1: exists−trace ”F” and lemma L2: all−traces ”F”
be an existential and a universal lemma. Then, the protocol P ensures:

– L1 if and only if Traces(P ) ∩ Traces(F1) 6= ∅;
– L2 if and only if Traces(P ) ⊆ Traces(F2).

In Tamarin, there are two ways to establish a proof. We can either use the fully
automated mode, that makes use of deductions and equational theory reasoning
and possibly some heuristics. The output of that mode is either that the lemma
hold with a proof of correctness, or a counterexample, that is a trace that does
not verify the first order formula expressed defining the lemma (it is possible to
have more than one lemma defined for a single protocol, in which case there is
one output per lemma). However, since the verification problems Tamarin deals
with are not decidable, it is possible that Tamarin does not terminate. We can
also use the interactive mode of Tamarin to combine manual and automated
proof. When we mention the time Tamarin takes to conclude, we always refer to
the fully automated mode.

4 Human Errors

4.1 Defining human Errors

We use the definition of fallible humans defined in [3]. Fallible humans are
not able to perform any complex operation. They are represented with their
knowledge that can be updated according to what is received on some channels
(whether it is secure or insecure). They can also use their knowledge to send
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messages. However, they are not able to encrypt any message by themselves.
These possibilities adds non determinism in the protocol. In [3], fallible humans
who do not follow any rule are called untrained humans. In contrast, fallible
humans who follow the simple rules that were designed are called rule based.

In contrast, human who only follow the protocol specifications are called
infallible. In [3], fallible humans who follow the simple rules that were designed
are called rule based.

4.2 Human errors in Tamarin

Some additional rules are added to the protocol implemented in Tamarin to take
into account the fallibility of humans. The complete set of rule defining human
behavior can be found in appendix B. In Figure 6, we can see how fallible human

rule H send S:
[ !HK($H,$x.1,x.2) ]
−−[ Send($H,$x.1,x.2), H($H), To($A)]−>
[ Out S($H,$A,$x.1,x.2) ]

rule H receive S:
[ In S( $A,$H, $x.1, x.2 ) ]
−−[ Receive($H,$x.1,x.2),H($H), From($A)]−>
[ !HK($H,$x.1,x.2) ]

Fig. 6: Some rules defining the exchange of messages on secure channel for fallible
humans in Tamarin

exchange messages on a secure channel. The fact !HK($H,$x.1,x.2) expresses that
the human agent knows x.2 which is of public type $x.1 (note that since that fact
is persistent, it will always be available). The rule H send S gives the possibility
to send something that the human knows on a secure channel. The action H($H)
is only here to specify that this is a rule describing human’s behavior . Then, the
action Send($H,$x.1,x.2) appears with the action To($A), that is here because we
are dealing with a secure channel (thus, the identity of the receiver is known).
The rule H receive S is quite similar, and describes the update of the knowledge
of the human from a message received on a secure channel. The same kind of
rules exist for the insecure channel, however, in that case, the actions To($A)
and From($A) do not appear (since the human could be exchanging messages
with the attacker). Human agents have also the possibility to generate a fresh
constant and add it to their knowledge.

5 Natural Strategies

Once human errors is introduced in a protocol, it often follows that the correct-
ness of that protocol does not hold anymore. Therefore, in order to restore it, we
need to limit the possible behaviors of human agents. However, these limitations
has to be in compliance with the human capability of following rules.

Reasoning about strategies simple enough to be followed by humans was
done in [9] in the context of multi-agent systems. In such a context, a strategy
for an agent is a function that associates to a state (or a sequence of states)
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of the system an action to execute. It can be seen as a conditional plan for
the agent. This approach is well suited in the case where agents are machines
but it is not appropriate for reasoning about human behavior. The idea of this
paper is that when considering the formula defining strategies, we only look
at bounded-size formula. This allows to reason about strategies in which the
conditions specifying which action to execute are not too complicated. They are
called natural strategies.

We use the same idea in the context of human errors in cryptographic pro-
tocols. In our case, the interest of using simple and bounded-size strategies is
twofold: first, it is understandable and usable by humans, second, since we want
to automatically generate strategies, we need to consider a bound on the com-
plexity of the strategy we consider.

