
Symbolic derivation of abstract interpreter in Coq
Dominique Barbe

Abstract—Software reliability is a sensitive problem,
from the economic point of view (development costs) and
from the human point of view (embedded computing).
There exists two methods to certify a software. Programs
can be verified by hand, using a proof assistant. Programs
can also be verified automatically by a dedicated tool.
During this internship, we studied the merging of these
two methods. In particular, we tried to completely use the
theoretical framework used for static analysis.

INTRODUCTION

How can we trust the programs incorporated in the
objects around us ? Bugs are frequent : they can be seen
in cell phones, hallway’s screens, printer’s terminals,
etc. But every program can undergo bugs. In particular,
the ones deployed within nuclear plants or planes. Any
flaw in one of these sensitive software can have serious
consequences. Thus, these kind of programs are costly
to develop because a lot of means are deployed to avoid
any mistake.

Let’s take this C program as an example :

int t[25] = {0} ;
int x = y = 0 ;
while (y < 10) {
y = y + 1 ;
if (x < 25) {
x = x + y ;

} else {
x = x - y

}
}
t[x] = 1 ;

To be sure that this program is sound, a few questions
must be answered : do the program halt ? Does the last
command is legal (is x a valid array index) ? Different
methods exists to answer these question. For example,
proving manually the correctness, making tests, etc. But
it would be useful to answer automatically to these kind
of questions. The goal is to scale and analyse larger
programs. Large programs can’t be verified by hand,
either because it is unsafe, or too much time and money
would be spent.

The general problem here is the one of program
semantics. Given the text of a program (its syntax) and a
runtime environment, determine its possible executions

(its semantic). We want to address this problem algo-
rithmically. Does a program capable of computing the
semantic of any program exists ? Such a program would
be used for goals such as :
• determine if a program halt ;
• determine if a program computes the expected val-

ues ;
• determine the areas of the memory reserved by the

program (to free them later).
The halting problem is undecidable. A program that

could state for any program and for any input if it stops
does not exist. The first goal can not be achieved . But
a more general theorem exists. Rice’s theorem states no
non-trivial properties can be computed from the source
code of a program. This theorem applies to programming
languages that are as expressive as a Turing machine.
Thus, there exists no algorithm to compute program’s
semantics.

The problem of program’s semantics can not be com-
pletely solved. Two tracks are possible. Either abandon-
ing the idea of a complete automation. Or inventing
algorithms to analyse a fraction of the programs.

For the first track, one can use a proof assistant, such
as Coq or Isabelle, to certify some aspects of a program.
A proof assistant is a tool allowing formalization and
proof of mathematical theorems. In particular, this ap-
plies to theorems relatives to the execution of programs.
Such methods are not automatic : one must guide the
proof assistant though proofs. But proof assistant are
considered as reliable. They often rely on small kernels,
based upon mathematical theories. Thus, they can ensure
that no flaws lie within the reasoning made. Moreover,
some proof assistants still offer automation for precise
settings.

For the second track, one searches a tool capable of
analysing automatically programs. Two families of such
tools exist. In dynamic analysis, programs are executed
and its effects analysed. This method has the advantage
of being easy to put in place. But it can’t address every
problem (as the halting one), because exhaustive testing
is almost impossible. In static analysis, programs are
read and properties are computed automatically. The
program is never executed. Here, we are interested in

static analysis by abstract interpretation, that we will
detail later.

A static analyser is a program that read a code and try
to compute its semantic. But the analyser is a program
too, sometimes complex. Who will verify the analyser ?
We must find a starting point to put our trust. To solution
explored here is to merge the two methods : using a
proof assistant to build a static analyser. Here, we refer
to the proof assistant Coq, that will be introduced further.
The goal is to have an analyser correct by construction.
We use the proof assistant to prove correct each of its
mechanisms.

