Robustness of timed automata:
computing the maximally-permissive strategies

Emily Clement
Supervisors:
Thierry Jéron
Nicolas Markey
David Mentré

1 IRISA, Inria & CNRS & Univ. Rennes, France
2 Mitsubishi Electric R&D Centre Europe – Rennes, France: MERCE

March 11 2022
Why verifying real-time systems?
Why verifying real-time systems?

Real-time systems

Why verifying RTS?
Why verifying real-time systems?

Real-time systems

Life

Why verifying RTS?

2 / 36

Emily Clement

Robustness of timed automata
Why verifying real-time systems?

Life

Cost

Why verifying RTS?
Why verifying real-time systems?

Real-time systems

Life

Cost

Why verifying RTS?

Mass production
Why verifying real-time systems?

Real-time systems

Life

Cost

Why verifying RTS?

Time to market

Mass production

Life

Cost

Why verifying RTS?
Verifying real-time systems: model-checking

Model \mathcal{M}

Property φ

Model-checking algorithm $\mathcal{M} \models \varphi$?

Satisfied

Counter-example
An abstract model

Timed automata, timed games, weighted timed automata, timed Petri nets...
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata, timed petri nets...
An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

- Example: Scheduling system

```
ℓ0 → ℓ1
  ↓      ↓
   x := 0 2 ≤ x ≤ 3

ℓ1 → ℓ2
  ↓      ↓
   b     0 ≤ x ≤ 5

ℓ2 → ℓ3
  ↓      ↓
   y := 0 2 ≤ y ≤ 3

ℓ3 → ℓ0
  ↓      ↓
   b     3 ≤ y

ℓf  
```

Initial location
Goal location
Action
Clocks
Guard
Reset

Acyclic timed automata:

Linear timed automata:

Can we execute...
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

- Example: Scheduling system

![Diagram of Timed Automaton]

- Initial location: ℓ_0
- Goal location: ℓ_f
- Locations: $\ell_0, \ell_1, \ell_2, \ell_3, \ell_f$
- Actions: a, b, c
- Guards:
 - $2 \leq x \leq 3$
 - $0 \leq x \leq 5$
 - $3 \leq y$
- Resets:
 - $x := 0$
 - $y := 0$

Can we execute...
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

Example: Scheduling system

Initial location

Location

Guard

Clocks

Action

Reset

Goal location

Acyclic timed automata:

Linear timed automata:
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

- Example: Scheduling system

![Diagram of a timed automaton with transitions and clock assignments]

- Can we execute...
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

• Example: Scheduling system

\[
\begin{align*}
\ell_0 & \xrightarrow{a} \ell_1 \quad \text{subject to} & 2 \leq x \leq 3 \\
\ell_0 & \xrightarrow{b} \ell_3 \quad \text{subject to} & 0 \leq x \leq 5 \\
\ell_1 & \xrightarrow{a, x := 0} \ell_1, (0, \delta_0) \quad \text{subject to} & 2 \leq y \leq 3 \\
\ell_1 & \xrightarrow{b, y := 0} \ell_2, (\delta_1, \delta_0 + \delta_1) \quad \text{subject to} & 3 \leq y \\
\ell_2 & \xrightarrow{c} \ell_f, (\delta_1 + \delta_2, \delta_2)
\end{align*}
\]

Can we execute...abc?

\[
\begin{align*}
\ell_0, (0, 0) & \xrightarrow{\delta_0} \ell_0, (\delta_0, \delta_0) \xrightarrow{a, x := 0} \ell_1, (0, \delta_0) \xrightarrow{\delta_1} \ell_1, (\delta_1, \delta_0 + \delta_1) \xrightarrow{b, y := 0} \\
\ell_2, (\delta_1, 0) & \xrightarrow{\delta_2} \ell_2, (\delta_1 + \delta_2, \delta_2) \xrightarrow{c} \ell_f, (\delta_1 + \delta_2, \delta_2)
\end{align*}
\]

Acyclic timed automata:

