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Abstract. Machine learning systems have been practically shown to
misbehave in adversarial environments, including state-of-the-art neural
networks. Adversarial examples, objects slightly altered in order to be
misclassified with high confidence, while still being close to the origi-
nal object, can be crafted. Theoretical explanations of this problem are
emerging, involving for example the highly linear nature of current classi-
fiers, the low density yet dense repartition of adversarial examples, or the
high intrinsic dimensionality of the data. In this report, we study general
neighbourhood manipulations, where vicinities of objects are modified
by moving them. We show that any neighbourhood manipulation can be
achieved with an infinitesimal amount of movement, provided that the
database is large and the intrinsic dimensionality is too.
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1 Introduction

Machine learning techniques have proven their efficiency in many domains: face
recognition, fraud detection, online recommendation, speech recognition, etc. All
applications are not equally successful, yet these techniques are getting increas-
ingly widespread.

Despite their efficiency, they are highly vulnerable in an adversarial environ-
ment. Machine learning models, including neural networks, can be led to mis-
classify objects with high confidence [8]. To achieve this, a specifically crafted
small noise is added to the input. The nature of the noise is not fixed, and the
adversarial examples can seem indistinguishable from the original input.

Two others intriguing properties make these attacks very dangerous. First,
adversarial examples tend to generalize well across models [9,11], despite their
differences in architectures and training sets. Thus, an attacker does not neces-
sarily need an access to the details of the classifier; instead he could train its
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own system and use it to craft adversarial examples. Second, these attacks are
likely to happen in the physical world: a significant portion of printed adversarial
images are still misclassified once photographed back and fed into a classifier [10].

Adversarial examples have to be taken into account. In contexts where there
is an adversary, like spam detection, they will occur. In others contexts, they can
improve the efficiency of classifiers if used in the training set [11]. There have
been several attempts to theoretically explain the adversarial effect [11,13].

In this report, we expand the following work: [13]. In this paper, a first
theoretical explanation of the adversarial effect is given. Using the notion of Local
Intrinsic Dimensionality as a measure of the vulnerability of machine learning
systems, it shows that the adversarial effect is unavoidable as the size of the
training set and the intrinsic dimensionality both rise. More particularly: in an
Euclidean space, it considers a reference point perturbed toward a target point,
so as to have its as its closest neighbour. The amount of perturbation required
tends to 0 when both the number of points and the instrincic dimensionality at
the reference point’s location tends toward infinity.

In this report, this result is extended to more cases. The conclusion can be
summarized as such: any desired neighbourhood manipulation can be achieved
with an amount of perturbation tending to 0 with a high number of points and
a high intrinsic dimensionality.

This report is organized as follows: in Section 2, we present the notion of
Local Intrinsic Dimensionality and a theorem that will support our later proofs.
In Section 3 we give a proof of our theoretical results. In Section 4 we present the
experimental work verifying our results, and exploring some details. Section 5
concludes this report with some possible extensions for this work.

2 Background

2.1 The adversarial effect

Several methods for crafting adversarial objects exist. For example, one of them
involves solving the following optimization problem:

min
d
‖d‖+ αDKL(pA||f(x + d)), subject to: l ≤ x + d ≤ u (1)

f : x→ [p1, . . . , pC ] is the classifier, a function computing the probability of an
object x ∈ Rd to belong to each of the C predefined classes. pA = [1i=a] is the
targeted probability. x and d are respectively the reference object and the noise
added to it. DKL(·) is the Kullback-Leibler divergence, α is a trade-off between
the level of noise and the closeness to the targeted output. l and u define the
lower and upper bounds of the input domain respectively.

With classifiers trained using gradient descent, the above optimization prob-
lem can be solved easily, using either gradient descent or box-constrained L-
BFGS [9]. An example of an adversarial attack using this strategy is shown in
Figure 1.
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Fig. 1: Using the optimization formulation in (1), adding adversarial noise (cen-
ter) to an example of class ‘Shark’ (left) induces a deep neural network to assign
the perturbed result (right) to the class ‘Binocular’.

2.2 Local Intrinsic dimensionality (LID)

We introduce here a notion of local dimension, or intrinsic dimensionality (ID).
For the m-dimensional Euclidean space, doubling the radius of a sphere in-

creases its volume by a factor 2m. More generally, given two balls of different
radius, the ratio of the volumes and the distances is linked by the dimension of
the space m.

V2
V1

=

(
r2
r1

)m
(2)

Thus, the dimension of the space can be recovered from the radius and the
volume of two spheres:

m =
lnV2 − lnV1
ln r2 − ln r1

. (3)

For finite data sets, the expansion dimension (ED) is computed by estimating
the volume of the spheres by the number of points they enclose [3,2]. This notion
of intrinsic dimension can be expanded to a statistical setting, rather than being
a characteristic of a given set of points. The distribution of distances to a query
point is modelled as a continuous random variable X [4,6]. The notion of volume
then becomes the notion of probability measure. ID can then be modelled as a
function of distance X = r, by letting the radii of the two balls be r1 = r and
r2 = (1 + ε)r, and letting ε→ 0+.