To build the analyzer, we use the following theoretical
framework : abstract interpretation. We use this theory
to approximate program’s semantics. In abstract inter-
pretation, two distinguished worlds exist. The concrete
world is used to express properties relatives to programs.
The abstract world approximate such properties. Two
functions link these worlds : α and γ. α is the abstraction
function and γ is the concretization one. They can
be used to express what a correct approximation is.
Actually, abstract interpretation is already used to run
static analysis. But the two function can also be used
to express what an optimal approximation is. The main
goal of this internship was to explore this idea.

I. PRELIMINARIES

A. The proof assistant Coq

Coq is a proof assistant developed since the eighties
at INRIA. It is a tool allowing to write and proof mathe-
matical theorems. It offers a small degree of automation.
Coq is based on a small kernel using the theory of the
calculus of inductive constructions. Its development is
part of a broader logic of systematic verification of IT
tools and mathematical proofs. For example, is was used
to develop CompCert, a certified C compiler. Another
example is the implementation and proof of the four
colors theorem.

We present here the specificities of Coq. Unlike other
languages, it do not provide usual data types (integers,
booleans, etc). In place, it offers a system of inductive
types allowing to redefine the ones needed. Coq also
manipulate predicates, functions and theorems. Proofs
are interactive in Coq. For each theorem Coq shows
the associated goal. As long as the goal is not solved,
”tactics” are applied to transform the goal, solving it or
dividing it.

Coq offers an extraction mechanism : it can generate
Ocaml code from Coq code. Thus, when we finish the

analyzer, we will export it to a more realistic language
(performance-speaking).

B. Abstract interpretation

1) Introduction: Abstract interpretation is a theory
introduced by Patrick and Radhia Cousot in the sev-
enties. It offers a theoretical framework to formalize
methods of static analysis. The main idea is to approx-
imate program’s semantics. Indeed, as it is in general
not computable, program’s operations are simplified. By
loosing precision, one seeks to gain decidability. The
approximated semantic must remain precise enough to
answer interesting questions.

Abstract interpretation allows to compute, at different
points of program, properties on its variables. Such
properties can be ”x is even”, ”0 ≤ x < 100” or ”x
is an imaginary root x7−x2+1”. Generally, for x ∈ Z,
a property on x is an element of ℘(Z). As the worlds
of properties is too complex (℘(Z) is too big), a simpler
one must be found.

An example often used is the abstraction by sign.
Instead of considering every properties on integers, only
the ones relatives to the sign are kept. The abstract
world is {∅, {0},Z−,Z+,Z} (we recall that properties
are elements of ℘(Z). Now, for every concrete property,
an abstract representative must be found. Such a repre-
sentative is an approximation of the original property. In
the context of static analysis, over-approximations must
be done. The goal is to certify that programs are corrects.
With this idea in mind, one had better be too careful than
not enough. False positives (the analyzer finds an error
when there is none) are preferable to false negatives (the
analyzer does not find an error when there is one). Thus,
over-approximation, i.e too generic properties, must be
done. Each element of ℘(Z) is abstract by an element
of {∅, {0},Z−,Z+,Z} containing it. Such an abstraction
should be kept as small as possible, to stay precise.

Abstract interpretation is based upon the theory of
Galois connections, explained further.

2) Galois connections:
a) Definition: a lattice is a quadruplet (E,v,t,u)

where
• E is a set
• v is a partial on E
• t : E × E −→ E is a least upper bound :

– ∀(x, y) ∈ E2 :

x v x t y and y v x t y

– ∀(x, y,m) ∈ E3,

(x v m ∧ y v m)⇒ x t y v m

• t : E × E −→ E is a greatest lower bound :
– ∀(x, y) ∈ E2 :

x u y v x and x u y v y

– ∀(x, y,m) ∈ E3,

(m v x ∧m v y)⇒ m v x u y

b) Example: ℘(Z) can be provided with a structure
of lattice. The order is the usual inclusion. It represents
the implication (between properties). It is partial, as two
properties can’t be always compared. The least upper
bound is the usual union. It represents the disjunction
between hypothesis. The greatest lower bound is the
usual intersection. It represents the conjunction between
hypothesis.

c) Definition: given two lattices, (E,v,t,u) and(
E#,v#,t#,u#

)
, and two functions, α : E −→ E#

and γ : E# −→ E. The pair (α, γ) is said to be a Galois
connection when :

∀(x, x#) ∈ E × E#, α(x) v# x# ⇔ x v γ(x#)

E is the concrete world and E# the abstract world. α
is the abstraction function. For each concrete property P ,
it gives its best abstraction P#. γ is the concretization
function. For each abstract property P#, it gives the
concrete property that is best approximated by it.

