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Abstract. During this internship, I studied a dynamic social network
and modelled it to understand its growth. Thus I propose a new model
of graph, the sequence model, which is a model with growth rules cor-
responding to observations on the real graph. I study the properties of
the model by experiments, then I use it for prediction link, and compare
its results with the classic methods for link prediction. Finally, I propose
a hybrid model for link prediction, using the sequence model and the
Common Neighbors model.
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1 Introduction

In several scientific fields, objects of interest can be studied as a network: a set
of points, the nodes (or vertices), joined together in pairs by lines, the edges.
The edges could be directed if they run in one specific direction, or undirected if
they run in both directions. For example, there are the Internet in technological
networks, biochemical networks in Biology, online social networks like Twitter
or Facebook networks, or also other social networks like co-authored papers
networks.

The structure of a system can have big effects on the behavior of the sys-
tem. The connections in a social network affect information spreading, or also
the spread of disease. The structure of the Internet network affects the routes
followed by the data, and the efficiency of the data transportation.

In this report, I work only on online social networks, in particular on a
Facebook network. In such a network, the nodes are people and there is an edge
between two people if they are friends (this is an undirected network here). This
network is dynamic: we know when the edges appear, so we have a snapshot of
the network at each time step (here, it is one second).

First, I will present some of the most famous graph models and classic link
prediction methods. Second, I will describe the dataset and its properties. Then
I will propose a new graph model, based on sequences of new edges. Finally, I
will use this model for link prediction, and compare it with the classic methods.

1.1 Real-world online social networks properties

First, I present some properties and measures on networks which will be useful
thereafter.

Some real-world networks seem to have a power-law degree distribution, or
at least for the tail of the distribution (the nodes with high degree). A perfect
power-law distribution is the distribution where the probability pk that a node
has a degree k is given by:

pk = Ck−α

where C and α are constants. Networks with power-law degree distribution are
often called scale-free networks, because scaling the degree k by a constant factor
c causes only a proportionate scaling (by the factor c−α) of the degree distribu-
tion itself:

pk×c = C(k × c)−α = c−αCk−α

To detect power-law distribution, we can plot the distribution on logarithmic
scales. A power-law distribution histogram has a straight-line shape with these
scales. Indeed, we have:

log(pk) = log(Ck−α) = log(k−α) + log(C) = −αlog(k) + log(C)
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Figure 1 shows such a distribution, with the example of the Internet graph at the
level of autonomous systems. A lot of real-world networks seem to be scale-free,
but we have to be very cautious when interpreting that, and we should not give
them a sense of universality [12].

Fig. 1: The power-law degree distribution of the Internet, from [9]. On the right,
logarithmic scales are used, and we can see the straight-line shape of the his-
togram.

If we define the distance between two nodes as the size of one of the shortest
path between them, the diameter of a network is the size of the biggest distance
between two nodes in the network. In many real networks, the diameter is very
small (not more than 10, even for networks with thousands of nodes). Conse-
quently, the mean distance between two nodes is also surprisingly small. This
phenomenon is called the small-world effect.

The clustering coefficient is a measure to know how the nodes tend to cluster
together. Precisely, it is the average probability that two neighbors of a node are
connected. In other words, it is the density of triangles in the network. In real-
world networks, and in particular in the social networks, the clustering coefficient
is quite high: it is often between 0.2 and 0.5.

Another measure with high values in social networks is the modularity, which
reveals how the network can be divided into groups. To get this measure, we need
to divide the network into separate communities. For a given set of communi-
ties, the modularity is the fraction of the edges that are within the communities
minus the expected fraction if the edges were distributed at random. Some com-
munity detection algorithms work by searching the set of communities which
maximize the modularity. With communities detected by algorithms, real-world
social networks have a high modularity, often more than 0.4.

1.2 Graph models

One of the best ways to understand real-world networks is to build mathematical
models. It could explain how a network had formed and how it develops.