Definition 1 ([6]). Let X be a random distance variable. For any r such that
FX(r) > 0, the local intrinsic dimensionality of X at r is given by

IDFX
(r) , lim

ε→0+

lnFX((1 + ε)r)− lnFX(r)

ln((1 + ε)r)− ln r
=

r · F ′X(r)

FX(r)
, (4)

wherever the limit exists. The second equality follows by applying l’Hôpital’s rule
to the limits provided that FX is positive and differentiable over an open interval
containing r.

Under this distributional interpretation, the original data set determines a
sample of distances from a given point. The intrinsic dimensionality (here re-
ferred to simply as ‘local ID’, or ‘LID’) of this distance distribution FX is es-
timated. The definition of IDFX

can be extended to the case where r = 0, by



4 Dominique Barbe

taking the limit of IDFX
(r) as r → 0+, whenever this limit exists:

IDFX
(0) , lim

r→0+
IDFX

(r) . (5)

For an illustration of the intrinsic dimensionality of distance distributions,
see Figure 2.

Fig. 2: The random distance variables X and Y have different LID values at
distance r. Although the total probability measures within distance r are the
same (that is, FX(r) = FY(r)), IDFY

(r) is greater than one would expect for a
locally uniform distribution of points in R2, while IDFX

(r) is less.

The smallest distances from a given point can be regarded as ‘extreme events’
associated with the lower tail of the underlying distribution. The modeling of
neighborhood distance values can thus be investigated from the viewpoint of
extreme value theory (EVT). In [1], it is shown that the EVT representation of
the distance distribution FX completely determines function IDFX

, and that the
EVT index is in fact identical to IDFX

(0).

Theorem 1 ([1]). Let F : (0, z) → R be a function over the range (0, z), for
some choice of z > 0 (possibly infinite). Let v ∈ [0, z) be a value for which
IDF (v) exists. Then for any r, w ∈ (0, z) such that F is positive and differentiable
everywhere over an open interval containing [min{r, w},max{r, w}],

F (r)

F (w)
=
( r
w

)IDF (v)

·GF,v,w(r), where (6)

GF,v,w(r) , exp

(∫ w

r

IDF (v)− IDF (t)

t
dt

)
. (7)

Moreover, let c > 1 be a constant, and assume that IDF (0) exists. Then

lim
w→0+

0<w/c≤r≤cw

GF,0,w(r) = 1 . (8)

Proof. See [13].



The Compromisability of Data Indexing and Analysis 5

This theorem shows that, asymptotically, a relation between probability mea-
sure (volume) and distances (radius) similar to equation 2 holds. The dimension
involved is not the representational one anymore, but the LID. The representa-
tional dimension disappear because the LID is simply a property of the distri-
bution of distances; the space in which the data live do not matter.

Practical methods that have been developed for the estimation of the index,
including expansion-based estimators [4] and the well-known Hill estimator and
its variants [7], can all be applied to LID (for a survey, see [5]).

2.3 Previous results

In this section, we refer to the result given in [13]. Our theoretical work, exposed
in Section 3, is a generalization and an improvement of this result.

As there is a work with infinitesimal noise, the space the data live in should
be continuous Also, angles and distances are to be manipulated. Thus, the work
is done in an Euclidean space, assuming that data can be represented in this
space.

Also, all the perturbations theorems presented here are asymptotic, either
this one or our results in Section 3. We do not work with a fixed database, but
with a sequence of such, increasing the number of points. Thus, we also work by
expectation. Let x be a reference point within the Euclidean space S, and FX

the cumulative distribution function of the distribution of distances from x. Let
n ∈ N∗ be the size of the database, and k < n. We say that z is the k-nearest
neighbour (k-NN) of x by expectation when FX(z) = k/n.

In [13] a technical lemma is given at first. A reference point x and a target
point z are defined. Then x is perturbed toward z, their new distance being
reduced by a factor 1 − δ, defining the perturbed point y. For any choice of
probabilities p and q such that 0 < p < q < 1, Lemma 1 provides conditions
on the proportion δ, which when satisfied guarantee that FY(d(y, z)) ≤ p even
when FX(d(x, z)) = q > p.

