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Abstract. The finite element method (FEM) can be used to simulate
physical loads on a 3d mesh. We investigate the following idea: from
a FEM simulation can be extracted a tensor, giving the main stress
directions. We want to produce a hexahedral mesh aligned with these
directions. Such a mesh could be the basis for the visualization of a
tensor field. It could also be used as a truss structure, that could be
further optimized, resistant to the initial loads.
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1 Introduction

The first problem studied during this internship is topology optimization. This
domain is interested in an efficient use of materials. More precisely, topology
optimization consists in finding the optimal distribution of a given amount of
material, under design constraints and a physical model. The applications are
numerous; for example, anything that has to endure loads, like parts of a vehicle,
wind turbines or medical implants, can benefit from it. Topology optimization
works by simulating the removal and redistribution of material in an object,
seeking a given volume reduction and the minimization of a performance mea-
sure. An extensive review of this type of problems have been done by Bendse
and Sigmund [1].

A domain that benefits from topology optimization is 3d printing. Printed
objects often have to meet two antagonistic goals: being cheap to print (using as
few material as possible) and meet physical constraints (solidity, equilibrium, etc,
that require material). Topology optimization can be used to optimize the distri-
bution of material inside a given body, thus achieving these two goals. However,
to be practical, a fine resolution of the meshes is required. Time and memory
consumption issues quickly arise on a desktop computer, limiting the spread of
these techniques. GPU-based implementations are a remedy, and our first goal
was to extend an already existing solver[8] with heat diffusion constraints.
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The second and main problem studied during this internhsip is the search of
tensor-field aligned hexahedral meshes. When running physical simulations on
a body, the infinitesimal strain tensor can be extracted. From this tensor, the
main stress directions can be computed. The visualization of the tensor would
provide informations on how the body reacts to the external forces applied on
it. The visualization can be done by computing and representing the remarkable
parts of its topology. This method works well in 2d [9], but is incomplete in
3d [10]. Another idea is to plot streamlines following the stress directions [2]; this
methods gives good visual results, but focuses only on the first stress direction,
forgetting the secondary and the tertiary one.

The idea explored here is to visualize the three main directions (in the case
of 3d meshes) by finding a hexahedral mesh aligned with the tensor field. The
alignement of the hexahedral elements would follow the three directions. The
individual sizes of the hexahedral elements would follow the norm of the tensor
field. To achieve this, we looked into automatic hexahedral remeshing [3,4], and
tried to modify the process to guide the hexahedral meshing process.

2 Topology Optimisation

2.1 The topology optimization problem

Topology optimization consists in finding the optimal distribution of a given
amount of material in a body, such that it optimizes its behavior relatively to
external constraints. A common example is trying to minimize the compliance,
given a set of external loads.

Topology optimization is similar, albeit disctinct, from sizing optimization
and shape optimization (see Figure 1, borrowed from [1] for a comparison). Ex-
ample of sizing problems are finding the optimal thickness of a linearly elastic
plate, or finding the optimal thicknesses of the members of a truss structure.
Shape optimization consists in finding the optimal shape of a body, given a
topology. Topology optimization demands finding the shape but also the distri-
bution of holes and the connectivity of the domain.

2.2 Illustration with heat diffusion and resolution technique

We studied the following problem. A domain Ω ∈ R3 of thermal conductivity κ,
uniformly heated by heat sources of density d, is given. Its boundary is made of
two distinct parts: Ωs, held at constant temperature Ts, and Ωi, isolated. The
domain can be filled with a material of conductivity κ, up to a fraction r of its
volume. The goal is to maximize the average temperature (at thermal equilib-
rium) of the domain. The density of material (a function f : Ω → {0, 1} giving
the presence, or absence, of material) is to be determined. It is an optimization
problem, that can be formulated this way:

minimize: f →
∫
Ω

T (v)dv (1)
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Fig. 1: Comparison between different structural optimization problems a) Exam-
ple of a size optimization problem b) Example of a shape optimization problem
c) Example of a topology optimization problem

with: - f : Ω → {0, 1} (2)

-

∫
Ω

f(v)dv ≤ r ·
∫
Ω

1dv (3)

- κ = κ+ f · (κ− κ) (4)

- −∆ · (κ∆T ) = d (5)

- T = Ts on Ωs (6)

- (κ∆T ) · u = 0 on Ωi, u being the unit vector normal to the surface
(7)

A first approximation used to solve this problem is to use a finite element
method (FEM) discretization. The space is discretized in smaller elements (typ-
ically: using a regular grid). The smaller the resolution, the better the approxi-
mation.