5.1 Strategies in Tamarin

Before looking how simple, and size-bounded strategies translate in our context,
we need to see what constructions are allowed in Tamarin to limit the behavior
of human agents. In Tamarin, we can use the keyword restriction so that some
traces are not considered in a protocol. A restriction is defined similarly to a
lemma except that it does not have a quantification over traces since it neces-
sarily concerns every traces. By r(F), we denote restriction r: F for a first order
formula over actions F. Then, if we have a protocol P and a formula F, the set
of traces that will be considered for ensuring lemmas for that protocol P with
the restriction r(F) will be Traces(P )∩ Traces(F). That is, only the traces that
satisfy the formula F are considered.

Simple strategies In order to have restrictions understandable by humans, we
only consider restrictions with one logical implication and at most two actions in
both side of the implication. We use two kinds of restriction: channel restrictions
and type restrictions. A channel restriction forbids sending or receiving message
on an insecure channel with a given type of message. A type restriction specifies
a condition to receive (or send) a message of a given type on a secure channel.
For instance, we can have these restrictions:

restriction channel: ’’All #k H m.Send(H,’pw’,m)@k ==> Ex S.To(S)@k’’

restriction type: ’’All #k H m S. Receive(H,’m’,m)@k & From(S)@k
==> Ex #j. Send(H,’m’,m)@j & To(S)@j & j<k’’

This channel restriction forbids to send a message of type ’pw’ (for password)
on an insecure channel. That type restriction forbids one to receive, on a secure
channel, a message of type ’m’ if one did not send that same message previously
on a secure channel. Every restriction we consider is similar to one of these two,
with potentially reversing the role of Send and Receive (and also of To and From).
When human agents follow a strategy, they are called strategic humans.
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Bounded-size strategies A strategy is a set of restrictions. We fix the maximum
number of restrictions in a strategy to be 3. It is a compromise between having
an interesting (that is, large) set of strategies and having a set of strategies
small enough so that it does not take days to find an appropriate strategy. In
a strategy several restrictions may be combined, but we tried not to have too
similar restrictions in the same strategy. As a strategy is a combination of several
restrictions, it can be seen as a restriction whose formula is conjunction of at
most three other formulas. For a strategy s = r(F) and a protocol P , we denote
by P [s] the protocol that contains all the traces of P but the traces that do not
comply with the strategy s. That is, Traces(P [s]) = Traces(P ) ∩ Traces(F).

Differences with the rules defined in [3] These rules (which are restrictions)
can be found in appendix C. They are quite similar to our restrictions, even if
they are a little more elaborate (and therefore a little less understandable). Our
restrictions are more ’powerful’, in the sense that we can restore the correctness
of the model MPAuth MA, which is not possible with their rules. Overall, the
main difference lies in what we do with them: we try to combine them to find
an appropriate strategy, whereas Basin et al. manually test them one by one.

5.2 Properties of the strategies

Let us consider two first order formulas F1 and F2 such that F1 ⇒ F2 (for in-
stance, F1 = FA & FB and F2 = FA on a protocol P . Then, if we consider the two
strategies s1 = r(F1) and s2 = r(F2), we have Traces(P [s1]) ⊆ Traces(P [s2]).
Consider two lemmas lemma L1: exists−trace ’’G1’’ and lemma L2: all−traces ’’G2’’.
Let us assume that Tamarin proves that P [s2] 6|= L1. Therefore, according to Sec-
tion 3.3, we have Traces(P [s2])∩Traces(G1) = ∅. It follows that Traces(P [s1])∩
Traces(G1) ⊆ Traces(P [s2]) ∩ Traces(G1) = ∅. Hence, P [s1] 6|= L1. Symmetri-
cally, we can prove that if P [s1] 6|= L2, then P [s2] 6|= L2. These observations allow
us to deduce that a strategy does not ensure a lemma without having to launch
Tamarin on file corresponding to that strategy.

6 Contribution

Implementation We implemented an OCaml program that is able to extract from
a protocol written in Tamarin every type of messages that appears in that pro-
tocol. Then, one is able to decide which restrictions will be considered (channel
restrictions, type restrictions, or both) and what types of messages will be used
to generate strategies. The program can then explore that set of possible strate-
gies. All the code can be found at https://github.com/blackbat13/nsverif.
In order to properly use the observations made in the previous section, the pro-
gram also associates to each strategy s two sets s.more traces and s.less traces that
contains strategies that are, respectively, less and more restrictive. In that way,
if Tamarin proves that a strategy s does not ensure a universal (resp. existential)
lemma, then neither does every strategy belonging to the set s.more traces (resp.
s.less traces).