Fig. 3: An illustration of the construction by which the reference point x is
perturbed towards a target point z, so that the rank of z relative to the resulting
perturbed point y is at most a target value.
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Lemma 1. Let x be a reference point within the Euclidean space S. Let 0 < δ <
1/2 be a fixed real value, and let p and q be real values such that 0 < p < q < 1.
Consider the following construction with points y and z and distance parameters
r, u, v, and w all depending on p, q and δ (see Figure 3):

1. Let u and v be the infimums of the distances from x at which FX(u) = p/2
and FX(v) = q, respectively.

2. Let z ∈ S be any point for which d(x, z) = v.
3. Let y ∈ S be the point lying on the line segment joining x and z, at distance

δv from x.
4. Let r be the supremum of the distances from y at which FY(r) = p, and let

w be the infimum of the distances from z at which FZ(w) = p/2.

If δ ≥ (v2−u2)/(v2−u2+w2), then d(y, z) ≤ r.

Proof. See [13]

Under certain assumptions of the smoothness of the underlying data distribu-
tion, the construction of Lemma 1 can be used to relate the effect of perturbation
on neighbourhoods to the intrinsic dimensionality of the distance distribution
from the perturbed point. We say that the local intrinsic dimensionality of the
euclidean space S is continuous at x ∈ S if the following conditions hold:

1. There exists a distance ρ > 0 for which all points z ∈ S with d(x, z) ≤ ρ
admit a distance distribution whose cumulative distribution function FZ is
differentiable and positive within some open interval with lower bound 0.

2. FZ converges in distribution to FX as z→ x.
3. For each z satisfying the condition above, IDFZ

(0) exists.
4. limz→x IDFZ

(0) = IDFX
(0).

Note that if the distributions FZ are assumed to be absolutely continuous, and
if uniform convergence is assumed in the second condition, then the third and
fourth conditions would follow from the first two conditions.

Theorem 2. Let x be a reference point within the Euclidean space S, and let
FX be the cumulative distribution function of the distribution of distances from
x. Let us assume that the local intrinsic dimensionality of S is continuous at x.
For any real constant k > 1, consider the real-valued parameter n chosen such
that n > k, and let ρn be the infimum of the distances for which the cumulative
distribution function FX achieves k/n — that is, ρn = inf{ρ|FX(ρ) = k/n}.

Let 0 < δ < 1/2 be a fixed real value. With respect to the particular choice of
n, let zn ∈ S be any point for which d(x, zn) = ρn, and let yn ∈ S be the point
lying on the line segment joining x and zn at distance δ · d(x, zn) from x. Then
for every real value ε > 0, there exists n0 > k such that for all n ≥ n0, we have
that

δ ≥ 1− (2k)
−2

IDFX
(0) + ε =⇒ FYn

(d(yn, zn)) ≤ 1/n. (9)

Proof. See [13]
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Thus, the noise required to have the target point become the first nearest
neighbour of the perturbed point is small. More precisely, it tends to 0 when
the number of points and the intrinsic dimensionality at the reference’s location
both increase.

3 Theoretical results

In this section, we present a generalization of the result given in Theorem 2,
extending it to other neighbourhood manipulations.

We distinguished 4 similar uses of adversarial noise. We define 3 points, x
the reference point, z the target point and y the perturbed point. For each case
we give an initial state, linking z and x, and a desired state, linking z and y:

1. we have z 1-NN of x, and we want to achieve z k-NN of y: x removes z of
its neighbourhood.

2. we have x 1-NN of z, and we want to achieve y k-NN of z: x evades z’s
neighbourhood.

3. we have x k-NN of z, and we want to achieve y 1-NN of z: x invades z’s
neighbourhood.

4. we have z k-NN of x, and we want to achieve z 1-NN of y: x captures z in
its neighbourhood.

The fourth case identified is the one studied in [13], where an object is made
misclassified, by perturbing him toward a new object (and its class). The results
proved here are the same for the 4 cases: the amount of noise (relative distance
between z and y) required to achieve the desired effects tends to 0 as both the
number of points in the distribution and the LID at x increases. That is to
say: every neighbourhood manipulation is achievable with an infinitesimal noise,
provided a condition on LID is met and the database is large.

The rest of this section is organised as such: we expose 4 preliminary lemmas
for each case. Then we formalize the 4 situations, and prove that the noise
required tends to 0 for each of them.

3.1 Preliminary lemmas

For the following section, we define:

– Let x be a reference point within the Euclidean space S.
– Let 0 < δ be a fixed real value.
– Let p and q be real values such that 0 < p < q < 1.

For each of the following lemmas, we will start by choosing a point z meeting
a given condition relatively to x. We then define the perturbed point y, always
at distance δv from x. Finally, we give sufficient conditions on δ such that z
meets a new condition relatively to y. Figure 4 illustrates the different positions
of y possible and the notations introduced in the lemmas.
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δv

ϕ

(1 − δ)vδv z

y

yx

Fig. 4: Relations between x, y and z

Lemma 2. 1. Let v be the infimum of the distances from x at which FX(v) = p.