The temperature is then supposed to be piecewise bilinear (trilinear in 3d)
in each element. Shape functions are used to interpolate the temperature at any
position in the body from the temperature at each node. For example, given a
cubic axis-aligned element of size 1 (represented in figure 2), the temperature is
computed this way:

T (x, y, z) =
∑

0≤i<n

Ti ·Ni (8)

with:
N0 : x, y, z → (1− x)z(1− y) N4 : x, y, z → (1− x)zy
N1 : x, y, z → (1− x)(1− z)(1− y) N5 : x, y, z → (1− x)(1− z)y
N2 : x, y, z → xz(1− y) N6 : x, y, z → xzy
N3 : x, y, z → x(1− z)(1− y) N7 : x, y, z → x(1− z)y
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Fig. 2: A cubic FEM element

Then, a second approximation is to give the design variable continuous val-
ues (f : Ω → [0, 1]). Having the integer constraint relaxed, this optimization
problem becomes convex.

Intermediate values have to be dealt with later, for example by choosing a
cutoff to get only 1 and 0. Also, to favor extreme values, the Solid Isotropic
Material with Penalization (SIMP) model is commonly used. The density of ma-
terial is taken int account differently when computing the thermal conductivity
: κ = κ + fp · (κ − κ)). Intermediate values for f are penalized when p > 1, as
they contribute less to the conductivity. The convexity of the problem is lost,
however.

Let n be the number of elements. Let then ~κ = (κ1, κ2, · · · , κn) be the thermic

conductivity of each element. Let ~f = (f1, f2, · · · , fn) be the density of material
in each element. Let ~t = (t1, t2, · · · , tn) and ~ϕ = (ϕ1, ϕ2, · · · , ϕn) be respectively
the degrees of freedom of T and the shape functions of the elements, such that
T =

∑
1≤i≤n ti · ϕi. The optimization problen can then we written:

minimize: ~f →
∫
Ω

T (v)dv

with: - f ∈ [0, 1]
n

(9)

-
∑

1≤i≤n

fi ≤ r · n (10)

- ~κ = κ+ ~f · (κ− κ) (11)

- −∆ · (κ∆T ) = d (12)

- T = Ts on Ωs (13)

- (κ∆T ) · u = 0 on Ωi, u being the unit vector normal to the surface
(14)



Tensor field aligned hex-dominant meshing 5

We only gave an overview of how topology optimization works, and what
it can achieve. It is possible to include material constraints (like regions with
a forced presence of material). Other physical constraints can be studied and
combined (vibrations, mechanical stress, pressure loads, etc). Solutions to some
discretization-induced issues exist, like the checkboard pattern issue (visible in
figure 3). Another example of topology optimization is given in figure 4. The
initial, an intermediate, and the final step of the resolution are shown. For this
example, a vertical force is applied at the bottom right corner of the object, and
the compliance is minimized. A 40% volume reduction is seeked; the resolution
is initialized by giving a density of material of .4 for every element.

Fig. 3: Visualization of the solution for a topology optimzation problem on heat
diffusion, using a 60 by 60 grid for the FEM simulation

The combination of topology optimization and heat diffusion have already
been studied. One can refer to [5] for a study in 2d with a GPU implementation.
Our goal was to study the problem in 3d, also targeting a GPU implementation,
and eventually 3d printing some results. However, we moved to another topic
after a while.