Link prediction with sequences on an online social network 5

We can classify the network models in two groups: those where all the nodes
are there and edges are chosen following specified rules, and generative models
in which the network grows (nodes coming in one by one) against growth rules.

Random graphs

Random graphs point out models in which a specific set of parameters take
fixed values, but the rest is random. For example, one of the simplest random
graph is the one where the number of nodes and the number of edges are fixed.
To build a graph following this model with n nodes and m edges, one just has to
choose m edges uniformly at random among all possible pairs of nodes, within
a set of n nodes. There is a property of such a random graph that is easy to
compute: the mean degree. Indeed, the mean degree of nodes in such a graph is
2×m
n (each edge is counted two times because it joins two nodes). Unfortunately,

other properties of this model can not be computed easily.

Another simple random graph is the one in which we fixe the number of
nodes n and the probability p of edges. To build a graph, each possible pair of
nodes has an idependent probability p to be joined by an edge. For this model,
we have interesting analytical results. I don’t give details of how we obtain them,
but they follow our intuition. First, the mean number of edges in such a graph is(
n
2

)
p, that is the number of all possible pairs of nodes multiplied by p. With this

result, we are able to compute the mean degree: (n− 1)p, which is the number
of possible neighbors for each node multiplied by p. Another result is the degree
distribution which is a Poisson degree distribution (in the large-n limit). This is
different from real networks degree distribution, that is the big problem of this
model.

To solve this problem, we can use models which can have the degree distribu-
tion we want, like the configuration model. In this model, the degree distribution
is fixed: each node in the network has a fixed degree. Consequently, the num-
ber of nodes and the number of edges are fixed. To create a graph, each node
with degree k get k stubs of edge, then pairs of stubs are chosen randomly and
connected, until it doesn’t remain any stub. The problem of this model is the
clustering coefficient which, for a given degree distribution, decreases linearly
against the number of nodes n, while some real-world networks, in particular
the social networks, have a quite high clustering coefficient.

Generative models

We have seen models which can have the degree distribution we want, but
these models don’t explain why the network should have this degree distribution.
Generative models are models in which the network grows, so they offer an expla-
nation of the properties of real-world networks. Indeed, if a model with a set of
fixed growth rules gives networks with the similar structures than real networks,
it suggests that similar generative mechanisms may work in real networks.

The most famous generative model is the preferential attachment model. A
first version was proposed by Price [10] to understand the network of citations
of scientific papers, and gives directed and acyclic networks. I detail here a
second version, independently discovered by Barabási and Albert [1], which gives
undirected networks.
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In this model, nodes are added one by one to a growing network and each
node connects, when it is added, to a randomly chosen set of previously existing
nodes. The number c of new connections is fixed and is the same for all the nodes.
It implies that all the nodes have a degree bigger than c. When a new node is
added, the probability there is a connection with a previously existing node
is proportional to its current degree. One can show that this model generates
networks with a degree distribution with a power-law tail with an exponent
α = 3. Thus, the BarabásiAlbert model is a simple model which has a power-
law degree distribution, like most of the real networks. However, the exponant
of the power-law is fixed at 3, and it is not the exponant of all the concerned
real networks.

1.3 Link prediction

The link prediction problem is the following: given a snapshot of a social network,
which new edges are likely to appear in the future? Most of the link prediction
methods are based on measures of the proximity, or similarity, of the nodes [7].
I present here some of these measures, which will be used.

Suppose we have a graph G = (V,E), where V is the node set and E the edge
set. Let G = (V,E) where E = {(u, v)|(u, v) /∈ E}. We want to find edges in E
which will appear in G. Thus, the methods assign a connection weight score(u, v)
to each edge (u, v) in E, and create a ranked list of edges in decreasing order of
score(u, v). Let Γ (u) denote the set of neighbors in G of the node u ∈ V .

Common Neighbors: This is the simplest measure, which only counts the
number of common neighbors: score(u, v) = |Γ (u) ∩ Γ (v)|.