2. Let z ∈ S be any point for which d(x, z) = v.

3. Let y ∈ S be a point at distance δ · v from x such that ~yx · ~xz ≥ 0. Let then
be ϕ = ∠ ~yx, ~xz (then angle between the vectors ~yx and ~xz).

4. Let r be the supremum of the distances from y at which FY(r) = q.

If r > v, then if δ >
√(

r2

v2 − 1
)

+ cos2(ϕ)− cos(ϕ), then FY(d(y, z)) > q.

Lemma 3. 1. Let z ∈ S be any point for which FZ(d(x, z)) = p, and v =
d(x, z).

2. Let y ∈ S be a point at distance δ · v from x such that ~yx · ~xz ≥ 0. Let then
be ϕ = ∠ ~yx, ~xz.

3. Let r be the supremum of the distances from z at which FZ(r) = q.

If δ >
√(

r2

v2 − 1
)

+ cos2(ϕ)− cos(ϕ), then FZ(d(y, z)) > q.

Lemma 4. 1. Let z ∈ S be any point for which FZ(d(x, z)) = q, and v =
d(x, z).

2. Let y ∈ S be the point at distance δ · v from x lying in the segment joining
x and z.

3. Let r be the infimum of the distances from z at which FZ(r) = p.

If δ > 1− r
v , then FZ(d(y, z)) < p.

Lemma 5. 1. Let v be the infimum of the distances from x at which FX(v) = q.

2. Let z ∈ S be any point for which d(x, z) = v.

3. Let y ∈ S be a point at distance δ · v from x lying in the segment joining x
and z.

4. Let r be the infimum of the distances from y at which FY(r) = p.

If δ > 1− r
v , then FY(d(y, z)) < p.

Remark 1. The proofs are all similar, and can be found in Appendix A).

Remark 2. The first lemma is the only one to include an extra pre-condition
(r > v). It does not compromise the generality of the result, as it can be shown
show that this condition asymptotically holds (cf. proof of Theorem 3).
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3.2 Main theorems

We define:

– Let x be a reference point within the Euclidean space S, and let FX be the
cumulative distribution function of the distribution of distances from x. We
assume that the LID of S is continuous at x.

– Let 0 < δ be a fixed real value.
– Let k > 1 be any real constant.

Theorem 3. Consider the real-valued parameter n chosen such that n > k,
and let ρn be the infimum of the distances for which the cumulative distribution
function FX achieves 1/n — that is, ρn = inf{ρ|FX(ρ) = 1/n}.

With respect to the particular choice of n, let zn ∈ S be any point for which
d(x, zn) = ρn, and let yn ∈ S be the point at distance δ · d(x, zn) from x such
that ϕn = ∠ ~ynx, ~xzn ∈ [−π/2, π/2].

Then for every real value ε > 0, there exists n0 > k such that for all n ≥ n0,
we have that:

δ >

√
k

2
IDFX

(0) − 1 + ε =⇒ FYn
(d(yn, zn)) > k/n (10)

Theorem 4. Consider the real-valued parameter n chosen such that n > k.
With respect to the particular choice of n, let zn ∈ S be any point for which

FZn
(d(x, zn)) = 1/n, and let yn ∈ S be the point at distance δ · d(x, zn) from x

such that ϕn = ∠ ~ynx, ~xzn ∈ [−π/2, π/2].
Then for every real value ε > 0, there exists n0 > k such that for all n ≥ n0,

we have that:

δ >

√
k

2
IDFX

(0) − 1 + ε =⇒ FZn
(d(yn, zn)) > k/n (11)

Theorem 5. Consider the real-valued parameter n chosen such that n > k.
With respect to the particular choice of n, let zn ∈ S be any point for which

FZn
(d(x, zn)) = k/n, and let yn ∈ S be the point at distance δ · d(x, zn) from x

lying on the segment joining x and zn.
Then for every real value ε > 0, there exists n0 > k such that for all n ≥ n0,

we have that:

δ > 1− k
−1

IDFX
(0) + ε =⇒ FZn

(d(yn, zn)) < 1/n (12)

Theorem 6. Consider the real-valued parameter n chosen such that n > k.
With respect to the particular choice of n, let zn ∈ S be any point for which

FX(d(x, zn)) = k/n, and let yn ∈ S be the point at distance δ · d(x, zn) from x
lying on the segment joining x and zn.

Then for every real value ε > 0, there exists n0 > k such that for all n ≥ n0,
we have that:

δ > 1− k
−1

IDFX
(0) + ε =⇒ FYn

(d(yn, zn)) < 1/n (13)
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Remark 3. Once again, all the proofs are similar, and are given in Appendix A.