We try to explain the given property. Let x be an ele-
ment of E, a property. α(x) is its abstraction, an abstract
property. Let x# be an abstract property approximating
x. Stating that α is the best abstraction is formalized
as follows : α(x) v# x#. Another way to express this
optimality is to use the concretization function. Stating
that γ finds the most general property is formalized as
follows : x v γ(x#).

d) Theorems: given a galois connection (α, γ) be-
tween two lattices (E,v,t,u) and

(
E#,v#,t#,u#

)
,

the following properties hold:
• α and γ are monotonous ;
• ∀x ∈ E, x v γ(α(x)) ;
• ∀x# ∈ E#, α(γ(#)) v# x#.
Informally, these properties must be understood as

such :
• α and γ preserve the order, i.e the implications be-

tween informations. Let’s take an example with the
abstraction by sign. α is the best approximation, so
α({x|x is prime}) = Z+ and α({x|2 ≤ x}) = Z+.
The following property holds : (x is prime) ⇒
(2 ≤ x), or in the conrete world : {x|x is prime} v

{x|2 ≤ x}. And indeed, in the abstract world :
Z+ v# Z+ ;

• α over-approximates (an element taken to the ab-
stract world and then back to the concrete world
would be bigger than at the start) ;

• γ do not introduce loss of information.

The second and the third properties reflect the qualities
required for an abstract analyzer. The first function over-
approximates, to be sure that no execution, no state,
no computation of the program is missed. The second
introduces no loss of informations, as computation in
the abstract world must remain correct.

Here, we did not presented the whole theory. Usually,
complete lattices are used. A complete lattice is a lattice
where the least upper bound and greatest lower bound
operations apply to any subset instead of two elements.
Such operations are used to define fixpoints. We started
by using this simpler framework ; the main goal of this
internship was to study the optimality of the analyser.
For such an objectif, using simple lattices was enough.

II. BUILDING A STATIC ANALYSER WITH COQ :
FORWARD COLLECTING SEMANTICS OF ARITHMETIC

EXPRESSIONS

The idea of building a static analyzer, based on the
theory of abstract interpretation, in Coq, have already
been done [1]. However, the theoritical framework was
not completly used. The abstraction and concretization
functions α and γ allow studying the precision of the
approximations. Given a concrete operator f , its closest
abstract approximation is charaterized by α ◦ f ◦ γ v
f#. By a sequence of derivation this specification, it is
possible to build an explicit operator. Implementing such
derivations in Coq was the goal of this internship.

To build the analyser, we used a document from
Patrick Cousot [2]. It details each step of the construction
of a static analyser.

A static analyser based on abstract interpretation is
made of different parts. One of them is the abstraction
used. We detail the other parts here.

Here is the first example we gave, represented by its
flow control graph.

In a control flow graph, nodes represent different
points of the program. Eedges are labelled with instruc-
tions executed between points or conditions needed to
go from one point to another. Instructions and conditions
are concrete concepts. To perform a static analysis, they
need an abstract equivalent.

We give an example to illustrate the reasonnings done
with instructions, sill with the abstraction by signs. If on
point 2 y is postitive, it will still be positive on point
3, after executing y = y+1. Moreover, this is the most
precise informations that gan be given with this abstract
lattice. However, if on point 2 we know that y was
negative, we would have deduced on point 3 that y is
anywhere (it can have any sign).

A static analyser reason as such automatically. The
choice of the abstraction determine the precision of its
reasonnings.

