Colles de la semaine du 8 au 12 janvier 2018

Cours 1. Soit un ensemble E muni d'une loi de composition interne * associative et ayant un élément neutre.

- 1. Pour $x \in E$ ayant un symétrique, décrire le symétrique de $\text{sym}_*(x)$.
- 2. Pour $x_1, x_2 \in E$ ayant un symétrique, décrire le symétrique de $x_1 * x_2$.

Cours 2. Définition et caractérisations d'un sous-groupe.

Cours 3. Le groupe symétrique est-il abélien?

Cours 4. Montrer que la signature est l'unique application à valeurs dans $\{\pm 1\}$ telle que $f(\sigma \circ \sigma') = f(\sigma)f(\sigma')$ et qui envoie les transpositions sur -1.

Cours 5. Montrer que l'ensemble des inversibles d'un anneau est un groupe.

Cours 6. Montrer que tout corps (commutatif) est intègre.

Exercice 2.1 Soit E un ensemble muni d'une loi de composition interne * associative et possédant un neutre e. On suppose que $\forall x \in E, x^2 = e$. Montrer que (E, *) est un groupe abélien.

Exercice 2.2 Soit E un ensemble fini muni d'une loi de composition interne associative. Montrer qu'il existe $s \in E$ tel que $s^2 = s$.

Exercice 2.3 Soient c > 0 et I =]-c, c[. On pose $\forall (x,y) \in I^2, \ x * y = \frac{x+y}{1+\frac{xy}{c^2}}$. Montrer que (I,*) est un groupe abélien.

Exercice 2.4 Montrer que l'ensemble $\mathbb{Z}[i] = \{u + iv \in \mathbb{C}, (u, v) \in \mathbb{Z}^2\}$ muni des lois + et \times usuelles dans \mathbb{C} est un anneau. Déterminer le groupe de ses éléments inversibles.

Exercice 2.5 Calculer σ^{2018} avec $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 7 & 10 & 5 & 2 & 9 & 4 & 6 & 8 & 3 \end{pmatrix}$.

ENS Rennes