Remark 4. Theorem 6 states the same asymptotic effect as the main theorem
of the paper this work is based on [13]. However, the bound we exhibit here is
tighter, and the proof of both the theorem and the corresponding lemma have
been simplified. One can refer to Figure 6 for a comparison of the two theoretical
bounds.

Remark 5. For each scenario, instead of manipulating 1-NN and k-NN, one can
manipulate respectively k1-NN and k2-NN (k1 < k2). The theoretical bounds
would be the same, except that every occurrence of k would be replaced by
k2/k1.

3.3 Handling multiple points

The third and fourth cases consider a movement along a segment, whereas the
first and second cases consider a movement in a half-space. Therefore, it is possi-
ble to handle multiple points for these two scenarios, if the intersection of all the
half-spaces is not reduced to one point. More precisely, given a reference point
x and a set of target points {z1, · · · , zn}, can we find a perturbed point y 6= x
such that ∀i ∈ J1, nK ~xy · ~xzi ≤ 0?

Here, we are only interested in the direction of ~xy, and not in its length. The
asymptotic effects examined earlier still apply when handling a fixed number of
points: the amount of noise required will tend to zero for each point.

Definition 2. Let d ∈ N∗ a dimension and n ∈ N∗ a number of vectors. Let
(u1, · · · ,un) ∈

(
Rd
)n

a family of vectors. We say that (u1, · · · ,un) positively
spans Rd if, and only if, every vector in Rd can be expressed as a positive linear
combination of u1, · · · ,un. Formally:

(ui)1≤i≤n positively spans Rd

⇐⇒ ∀v ∈ Rd, ∃ (λ1, · · · , λn) ∈ (R+)
n
v =

∑n
i=1 λi · ui

(14)

Having defined the notion of positively spanning the space, we link it to our
goal:

Theorem 7. Let d ∈ N∗ and n ∈ N∗. Let x ∈ Rd and (zi)1≤i≤n ∈ (Rd)n.

∃y 6= x, ∀i ∈ J1, nK, ~xy · ~xzi ≤ 0

⇐⇒ ( ~xzi)1≤i≤n does not positively spans Rd
(15)

Proof. ”If”: Let y be a point such that ~xy is out of the cone spanned by
( ~xzi)1≤i≤n. Using Farkas’ lemma, we know there is a hyperplane separating
the vector ~xy from the cone. Thus, (a) can be respected by taking a new point
y′ such that ~xy′ is normal to the hyperplane and y′ is in the same half-space as
y.

”Only if”: Let y be a point different from x satisfying ∀i ∈ J1, nK, ~xy· ~xzi ≤ 0.
Again, using Farkas’ lemma:
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- either ~xy lies within the cone spanned by ( ~xzi)1≤i≤n. Then there exists

(λ)1≤i≤n ∈ Rd+ such that ~xy =
n∑
i=1

λi ~xzi. Thus ‖ ~xy‖2 =
n∑
i=1

λi ~xy · ~xzi ≤ 0,

hence y = x, which is impossible.
- either there exists a hyperplane separating ~xy from the cone spanned by

( ~xzi)1≤i≤n. In this case, ( ~xzi)1≤i≤n does not positively spans Rd.

Having established this theorem, we give a new characterization of the prop-
erty ”positively spanning the space”; it allows us to deduce an algorithm to check
this property.

Theorem 8. Let d ∈ N∗ and n ∈ N∗. Let x ∈ Rd and (zi)1≤i≤n ∈ (Rd)n.

( ~xzi)1≤i≤n positively
spans Rd

⇐⇒

 (a) ( ~xzi)1≤i≤n linearly spans Rd

(b) ∀i ∈ J1, nK − ~xzi is in the convex
cone spanned by the remaining ~xzj

(16)

Proof. See theorems 3.6 and 3.7 from [12].

Remark 6. (a) can be checked easily (by rank computation for example). For
(b), each of the n sub-conditions can be expressed by the following optimisation
problem:

- Minimize: f : (λj)1≤j≤n,j 6=i −→ ‖
∑

1≤j≤n,j 6=i (λj ~xzj) + ~xzi‖
- Respecting: ∀j ∈ J1, nK, j 6= i, λj ≥ 0

We define Λi = (λj)1≤j≤n,j 6=i. Achieving f(Λi) = 0 for some i means that − ~xzi
is a positive linear combination of the remaining ~xzj . Achieving f(Λi) = 0 for
all i ∈ J1, nK means that condition (b) is respected.

4 Experimental results

4.1 The adversarial effect

We conducted 4 series of experiments to confirm the trends announced by the
theoretical results. For each experiment, we sample uniformly points in a d-
dimensional hypercube, and compute the median amount of noise, across all
points in the distribution, required to achieve a desired neighbourhood pertur-
bation. Uniformly sampled points are expected to have the same LID as the
representational dimension; thus, we expect the amount of noise computed to
tend to 0 as the dimension increases.