Adamic/Adar index: This index refines the simple counting of common
neighbors by assigning the less connected neighbors more weights: score(u, v) =∑
w∈Γ (u)∩Γ (v)

1
log|Γ (w)| .

Preferential attachment: This measure assumes that the probability that
a new edge involves node u is proportional to |Γ (u)| (as in the preferential
attachment generative model presented previously). On the co-authored paper
network, empirical evidence shows that the probability of co-authorship of u
and v is correlated with the product of the number of collaborators of u and v.
Because of this, the measure is defined as: score(u, v) = |Γ (u)| × |Γ (v)|.

Jaccards coefficient: The Jaccard’s coefficient is a statistic used for com-
paring the similarity of sets. More precisely, it is defined as the size of the in-
tersection divided by the size of the union of the sets. We can use it to define a

measure, comparing the similarity of the neighbor sets: score(u, v) = |Γ (u)∩Γ (v)|
|Γ (u)∪Γ (v)| .

Resource allocation index: The resource allocation process is originally
proposed to explain the correlation between transportation capacity and con-
nectivity of airports [15]. Considering two nodes u and v in G (they are not
connected in G), u can send some resource to v by transmitters, which are their
common neighbors. Each transmitter has a unit of resource, and averagely dis-
tribute it to all its neighbors. The measure for two nodes u and v is defined
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as the amount of resource v received from u (or from v to u, it is symmetric):
score(u, v) =

∑
w∈Γ (u)∩Γ (v)

1
|Γ (w)| .

2 Dataset study

The dataset is a Facebook graph collected in the SensibleDTU project, which
used smartphones to measure and understand social behavior. The data collec-
tion took place at the Technical University of Denmark, from October 2013 to
June 2014, on 1,000 newly started students. Thus, we have a dynamic network
of real world person-to-person interactions between approximately 1,000 indi-
viduals (densely-connected population). With all the measure of the experiment
(phone call, text messages, Facebook data, how people move around in space
(via GPS)), social groups can be identified [11]. Here, we only have the dynamic
Facebook network of the experiment.

2.1 Network properties

At the end of the collection, the network has a total of 874 nodes and 8, 952
edges. The mean degree is around 20.5. Figure 2 shows the degree distribution
of the graph at the end of the collection. This distribution is not usual, because
it seems the network is not a scale-free one. Indeed, it fits better with a log-
normal distribution (which correspond to the multiplicative product of many
independent random variables) than with a power-law one.

Fig. 2: Degree distribution of the network

The diameter of the graph is 6, that is small, as expected for social networks.
The clustering coefficient is around 0.25, that is usual for social networks, which
have usually higher clustering coefficient than other networks. With the Louvain
algorithm [3], which is a community detection algorithm, we obtain a modularity
score of 0.45, that shows there are clusters in the network.

Excepted for the degree distribution, which is not a power-law one, the prop-
erties of the network are usual.
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2.2 How the new links appear

We have seen the properties of the network at the end of the data collection,
but it is also interesting to observe how the network evolves over time. Such
observations could permit to make more realistic models, like the forest fire
model [6].

Figure 3 shows the evolution of the number of nodes and edges in the network
during the year. We can see that most of the nodes have been already in the
network before the beginning of the data collection, and most of the new edges
and new nodes appear at the beginning of the data collection, probably because
of the start of the school year. Indeed, as people are in new classes, they could
meet unknown people, who are potential new friends, at this time.

Fig. 3: Number of edges (on the left) and nodes (on the right) in the graph in
the time

When we look the new links in arrival order, we can see that they are arranged
in sequences: successively, there is a node (I call it the active node) which becomes
friend with several other nodes, which constitute a set I call sequence. We can
also see that there is a link between the successive sequences: when a node adds
new friends, those new friends have an inclination towards becoming themselves
friends. Moreover, when a node adds new friends, it is often one of its new friends
that becomes active. Figure 4 shows this phenomenon.