https://github.com/blackbat13/nsverif
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Algorithm Given a protocol and the restrictions of interest, we want to find a
strategy built from those restrictions that restores the correctness of the protocol.
We first try without any strategy (untrained humans). If at least one lemma is not
verified, we launch Tamarin on every strategy that contains only one restriction.
If we do not find an appropriate strategy among these, we try to find a strategy
that is more elaborate. First, we associate a score (an integer) to every strategy
tested. Second, we look into the sets s.less traces in a decreasing order of the
scores of the strategies s. Let us discuss how that score is computed. Because we
look into the sets of type less traces, if a strategy s does not ensure an existential
lemma, no strategy in s.less traces would work. The score of the strategy s is, in
that case, 0. For a given strategy, if a universal lemma is not verified, we add n
to its score, where n is the number of steps Tamarin took (usually between 5 and
500) to conclude5 that it does not hold. If it is verified we add 100 000 6 to the
score. However, anytime Tamarin takes more time than a specific duration (a
timeout) the computation is stopped and no result is outputted. In that case, the
score attributed is equal to 10 000 so that the corresponding strategy is chosen
before any strategy that do not ensure any universal lemma but is chosen after
a strategy that ensures at least one universal lemma. The order of the strategy
that are tested in the sets s.less traces of interest random. Once a strategy s is
proven to be correct, we search into the set s.more traces for a less restrictive
strategy that is still correct.

6.1 Result

The summary of our results can be found in Table 1. As we can see, our program
is able to find a correct strategy for every protocol but SimpleSelene. Moreover,
on the security protocol MPAuth MA, the rules defined in [3] were not enough to
restore correctness, whereas it is the case of our strategies. However, it has to be
noted that the rules defined in [3] give a positive result for the voting protocol
SimpleVote (they were designed for security protocols). As for the voting protocol
SimpleSelene, Tamarin takes too much time on the fully automated mode to get
any result. That table lacks computing times. They are given in Table 7.

Overall, the time taken by our program is much higher that the time taken
for the rule based human case. However, this was predictable since our program
launches Tamarin on a lot of files to find an appropriate strategy. For the first
three protocols, an appropriate strategy is found among the ones with only one
restrictions, therefore no random is used. However, this is not the case for the
three other protocols that do use random, therefore the results are given as
statistics on 10 attempts. We can see that there are a lot variations with the
random seed used in the protocol, which is best exemplified by the difference
between the minimum and maximum time taken to conclude. However, even in

5 That choice is arbitrary. The idea is that the more steps Tamarin takes to conclude,
the less obvious it is that the lemma does not hold. However, since the way Tamarin
proves or disproves a lemma is not straightforward, that choice is questionable.

6 Chosen to be much higher that any number of steps taken by Tamarin.
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the worst case scenario, the time taken is still reasonable since these kind of
computations only have to be done once per protocol.

For every security protocols, both channel and type restrictions were used.
For the voting protocol SimpleVote, only channel restrictions were used. In both
cases, there were two types of the messages appearing on the restrictions. The
time taken by our program depends on the timeout that was set. The choice
of that timeout is quite difficult and we fixed our choices after a few try. The

Protocol RBH Timeout Mean Standard deviation Minimum Maximum

Cronto_MA 2.7 100.0 191.1 − − −
Google2Step_MA 2.1 30.0 17.8 − − −

MPAuth_EA 158.1 100.0 340.2 − − −
MPAuth_MA − 100.0 1969.8 673.3 604.5 3000.7

MPAuth_VC 7.8 240.0 5753.4 2434.9 1473.5 8506.8

SimpleVote 3.1 30.0 55.75 5.8 48.3 68.0

Fig. 7: The time taken by our program to find a correct strategy. All the time
considered here are in seconds. Experiments done on a personal computer with
processor Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz, Ubuntu 18.04, 8GB of
RAM

effectivness of our exploration of the set of strategies is studied in appendix D.

6.2 The SimpleVote protocol

We did not get any result on the voting protocol SimpleSelene which is an adap-
tation of the voting protocol Selene [14]. One of the reason for that may be that,
in that protocol, the messages that are exchanged consist in pairs of messages.
That is why we defined the voting protocol SimpleVote. In that protocol, agents
do not exchange pairs of messages anymore. However, we made them use both
secure and insecure channels so that it is not straightforward to find an appro-
priate strategy. As it initially was, we had the same problem that we had with
SimpleSelene: Tamarin could not conclude in reasonable time. To simplify the
protocol, we removed the possibility for human agents to receive messages on a
secure channel. In the way the protocol was implemented, that does not impact
whether or not the lemmas hold. However, Tamarin was then able to conclude
in reasonable time (it is even quite fast, as we can see in Table 7).