For each scenario we use artificial data sets of 32000 points, representational
dimension taking values in (2, 4, 8, 16, 32, 64) and rank in (2, 4, 8, 16, 32, 64, 128)
(the rank is used to choose an index k when talking about the k-NN of a point).
The results are shown in figures 5a to 5d, referring respectively theorems 3 to 6.

Figure 6 is borrowed from [13]. It corresponds of the fourth scenario we
identified (getting the target point z to be the 1-NN of the reference point). It
uses the BIGANN SIFT1B dataset; the experiment involves n = 109 points in
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dimension d = 128. For nq = 10000 query points, the minimum value for δ to
have the 100-NN become the 1-NN is plotted against the estimated LID at the
query point position. The points are plotted in blue. the mean minimum noise
level, along with the standard deviation, are plotted in green (LID values are
grouped in integer bins). The theoretical bound from [13] is plotted in red; the
bound from this report is plotted in yellow.
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Fig. 5: Amount of noise required to achieve a neighbourhood perturbation

4.2 The feasibility of escaping multiple points

In Section 3.3, we studied how to check to feasibility of moving away from
multiple points. However we do not know how many points we can expect to
evade from at the same time. The problem is the following: given a set of points
X in the Euclidean space S and a point x ∈ X , what is the maximum index
i such that the family ( ~xzk)1≤k≤i does not positively spans S, (zk)1≤k≤i being
the i nearest neighbours of x in X .
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Fig. 6: Comparison of the theoretical bounds

We did not find a mention of a similar problem in the literature. Given the
time, we only studied experimentally this question. Our experiments involve
artificial data sets of uniformly sampled points in the d-dimensional hypercube.

In Figure 7a, we plotted the histogram of the maximum size of the neigh-
bourhood one point of the data set can escape, for a data set of 204800 points
in dimension 8. The bar on the left represent the proportion of points able to
escape more than their 200 nearest neighbours. In Figure 7b, we plotted the
proportion of points able to escape from their 100 nearest neighbours for data
sets of size 1600, 3200, 6400, 12800, 25600 (and 51200) and dimension 2, 4, 8
and 16.

There is a lot to say about this problem, but it starts leaving the scope of this
study. The shape of the the histogram in Figure 7a is very regular. Others exper-
iments with different parameters yield the same kind of figures. It is unknown at
the moment if is follows a known distribution. The functions plotted in Figure 7b
are tending toward 0, which leads to an interesting conclusion: augmenting the
number of points diminish the perturbation required for the adversarial effect,
but also seems to diminish the chances of finding a direction of escape. Finally,
it should be noted that this problem should be viewed with the representational
dimension in mind, and not the LID. When using different distributions, the
feasibility proportions do not move significantly.

5 Conclusion

The subject of this internship was the one of adversarial learning, where one
tries to fool a machine learning system, here by applying small modification to
objects in order to achieve a desired effect.
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The results from [13] were extended, showing that any neighbourhood ma-
nipulations is achievable with a small perturbation, provided that both the
size of the data set the LID are high. These results apply to any classifier of
continuously-distributed data. The proofs given here are simpler — shorter, yet
using the same arguments — than the ones from the the document this work
is based on, and the theoretical bounds are also tighter. Then, an experimental
observation of the trends announced in the theoretical part is provided.

Future works on this topic could include the construction of machine learning
systems resistant to adversarial perturbations. Sufficient conditions are given for
the adversarial effect to apply. Studying these conditions could lead to more ro-
bust systems. Also, it could be possible to generalize these results to more general
spaces than the euclidean ones. As only distance and angles are manipulated,
an extension to Hilbert spaces seems manageable.
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A Remaining proofs

We give here the omitted proofs of Section 3. As told before, they all follow the
same layout.

Lemma 2

Proof.

FY(d(y, z)) > q ⇐⇒ d(y, z) > r (17)

⇐⇒ ‖ ~yz‖2 > r2 (18)

⇐⇒ ‖ ~yx‖2 + ‖ ~xz‖2 + 2 ~yx · ~xz > r2 (19)

⇐⇒ δ2v2 + v2 + 2δv2 cos(ϕ) > r2 (20)

⇐⇒ δ2 + 2δ cos(ϕ) +

(
1− r2

v2

)
> 0 (21)

We assume r > v. Then, the polynomial δ2 + 2δ cos(ϕ) +
(

1− r2

v2

)
admits two

real roots, and thus is strictly positive if δ >
√(

r2

v2 − 1
)

+ cos2(ϕ)−cos(ϕ) (using

its highest root).

Lemma 3

Proof.