3 Tensor field aligned hexahedral mesh

3.1 Introduction

We consider here deformable bodies. Given an oject, with its physical properties,
and a set of loads, the finite element method can be applied to compute the
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(a) Initialisation

(b) 20 steps later

(c) Final design

Fig. 4: Topology optimization for compliance minimization

resulting displacement of the points of the object. The goal of these computation
could be to minimize the compliance of the object, i.e the average squared
displacement, by topology optimization. The result would be the most resistant
object to the given load. We will try a different method to generate a resistant
object.

Here, we are interested in the infinitesimal strain tensor ε that can be ex-
tracted from the displacement vector u:

ε =
1

2

(
∆u+ (∆u)T

)
(15)

This tensor is at every point a real and symetric matrix, and can thus be
diagonalized. Its three eigenvectors give the main stress directions in the object
at every point. The visualization of this tensor can provide valuable informations,
like finding the most stressed areas, assessing the regularity of this tensor field
or adjusting some parameters to achieve some properties. A simple visualization
consists in taking the first stress direction, and plotting a set of streamlines
alongside this direction. As an example, it have been used to steer orthopedic
implants from a reference stress field [2] (see figure 5). This method is however
incomplete, as only one of the stress directions is used.

Our objective was to produce, from a tetrahedral mesh and a set of loads,
a hexahedral mesh aligned with the infinitesimal strain tensor. The objective is
twofold. First, we wanted to investigate the possibility of visualizing a tensor
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Fig. 5: Visualization of a simulated stress tensor fields for a human femur under
load

through a hexahedral mesh. Second, we wanted to use the mesh as a basis for a
structure resistant to the initial loads. This truss structure would be lightweight
in amount of material, thus suited for 3d printing for example. Also, it could
have some intersting properties, like being resistant to loads close to the original
ones, something common topology optimization can not guarantee.

3.2 Parameterizations

We exploited ideas from automatic hexahedral remeshing [3] and hex-dominant
remeshing [4], where a generic framework for defining hexahedral meshes is given.
By defining a parameterization of an object, a continous function f : Ω →
R3, one obtains a hexahedral meshing of the object by taking the pre-image of
the integer grid f−1

({
(x, y, z) ∈ R3|x ∈ Z ∨ y ∈ Z ∨ z ∈ Z

})
. With this vision,

a hexahedral mesh is defined by iso-surfaces in the parameter space R3. Thus,
by taking a parameterization whose gradient is close to a given tensor field, one
obtains a hexadral mesh aligned with it.

This idea of finding a parameterization have to be refined. First, boundary
counditions have to be enforced, so that the final mesh respects the boundaries
of the initial one. For example, one can enforce the final boundary vertices to
belong to the initial boundary surface. Second, this type of parameterization can
not produce all hexahedral meshes, and some simple tensor field can produce
distorted meshes. Figure 6 is an example of a mesh that can not be the pre-
image of a continuous parameterization. The center of the object sees three lines
joining on one point; such a pattern cannot occur if f is continuous.
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From this point, we consider the base mesh to be a tetrahedral mesh (or ”tet
mesh”). To cover more final hexahedral meshes, the set of parameterizations
can be extended to the set of function Ω → R3 continuous on each tetrahedron,
respecting the following condition:

for every adjacent tets t and s: f|t = Rt,s · f|s + Tt,s (16)

where Tt,s is constant vector of Z3 and Rt,s an element of the chiral cubical
symmetry group (a rotation matrix mapping coordinate axes to coordinate axes).
The set of transformations defined by the different Tt,s and Rt,s leaves the integer
grid invariant, allowing a smooth transtion between every adjacent tetrahedra.
In practice, we work with parameterizations that are linear on each tet (instead
of being continuous).