A. The lattice of intervals

In this internship, we tried to build a specific analyser
using the lattice of intervals as the abstract world. We
supposed that integers are not bounded : the concrete
world was ℘(Z). Thus, the lower and upper bounds of
intervals can be finite or infinite :

E# = {∅} ∪
{
[a, b] | a ∈ Z, b ∈ Z, a ≤ b

}
where Z = Z ∪ {∞} ∪ {−∞}

B. Concrete forward collecting semantics of arithmetic
expressions

We examine the following instruction of the example
code :
x = x + y
Knowing the intervals where x and y are ”living”,

what can be deduced about the interval where x now
lives ? Can more complex expressions be analysed ?
Is the new interval always exact (is it always possible
to compute the exact interval where x lives) ? We will
answer these questions one by one.

The forward/bottom-up collecting semantics of an
expression is a relation that, given a set of valuations (or
”environments”), defines the possible values that it can
evaluate to.

Mathematicaly, we write ρ ` A⇒ v if the arithmetic
expression A can evaluate to v in the environment ρ.
Thus, for an arithmetic expression A and a set of envi-
ronments R, the forward collecting semantics if defined
as such :

FaexpJAKR = { v | ∃ ρ ∈ R, ρ ` A⇒ v }

The forward collecting semantics is concrete : the
abstract notion associated must be defined.

C. Abstract forward collecting semantics of arithmetic
expressions

The ”abstract” forward collecting semantics whould
work as such : given an arithmetic expression and an
abstract environment (a valuation form the set of vari-
ables to the set of intervals), it computes the interval that
the expression can evaluate to. Or at least it computes
an over-approximation : an interval too big, containing
the one that the expression can evaluate to.

The concrete forward collecting semantics is an op-
erator on the set of environments (or valuations). It
has an abstract operator associated, and the theory of
abstract interpretation gives a specification of it. If f is
a concrete operator and (α, γ) a galois connection, the
closest correct approximation of f is f# = α ◦ f ◦ γ.

However, this specification is not yet an implemen-
tation. An over-approximation of this abstract opera-
tor that can be computed is required. To be an over-
approximation, this computable operator Faexp# must
verify :

∀A, ∀R, α
(
FaexpJAK(γ′(R))

)
v Faexp#JAK(R)

where γ′ is the pointwise application of γ.
To define this function, an induction over the structure

of A is employed. We give an example with the sum (as

our precedent example involve the sum of two variables).
In abstract interpretation, computations are moved to an
abstract world. We defined an operator +# that mimics
what happens in the concrete world. Given two intervals
I1 and I2 and two integers x1 and x2, the following
property must hold : if x1 ∈ γ(I1) and x2 ∈ γ(I2), then
x1 + x2 ∈ γ(I1 +# I2). Here, we have :

∀(a1, b1, a2, b2) ∈ Z4
,

[a1, b1] +
[a2, b2] = [a1 + a2, b1 + b2]

e) Remark :: the sum over Z isn’t yet defined. This
can lead to problems, such as ”what is ∞−∞ ?”. This
problem can be postponed, as it shouldn’t appear if the
bounds of the intervals are in the right order.

D. Problems of precision

The way components of expressions are abstracted is
crucial, as it determines the precision of the informations
computed. For example, the way we defined the sum
over intervals is optimal. Let I be the set of intervals ;
the following properties hold :

(1) ∀(i1, i2) ∈ I2, ∀(x1, x2) ∈ Z2,
(x1 ∈ i1 ∧ x2 ∈ i2)⇒ x1 + x2 ∈ i1 +# i2
(the abstract sum respects the concrete sum)

(2) ∀(i1, i2) ∈ I2, ∀x) ∈ Z,
x ∈ i1 +# i2 ⇒ ∃ (x1, x2) ∈ Z2,
x = x1 + x2 ∧ x1 ∈ i1 ∧ x2 ∈ i2

(the sum over intervals correspond to the
sum of sets)

But noting prevented us from defining the sum of
intervals from always being [∞,∞]. Such a definition
would have respected the concrete sum. It would only
have been less precise.