FZ(d(y, z)) > q ⇐⇒ d(y, z) > r (22)

⇐⇒ ‖ ~yz‖2 > r2 (23)

⇐⇒ ‖ ~yx‖2 + ‖ ~xz‖2 + 2 ~yx · ~xz > r2 (24)

⇐⇒ δ2v2 + v2 + 2δv2 cos(ϕ) > r2 (25)

⇐⇒ δ2 + 2δ cos(ϕ) +

(
1− r2

v2

)
> 0 (26)

We have q > p, so FZ(r) > FZ(v). FZ being a monotone function, we have r > v.

Thus, the polynomial δ2 + 2δ cos(ϕ) +
(

1− r2

v2

)
admits two real roots, and is

strictly positive if δ >
√(

r2

v2 − 1
)

+ cos2(ϕ)− cos(ϕ) (using its highest root).

Lemma 4

Proof.

FZ(d(y, z)) < p ⇐⇒ d(y, z) < r (27)

⇐⇒ (1− δ) · v < r (28)

⇐⇒ 1− r

v
< δ (29)
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Lemma 5

Proof.

FY(d(y, z)) < p ⇐⇒ d(y, z) < r (30)

⇐⇒ (1− δ) · v < r (31)

⇐⇒ 1− r

v
< δ (32)

Proof. (Theorem 3)

Theorem 3 For a given choice of n, consider the construction in the statement
of Lemma 2, with p = 1/n and q = k/n, where zn = z, yn = y, ϕ = ϕ vn =
d(x, zn) = ρn, and rn = r. Next, when rn > vn, we define:

δn ,

√(
r2n
v2n
− 1

)
+ cos2(ϕn)− cos(ϕn) (33)

δ′n ,

√
r2n
v2n
− 1 (34)

αn , n · FYn
(vn) (35)

We note that δ′n ≥ δn. Thus, it suffices to take δ ≥ δ′n to apply Lemma 2 to
have FYn

(d(yn, zn)) < 1/n.
Using the local ID characterization formula of Theorem 1, we observe that:

k

αn
=
FYn

(rn)

FYn(vn)
=

(
rn
vn

)IDFYn
(0)

·GFYn ,0,vn
(rn) (36)

Thus:
rn
vn

=

(
k

αn ·GFYn ,0,vn
(rn)

)1/IDFYn
(0)

(37)

Note that since FYn
is assumed to converge in distribution to FX as n→∞,

we have:

lim
n→∞

αn = lim
n→∞

n · FYn
(vn) (38)

= lim
n→∞

lim
m→∞

(
FYm

(vn)

FX(vn)
· FX(vn)

1/n

)
(39)

= lim
n→∞

(
FX(vn)

FX(vn)
·
1/n
1/n

)
(40)

= 1 (41)

Furthermore, Theorem 1 and the continuity of the intrinsic dimension of S
imply that:

lim
n→∞

GFYn ,0,vn
(rn) = 1 (42)

lim
n→∞

IDFYn
(0) = IDFX

(0) (43)
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Together, these two statements establish that:

lim
n→∞

rn
vn

= k
1/IDFX

(0) (44)

Since k > 1, rn/vn tends to a value strictly greater than 1. The first conse-
quence of this limit is that the hypothesis rn ≥ vn asymptotically holds:

∃n1 ∈ N, ∀n ∈ N, n > n1 ⇒ rn > vn (45)

δ′n is well defined for any n > n1, and its limit is:

lim
n→∞

δn =

√
k

2
IDFX

(0) − 1 (46)

For any real value ε > 0, the limit of δn ensures the existence of a constant
n0 > n1 such that for all n ≥ n0, we have that:∣∣∣∣∣δn −

(√
k

2
IDFX

(0) − 1

)∣∣∣∣∣ ≤ ε (47)

Any choice of δ satisfying:

δ >

√
k

2
IDFX

(0) − 1 + ε (48)

thus ensures that δ > δn; from this, Lemma 2 can be applied with p = 1/n and
q = k/n to yield:

FYn(d(yn, zn)) > k/n (49)

as required.

Theorem 4

Proof. For a given choice of n, consider the construction in the statement of
Lemma 3, with p = 1/n and q = k/n, where zn = z, yn = y, ϕ = ϕ, vn = d(x, zn),
and rn = r. Next we define:

δn ,

√(
r2n
v2n
− 1

)
+ cos2(ϕn)− cos(ϕn) (50)

δ′n ,

√
r2n
v2n
− 1 (51)

(52)

We note that δ′n ≥ δn. Thus, it suffices to take δ ≥ δ′n to apply Lemma 2 to
have FZn(d(yn, zn)) > k/n.
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Using the local ID characterization formula of Theorem 1, we observe that:

k =
FZn(rn)

FZn
(vn)

=

(
rn
vn

)IDFZn
(0)

·GFZn ,0,vn
(rn) (53)