We can see on Figure 5 the sizes of the sequences in the time. We can observe
large sequences at the beginning of the year, then the sizes decrease. This decline
reinforces the idea that sequences rely on previous ones. A sequence with a given
size seems to create new sequences with lower sizes, which are subsets of the
initial sequence.

3 Sequence model

I propose here a new graph model, based on the sequences of the previous sec-
tion. The main idea is that a node adds new links with several others, which
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(a) Step 1 (b) Step 2 (c) Step 3

Fig. 4: Example of sequences: at each step, the red node is the active one, the
blue nodes are the sequence (the new friends of the active node) and other nodes
are in green. New edges at each step are in yellow.

Fig. 5: Size of the sequences in the time
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constitute a sequence, and this sequence implies other similar sequences. This
model is closer to generative models than others because, although all the nodes
are present at the beginning, the edges are added step by step, sequences by
sequences. This model is based on the closure of recently opened triangles, and
thus combines ingredients of triadic closure [2] [5] and burstiness observed in
temporal networks [4].

3.1 Model and algorithm

The model to build graph works by iteration. All the nodes have an activation
rate and a potential sequence of nodes. At each iteration, a node becomes active
(chosen randomly with the activation rate: the higher the activation rate is, the
higher the probability that the node is chosen is), and it creates a link with nodes
which constitute a new sequence: all the nodes in the potential sequence have a
high probability to be in the new sequence, others a low one. For all nodes in
the new sequence, their own potential sequence becomes the new one except the
node itself, and their activation rate increases.

The entry variables of the model are:

– N : Number of nodes
– I: list of initiators and their first sequences
– a: initial activation rate
– aseq: activation rate when a node appears in a sequence the first time, bigger

than a
– m: multiplicative factor of the activation rate for nodes that appear in several

sequences
– p: When a node becomes active, it has a probability p to create a link with

each node in his potential sequence
– ε: When a node becomes active, it has a probability ε to create a link with

each node that is not in his potential sequence
– K: Iteration number (at each iteration, a node is activated)

The list of the initiators and their first sequences can be chosen randomly.
In my experiments, I only give the number of initiator and the average size of
the first sequences, then the algorithm builds them randomly.

Algorithm:
First, we have to initialize the graph and the first sequences. For each node,

we initialize the potential sequence (empty) and the activation rate (a). Then
we initialize the graph, and add links between initiators and their sequences. For
nodes in those sequences, we increase the activation rate and update their own
potential sequence.

After that, we do K times the following process:

– We choose the node to activate (randomly, with the activation rate)
– We choose the new links for the active node against its potential sequence,

and update activation rates and potential sequences of new friends

The more detailed algorithm is presented in Appendix.



Link prediction with sequences on an online social network 11

3.2 Properties

Unfortunately, the model is too complicated to have interesting analytical re-
sults. Because of this, I present here only experimental results about the model.
For my experiments, I use the following parameters: 1000 nodes, 50 initiators
with initial sequence of random size between 10 and 80, a = 10−6, aseq = 10−2,
m = 1.2, p = 0.7, ε = 10−7, and K = 5000 iterations.

Fig. 6: Degree distribution of a graph built with the model

Figure 6 shows the degree distribution of a graph obtained with the model.
We can see that it is similar to the real graph one, and it fits better with a
log-normal distribution than with a power-law one. However, we can see quite
a large number of nodes with low degree (less than 2), which seem to be nodes
that were not in one of the initial sequences.

Figure 7 shows the sizes of the sequences in the time. In average, they de-
crease, like the dataset sequences sizes we observed previously.

Fig. 7: Size of the sequences by arrival order (local mean in green)

Others properties are presented in the Figure 8. I obtained them building 100
graphs with the model, and for each of them, the initiators and initial sequences
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are chosen randomly. We can notice that the standard deviation is always around
10% of the average. All the values are similar to those of the real graph. This
model is interesting because it has all the properties of the real graphs. Even if we
have not analytical results, we can give an intuition for the obtained properties.
Indeed, as sequences rely on previous local ones, it encouraged the creation
of clusters, that explains high clustering coefficient and modularity. The low
diameter can be explained by the fact that some nodes belong to several clusters
(those which are in several sequences at the beginning), that reduces the distance
between nodes in the clusters, and the fact that nodes in a same cluster are very
close.