6.3 Perspectives

The results we have show that, even if it takes quite some time, our idea to find
an appropriate strategy by generating a lot of strategies is viable. The main goal
of our work is to illustrate how it could be possible to find strategies suited for
a specific requirement. The results we have allow us to think that our approach
could be successful with other protocols, possibly in another context.
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rule ChanOut S:
[Out S($A,$B,xn,x)]
−−[ChanOut S($A,$B,xn,x)]−>
[!Sec($A,$B,xn,x)]

rule ChanIn S:
[!Sec($A,$B,xn,x)]
−−[ChanIn S($A,$B,xn,x)]−>
[In S($A,$B,xn,x)]

Fig. 8: An implementation in Tamarin of a secure channel

Authentic channel On an authentic channel, the adversary can learn the mes-
sages sent on the channel, but he can not modify it, nor modify the sender. The
implementation of an authentic channel in Tamarin can be seen in Figure 9.

rule ChanOut A:
[Out A($A,$B,xn,x)]
−−[ChanOut A($A,$B,xn,x)]−>
[!Auth($A,xn,x), Out(<$A,$B,xn,x>)]

rule ChanIn A:
[!Auth($A,xn,x), In($B)]
−−[ChanIn A($A,$B,xn,x)]−>
[In A($A,$B,xn,x)]

Fig. 9: An implementation in Tamarin of an authentic channel

Confidential channel On a confidential channel, the adversary cannot learn a
message sent on the channel, however he can change the sender of a message or
change the message that is sent. The implementation of a confidential channel
in Tamarin can be seen in Figure 10.

rule ChanOut C:
[Out C($A,$B,xn,x)]
−−[ChanOut C($A,$B,xn,x)]−>
[!Conf($B,xn,x)]

rule ChanIn C:
[!Conf($B,xn,x), In($A)]
−−[ChanIn C($A,$B,xn,x)]−>
[In C($A,$B,xn,x)]

rule ChanIn CAdv:
[In(<$A,$B,xn,x>)]
−−[]−>
[In C($A,$B,xn,x)]

Fig. 10: An implementation in Tamarin of a confidential channel

B Implementation of human errors in Tamarin

The rules defining the behavior of human agents can be seen in Figure 11. The
rules H receive and H sned define the behavior of human agents dealing with
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insecure channel. Similarly, the rules H receive S and H sned S does the same
thing with the secure channel. It has to be noted that, for these rules, actions
To($A) and From($A) are generated. Finally, the rule H fresh gives the possibility
for human to learn a fresh nonce.

rule H receive:
[ In( <$x.1,x.2>) ]
−−[ Receive($H,$x.1,x.2),
!HK($H,$x.1, x.2),H($H) ]−>
[ !HK($H,$x.1, x.2) ]

rule H send:
[ !HK($H,$x.1,x.2) ]
−−[ Send($H,$x.1,x.2),
H($H) ]−>
[ Out(<$x.1,x.2>)]

rule H send S:
[ !HK($H,$x.1,x.2) ]
−−[ Send($H,$x.1,x.2),
H($H), To($A)]−>
[ Out S($H,$A,$x.1,x.2) ]

rule H receive S:
[ In S( $A,$H, $x.1, x.2 ) ]
−−[ Receive($H,$x.1,x.2),
!HK($H,$x.1,x.2), H($H), From($A)]−>
[ !HK($H,$x.1,x.2) ]

rule H fresh:
[ Fr(˜x) ]
−−[ Fresh($H,$x.1,˜x), !HK($H,$x.1,˜x),
H($H) ]−>
[ !HK($H,$x.1,˜x)]

Fig. 11: The rules defining the human agents’ behavior in Tamarin

C Rules defined in [3]

First rule The first rule defined in Tamarin can be found in Figure 12. For the
rule to work, an action Rule3(’Human’,’noTell’,l) needs to appear on the traces
of interest. If it does, a human agent cannot send any message of type l.