Thus:
rn
vn

=

(
k

GFZn ,0,vn
(rn)

)1/IDFZn
(0)

(54)

Furthermore, Theorem 1 and the continuity of the intrinsic dimension of S
imply that:

lim
n→∞

GFZn ,0,vn
(rn) = 1 (55)

lim
n→∞

IDFZn
(0) = IDFX

(0) (56)

Together, these two statements establish that:

lim
n→∞

rn
vn

= k
1/IDFX

(0) (57)

Thus, the limit of δn is:

lim
n→∞

δ′n =

√
k

2
IDFX

(0) − 1 (58)

For any real value ε > 0, the limit of δn ensures the existence of a constant
n0 such that for all n ≥ n0, we have that:∣∣∣∣∣δ′n −

(√
k

2
IDFX

(0) − 1

)∣∣∣∣∣ ≤ ε (59)

Any choice of δ satisfying:

δ >

√
k

2
IDFX

(0) − 1 + ε (60)

thus ensures that δ > δn; from this, Lemma 3 can be applied with p = 1/n and
q = k/n to yield:

FZn(d(yn, zn)) > k/n (61)

as required.

Theorem 5

Proof. For a given choice of n, consider the construction in the statement of
Lemma 4, with p = 1/n and q = k/n, where zn = z, yn = y, vn = d(x, zn) and
rn = r. Next we define:

δn , 1− rn
vn

(62)
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Using the local ID characterization formula of Theorem 1, we observe that:

1

k
=
FZn(rn)

FZn
(vn)

=

(
rn
vn

)IDFZn
(0)

·GFZn ,0,vn
(rn) (63)

Thus:
rn
vn

=

(
1

k ·GFZn ,0,vn
(rn)

)1/IDFZn
(0)

(64)

Furthermore, Theorem 1 and the continuity of the intrinsic dimension of S
imply that:

lim
n→∞

GFZn ,0,vn
(rn) = 1 (65)

lim
n→∞

IDFZn
(0) = IDFX

(0) (66)

Together, these two statements establish that:

lim
n→∞

rn
vn

= k
−1/IDFX

(0) (67)

Thus, the limit of δn is:

lim
n→∞

δn = 1− k−1/IDFX
(0) (68)

For any real value ε > 0, the limit of δn ensures the existence of a constant
n0 such that for all n ≥ n0, we have that:∣∣∣δn − (1− k−1/IDFX

(0)

)∣∣∣ ≤ ε (69)

Any choice of δ satisfying:

δ > 1− k−1/IDFX
(0) + ε (70)

thus ensures that δ > δn; from this, Lemma 4 can be applied with p = 1/n and
q = k/n to yield:

FZn
(d(yn, zn)) < 1/n (71)

as required.

Theorem 6

Proof. For a given choice of n, consider the construction in the statement of
Lemma 5, with p = 1/n and q = k/n, where zn = z, yn = y, vn = d(x, zn), and
rn = r. Next we define:

δn , 1− rn
vn

(72)

We also define kn , n · FYn(vn).
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Using the local ID characterization formula of Theorem 1, we observe that:

1

kn
=
FYn(rn)

FYn
(vn)

=

(
rn
vn

)IDFYn
(0)

·GFYn ,0,vn
(rn) (73)

by defining
Thus:

rn
vn

=

(
1

kn ·GFYn ,0,vn
(rn)

)1/IDFYn
(0)

(74)

Note that since FYn
is assumed to converge in distribution to FX as n→∞,

we have:

lim
n→∞

kn = lim
n→∞

n · FYn
(vn) (75)

= lim
n→∞

lim
m→∞

(
FYm

(vn)

FX(vn)
· FX(vn)

1/n

)
(76)

= lim
n→∞

(
FX(vn)

FX(vn)
·
k/n
1/n

)
(77)

= k (78)

Furthermore, Theorem 1 and the continuity of the intrinsic dimension of S
imply that:

lim
n→∞

GFYn ,0,vn
(rn) = 1 (79)

lim
n→∞

IDFZn
(0) = IDFX

(0) (80)

Together, these two statements establish that:

lim
n→∞

rn
vn

= k
−1/IDFX

(0) (81)

Thus, the limit of δn is:

lim
n→∞

δn = 1− k−1/IDFX
(0) (82)

For any real value ε > 0, the limit of δn ensures the existence of a constant
n0 such that for all n ≥ n0, we have that:∣∣∣δn − (1− k−1/IDFX

(0)

)∣∣∣ ≤ ε (83)

Any choice of δ satisfying:

δ > 1− k−1/IDFX
(0) + ε (84)

thus ensures that δ > δn; from this, Lemma 5 can be applied with p = 1/n and
q = k/n to yield:

FYn
(d(yn, zn)) < 1/n (85)

as required.
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