Number of
edges

Diameter Modularity Clustering co-
efficient

Build time

Average 25,114 5.1 0.372 0.337 10.5s

Standard de-
viation

2094 0.50 0.02 0.012 0.6

Fig. 8: Properties of the model

The clustering coefficient is also similar to the real graph one, and as we can
see one Figure 9 it relies on the probability p to make new links with the nodes in
the potential sequence. The clustering coefficient increases with p, as expected.

Fig. 9: Clustering coefficient against p

This model has some drawbacks. On one hand, it has a lot of parameters. In
comparison, models presented in the introduction have not more than 2 parame-
ters. On the other hand, build a graph with this model is quite expensive in time
(the complexity of the algorithm is O(K ∗N), in comparison the complexity in
time of the configuration model presented in the introduction is O(N+MlogM),
where M is the number of edges [8]), but also in space (we have to save two
variables by nodes, so the space complexity is O(N)). In spite of this, we have
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networks with the same properties than real-world networks, and which are built
with a similar mechanism that the dataset network. Such a mechanism could be
the reason of observed properties of real online social networks like Facebook
ones.

4 Link prediction

We can give at the sequence model particular initiators and initial sequences
as entry variables. Thus, if we have real sequences, we can use the model for
link prediction. It should be underlined that such a prediction doesn’t follow the
definition given in the introduction: here we don’t only have a snapshot of the
network, but we have also temporal data, the sequences.

4.1 How to use the model for link prediction ?

We can use this model to predict the future links in a network. We could only
define an observation period, then save the sequences (and the associated active
nodes) during this period, and use the sequence model algorithm with this data.
However, there would be all the parameters to choose (we could use the Approx-
imate Bayesian Computation [13] for example), and such a prediction would not
always give the same results, because of the probabilities in the model.

As the classic prediction link models work with measures, I use the model to
compute a score for each potential link. I defined an observation period, and save
the sequences during this period. For each potential link, I initialized the score
to zero. Then, for each couple of nodes within a sequence and not linked at the
end of the observation period, I increased the score of the associated potential
link by 1. Thus, each potential link in the network has a score, which is a positive
integer.

I did it on the dataset network with an observation period of one month, and
it gives around 200 sequences.

4.2 Comparison with other link prediction methods

I compare the results of the prediction using the sequence model with some
of the classic link prediction methods that I presented in the introduction. For
each method, using a threshold, we can select the potential links with the high-
est scores. But the number of predicted links relies on the threshold. Thus, to
compare the results of the different methods, I display the percentage of good
prediction against the total number of predicted links.

Results are presented in the Figure 10. We can see that the sequence method
is better than others for small numbers of predicted links (less than 2,000). For
bigger numbers, all the methods have similar results, except the preferential
attachment one which is clearly the worst.

As I use the dynamic of the network, I also tried the classic methods on the
graph where there are only the links that appear during the observation month
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Fig. 10: Results of link prediction methods. On the left, classic methods use the
snapshot of the network at the end of the observation month. On the right, they
use only the graph with the links that appear during the observation month.

(again, it doesn’t follow the definition given previously), because it seems that
the recent activity of the network impacts on its future (it is what we notice with
the sequences). Indeed, we can see on Figure 10 the results of those predictions,
and the Resource allocation method is better than before. The sequence method
is again the best for small numbers of predicted links. Notice that here, the
Common Neighbors method is closed to the sequence one: when two nodes are
in a same sequence, they have a common neighbor which is the initiator of the
sequence. But they are not exactly the same, because you can have a same
initiator with several sequences, and in this case, all the nodes in the sequences
have a common neighbor (the initator), but they are not in the same sequence.
This is a little difference but we can see that results of the sequence model is
here better than common neighbors model results (except for more than 8,000
predicted nodes).