We managed to find the best abstraction for the
sum. However, for some combination of absract world
and operator, it can be impossible. For example : the
multiplication of intervals. This is one of the spots where
precision is lost.

f) Remark: the word ”optimal” is clear. The sens
we gives here is ”that don’t lead to a loss of precision”.
In reality, the sum we defined is not optimal with this
definition, as it doesn’t take into account the relations
between variables. For example, if x in [0, 1], then −x
is in [−1, 0]. With the sum we defined, the information
computed is that x+(−x) is in [−1, 1], wich is correct,
but not precise enough. Some abstract domains can
adress this issue, but this is not the point here.

III. IMPLEMENTING IN COQ THE FORWARD

COLLECTING SEMANTICS

A. Arithmetic expressions

Our static analyzer was a particular case, as we
discussed earlier. We choose to study only the abstraction
by intervals. Following the same reasonning, we choose a
specific definition of the arithmetic expressions. For our
case, an expression is either a constant integer, a variable,
the sum of two expression or a random number (to
handle non deterministic expressions). Such a definition
is enough for what we wanted to study. But it would be
easy to add more cases to the definition.

B. Concrete forward collecting semantics

In the concrete world :

• a constant expression can evaluate into the constant
it represents ;

• a variable expression can evaluate into values given
bu the environment (an environment being a valua-
tion) ;

• the sum of two expressions can evaluate into every
sum of evaluations of the two expressions compos-
ing it ;

• a random expression can evaluate into any integer.

C. Abstract forward collecting semantics

We write again the specification of the abstract for-
ward collecting semantics :

∀A, ∀R, α
(
FaexpJAK(γ′(R))

)
v Faexp#JAK(R)

To implement Faexp#, we worked by induction of
the structure of arithmetic expressions. For each case,
we started from the left member of the specification,
α (FaexpJAK(γ′(R))). Then, by a sequence of deriva-
tions, we tried to make appear an explicit interval i. Thus,
we defined Faexp#JAK(R) = i for this specific case.

A ”sequence of derivations” is a sequence of trans-
formations of the object we are working on. Such
transformations can be making definitions explicit, or
over-approximations of the oject.

The goal is to make these sequences of derivations
inside Coq to proove correct each part of the analyser,
and then to extract the corresponding Ocaml code. Thus,
we would have built and verified at the same time a part
of the analyzer.

g) Example: with the random expression, written
”?” and the abstraction by signs. R is supposed to be
not empty. Then :

α (FaexpJ?K(γ′(R)))
= α ({v | ∃ ρ ∈ γ′(R), ρ `?⇒ v})
= (by definition of . ` .⇒ .)

α ({v | v ∈ Z})
= (this term can be computed)

Z
= (by defining Faexp#JAK(R) = Z)

Faexp#JAK(R)
Such resonnings are given by Cousot. By reproduce

them in Coq to ensure that they are correct. Having
defined the abstract forward collecting semantics in
Coq, we used the extraction mechanism to have the
corresponding Ocaml’s code :

let interpa exp v =
match enva_bottom_dec v with
| Left ->
let rec f = function
| Rand_expr -> Int_pair (Zf_min, Zf_max)
| C_expr z0 -> Int_pair ((Zf_Z z0), (Zf_Z
z0))
| Sum_expr (e0, e1) -> int_sum (f e0) (f
e1)
| Var_expr n0 -> er_env v n0
in f exp

| Right -> Int_pair (Zf_max, Zf_min)

h) Remarks:
• interpa is the name we gave to Faexp# insode

the code ;
• enva_bottom_dec decides if the abstract envi-

ronment is sound or not (it checks if there exists
variables that can’t evaluate to non-empty intervals).

REFERENCES

[1] D. Cachera and D. Pichardie. A certified denotational abstract
interpreter (proof pearl).

[2] P. Cousot. The calculational design of a generic abstract inter-
preter. In M. Broy and R. Steinbrüggen, editors, Calculational
System Design. NATO ASI Series F. IOS Press, Amsterdam,
1999.