restriction noTell:
’’All l m #s #i. Rule3(’Human’,’noTell’,l) @s & Send(’Human’,l,m) @i ==> F’’

Fig. 12: The rule noTell defined in Tamarin

Second rule The second rule defined in Tamarin can be found in Figure 13.
For the rule to work, an action Rule4(’Human’,’noTellEx’,l,lR) needs to appear
on the traces of interest. If it does, a human agent who is sending a message
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of type lR and who has in his initial knowledge InitK(’Human’,lR,R) and has to
send it to agent R. That restrictions is a little more elaborate than the ones we
considered, furthermore it supposes an initial knowledge of the human (that is
not forgotten).

restriction noTellEx:
’’All lR R l m #i #s #s2. Rule4(’Human’,’noTellEx’,l,lR)@s & InitK(’Human’,lR,R) @s2 &
Send(’Human’,l,m) @i ==> To(R) @i’’

Fig. 13: The rule noTellEx defined in Tamarin

Third rule The third rule defined in Tamarin can be found in Figure 14. For the
rule to work, an action Rule3(’Human’,’noGet’,l) needs to appear on the traces
of interest. If it does, a human agent cannot receive any message of type l.

restriction noGet:
’’All l x #s #i. Rule3(’Human’,’noGet’,l) @s & Receive(’Human’,l,x) @i ==> F’’

Fig. 14: The rule noGet defined in Tamarin

Fourth rule The forth rule defined in Tamarin can be found in Figure 15. For
the rule to work, an action Rule3(’Human’,’ICompare’,l) needs to appear on the
traces of interest. If it does, a human agent cannot receive any message of type
l unless he has it in his initial knowledge.

restriction ICompare:
’’ All l y #s #i. Rule3(’Human’,’ICompare’,l)@s & Receive(’Human’,l,y) @i
==> Ex #j. InitK(’Human’,l,y) @j’’

Fig. 15: The rule ICompare defined in Tamarin

Overall, the rules defined here are similar to the ones we used but they do
not allow to compare a message to send or receive with a message previously
sent or received. That is why our restrictions are a little more effective to restore
the correctness of protocols.
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Time to compute Number of strategies on
which Tamarin computed a
result

Number of strategies on
which Tamarin took too
much time

Number of strategy whose
result was deduced

1473.5 aaaaaaaaaaaa12 aaaaaaaaaaaA5 aaaaaaaaaaaA7

3386.6 aaaaaaaaaaaa13 aaaaaaaaaaaa12 aaaaaaaaaaaa39

6313.7 aaaaaaaaaaaa22 aaaaaaaaaaaa27 aaaaaaaaaaaa77

8158.4 aaaaaaaaaaaa32 aaaaaaaaaaaa30 aaaaaaaaaaaa79

8506.8 aaaaaaaaaaaa30 aaaaaaaaaaaa26 aaaaaaaaaaaa56

Fig. 16: The result got on the strategies with the computational time (in sec-
onds) it required to find the correct one. This was done on the security protocol
MPAuth VC with different random seed. In every cases, the set of restrictions is
the same, there are 255 of them. The timeout is equal to 240.0s.

D Effectiveness of the exploration of the set of strategies

In Figure 16 is displayed several computational times necessary to find an appro-
priate strategy. The only thing that changes between all these cases is the random
seed. The second column shows the number of strategies on which Tamarin was
launched and had the time to compute a result. The third one shows the num-
ber of strategies on which Tamarin was launched but did not have the time to
compute a result. Finally, the fourth column shows the number of strategies on
which Tamarin was not launched but we could deduce with the observations of
section 5 that they could not restore the correctness of the protocol.

First, we can see that the computational time to find a good strategy seems
to highly depend on the number of strategies on which Tamarin was launched.

Moreover, it seems that around half of the strategies on which it is launched,
Tamarin does not have the time to conclude. That could be an indication that
the timeout could be set up higher than what it was when the computation was
done. However, that would not guarantee that more results are computed.

To evaluate the effectiveness of our exploration of the set of strategies, we
can look at the second and the fourth columns. If we do not consider the first
case, for which the correct strategy was found very quickly, we can see that the
number of results deduced is between 2 and 3 times bigger than the number of
strategies on which we have a result given by Tamarin. This tends to show that
from a few result, quite a lot information can be deduced. However, we would
need to compare this result with other protocols to see if this is a specificity of
this protocol or if this is mostly due to the structure of the set of strategies we
consider.
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