In the real network, there are around 3,000 new edges that appear after the
observation month. For this value of predicted links, the sequence model is not
the best. However, most of the links predicted by the sequence method appear
shortly after the observation month, so the sequence method seems better for
short time prediction (indeed, in this case there is less links to predict, and the
sequence model is the best).

4.3 Hybrid method

An interesting property of the sequence method is that it gives different pre-
dicted links than classic methods, while all classic methods give similar sets of
predicted links. Indeed, classic methods give sets of predicted links with 90% of
the links in common, while only 20% of them are in common with the sequence
method prediction set .Thus, we can use it to make a hybrid prediction method,
combining a classic method and the sequence one.

I used the Common Neighbors method to make it, because its measure has the
same scale that the sequence method one, and their meanings are closed. Thus,
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I simply defined the score of the hybrid method as the sum of the score of the
sequence method (used on the observation month), and the score of the Common
Neighbors method used on the snapshot of the network before the observation
month, because the sequence model can’t predict the links that don’t appear
because of the sequences.

Fig. 11: Results of link prediction methods, in comparison with the hybrid
method. Classic methods used the snapshot of the network at the end of the
observation month

Figure 11 shows the results of the hybrid method, in comparison with other
methods, and we can see that the hybrid method is the best one. Nevertheless,
this method needs more information than the others, because it needs a snapshot
of the network and an observation period.

This method is efficient, but has some drawbacks: she needs a lot of data
on the network, and only works on online social networks where we can observe
sequences, like Facebook networks. On such networks, we could combine this
method with the classic ones in other ways. For example, it is possible to use
several methods and machine learning to improve the performance of the link
prediction, as the RankMerging do [14].

5 Conclusion

During my internship, I studied a Facebook network and its evolution during
one year. Based on observations of the arrival of the new links, I proposed a new
graph model: the sequence model. Then I adapted this model for link prediction,
and I compared it with the classic link prediction methods. Finally, I made a
hybrid model, using the sequence and the Common Neighbors models, which
outperforms the classic link prediction models.

The sequence model is an interesting one because it has most of the properties
of the real graphs: a high clustering coefficient, a low diameter, and a high
modularity. The observed mechanism of sequences seems to be an explanation
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of these properties. However, the model is too complicated to have interesting
analytical results and is expensive.

On online social networks like Facebook, the link prediction could be used
for the friend recommendations, combined with information people shares, like
their work or their location. The use of this model for the link prediction problem
is possible: not only it has good results, particularly for short time prediction,
but also it gives different links that classic methods, so it permits to make a
hybrid method with the classic ones (here the Common Neighbors method),
that improves the efficiency of the prediction. However, predictions with the
sequence model only work on online social networks like the studied one, and
seems efficiency only at the beginning of the setting up of the network, because
it is at this time there are the biggest sequences.
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Appendix

Here is the detailled algorithm to build graph with the sequence model. The
function random() return a random floating number between 0 and 1, and the
function choose node() return a node of the graph, chosen at random against
the activation rate of the nodes.

Algorithm 1 Sequence model

G = Graph()
for node = 1 to N do
G.add node(node)
node.potential sequence = {}
node.activation = a

end for
for i in I do

for node in S[i] do
G.add edge(i, node)
node.potential sequence = S[i] \ {{node} ∪G.neighbors(n)}
node.activation = max(aseq,m× node.activation)

end for
end for
for k = 1 to k do
node = choose node()
new sequence = [ ]
for n in node.potential sequence do

if random() < p then
new sequence.append(n)

end if
end for
for n in G.nodes() do

if n not in node.potential sequence AND random() < ε then
new sequence.append(n)

end if
end for
for n in new sequence do
G.add edge(node, n)
n.potential sequence = new sequence \ {{node} ∪G.neighbors(n)}
n.activation = max(aseq,m× node.activation)

end for
end for
return G