Fig. 6: Hexahedral mesh that can not correspond to a simple continuous param-
eterization

An example of transition is shown in figure 7 (in 2d). In each tetrahedron, the
parameterization is represented. The origin (the point p verifying f(p) = (0, 0))
is plotted as a black dot. The integer lines parallel to (Ox) are plotted in blue
(the points p verifying f(p) ∈ R × Z). The integer lines parallel to (Oy) are
plotted in red. The axis are plotted with arrows. Despite the parameterization
being discontinuous at the frontier between the two tets, the integer grid is left
continuous: each integer line on a tet joins another one of the other tet. In this
example, by naming t the upper tet and s the lower one, the rotation matrix is:



Tensor field aligned hex-dominant meshing 9

Rt,s =

(
0 −1
1 0

)
: going from s to t, (Ox) is mapped to −(Oy) and (Oy) to (Ox).

Also we can compute Tt,s =

(
-3
1

)
by identifying two points at the frontier.

Fig. 7: Example of transition between two adjacent tets

3.3 Implementation

We tried to implement the idea described here. Our software pipeline consists of
the following steps:

1. Run a finite element simulation on a given tet mesh with a given set of loads.
2. Extract the strain tensor ε from the simulation.
3. Run a hex-dominant remeshing program, replacing the automatically gener-

ated frame-field with the one extracted earlier.

The FEM simulation is realised using the Vega library [6]. The hex-dominant
meshing algorithm, introduced in [4], is implemented by the Geogram [7] library.
Geogram also includes a mesh visualization tool, run at the end of the pipeline to
examine the results. Unfortunately, we didn’t have enough time to get a working
pipeline.

4 Conclusion

We explored two subjets during this internship. Topology optimization for heat
diffusion was the first one. The goal was to get familiar with the finite element
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method and topology optimization. However, we didn’t go to the final imple-
mentation. Then, we tried to explore the idea of producing a hexahedral mesh
guided by a tensor field. However, we couldn’t get a working implementation
during the course of the internship, so it is not possible yet to verify the validity
of this project.
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High-Resolution Topology Optimization In IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 22, 3:1195-1208, 2016 http:

//wwwcg.in.tum.de/fileadmin/user_upload/Lehrstuehle/Lehrstuhl_XV/

Research/Publications/2015/TopOpt/preprint.pdf

9. Delmarcelle, Thierry and Hesselink, Lambertus The topology of symmetric, second-
order tensor fields In Proceedings of the conference on Visualization, 140–147,
1994 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.7221&

rep=rep1&type=pdf

10. Hesselink, Lambertus and Levy, Yuval and Lavin, Yingmei The topology of sym-
metric, second-order 3D tensor fields In IEEE Transactions on Visualization and
Computer Graphics, vol. 3, 1:1–11, 1997

https://pdfs.semanticscholar.org/9ed8/197e8476c5c33c15d31a4b54c76836bce2cb.pdf
https://pdfs.semanticscholar.org/9ed8/197e8476c5c33c15d31a4b54c76836bce2cb.pdf
http://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2011_Nieser-Reitebuch-Polthier_CubeCover.pdf
http://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2011_Nieser-Reitebuch-Polthier_CubeCover.pdf
https://hal.inria.fr/hal-01203544
http://www.jstor.org/stable/pdf/25662338.pdf
http://www.jstor.org/stable/pdf/25662338.pdf
http://www.jernejbarbic.com/vega
http://alice.loria.fr/index.php/software/4-library/75-geogram.html
http://alice.loria.fr/index.php/software/4-library/75-geogram.html
http://wwwcg.in.tum.de/fileadmin/user_upload/Lehrstuehle/Lehrstuhl_XV/Research/Publications/2015/TopOpt/preprint.pdf
http://wwwcg.in.tum.de/fileadmin/user_upload/Lehrstuehle/Lehrstuhl_XV/Research/Publications/2015/TopOpt/preprint.pdf
http://wwwcg.in.tum.de/fileadmin/user_upload/Lehrstuehle/Lehrstuhl_XV/Research/Publications/2015/TopOpt/preprint.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.7221&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.7221&rep=rep1&type=pdf

	Tensor field aligned hex-dominant meshing
	Introduction
	Topology Optimisation
	The topology optimization problem
	Illustration with heat diffusion and resolution technique

	Tensor field aligned hexahedral mesh
	Introduction
	Parameterizations
	Implementation

	Conclusion