Linear timed automata:
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

- **Example:** Scheduling system

\[\begin{align*}
\ell_0 & \xrightarrow{a} \ell_1 & 2 \leq x \leq 3 \\
& \xrightarrow{b} \ell_3 & 0 \leq x \leq 5 \\
& \xrightarrow{c} \ell_f & 3 \leq y
\end{align*}\]

Can we execute... \(abc\)?

\[\begin{align*}
\ell_0, (0, 0) & \xrightarrow{\delta_0=1} \ell_0, (1, 1) \\
& \xrightarrow{a,x:=0} \ell_1, (0, 1) \\
& \xrightarrow{b,y:=0} \ell_2, (2, 0) \\
& \xrightarrow{c} \ell_f, (5, 3)
\end{align*}\]
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

- Example: Scheduling system

![Diagram of a timed automaton]

- Acyclic timed automata:
- Linear timed automata:

Can we execute... *bac*?

\[
\begin{align*}
\ell_0, (0, 0) & \xrightarrow{\delta_0} \ell_0, (\delta_0, 0) \\
& \xrightarrow{b, y:=0} \ell_3, (\delta_0, 0) \\
& \xrightarrow{\delta_1} \ell_3, (\delta_1 + \delta_0, \delta_1) \\
& \xrightarrow{a, x:=0} \\
\ell_2, (0, \delta_1) & \xrightarrow{\delta_2} \ell_2, (\delta_2, \delta_1 + \delta_2) \\
& \xrightarrow{c} \ell_f, (\delta_2, \delta_1 + \delta_2)
\end{align*}
\]
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

- Example: Scheduling system

▶ Can we execute... *bac*? ✓

▶ \(\ell_0, (0, 0) \xrightarrow{a=10} \ell_0, (10, 10) \xrightarrow{b, y:=0} \ell_3, (10, 0) \xrightarrow{c=3} \ell_3, (13, 3) \xrightarrow{a, x:=0} \)

\(\ell_2, (0, 3) \xrightarrow{\delta_2=4} \ell_2, (4, 7) \xrightarrow{c} \ell_f, (4, 7) \)
Real-time systems modelling: timed automata

An abstract model

Timed automata, Timed games, weighted timed automata timed petri nets...

- Example: Scheduling system

\[\begin{align*}
 x &:= 0 & 2 \leq x \leq 3 \\
 y &:= 0 & 0 \leq x \leq 5 \\
 3 \leq y &
\end{align*} \]

\[\begin{align*}
 a &\quad \rightarrow \quad \ell_1 \\
 b &\quad \rightarrow \quad \ell_2 \\
 c &\quad \rightarrow \quad \ell_f
\end{align*} \]

Can we execute... \(bac? \)

\[\begin{align*}
 \ell_0, (0, 0) &\overset{\delta_0=10}{\rightarrow} \ell_0, (10, 10) & b, y:=0 &\quad \ell_3, (10, 0) &\overset{\delta_1=2}{\rightarrow} \ell_3, (12, 2) & a, x:=0 \\
 \ell_2, (0, 2) &\overset{\delta_2=2}{\rightarrow} \ell_2, (2, 2) & c &\quad \ell_f, (2, 2)
\end{align*} \]
Assumptions made on timed automata

- Synchronised clocks

Timed automata
Assumptions made on timed automata

- Synchronised clocks

- Exact guards

Timed automata
Assumptions made on timed automata

- Synchronised clocks
- Exact guards
- Exact delays
Example of perturbed semantics: clock drifting

- **Timed automaton \(\mathcal{A} \)**

- **Run with desynchronised clocks:** \(0.9 \cdot \dot{y} \leq \dot{x} \leq 1.1 \cdot \dot{y} \)

\[\ell_0 \xrightarrow{a, x := 0} \ell_1 \xrightarrow{2 \leq x \leq 3} \ell_2 \xrightarrow{0 \leq x \leq 5} \ell_f \]
Example of perturbed semantics: clock drifting

- Timed automaton \mathcal{A}

- Run with desynchronised clocks: $0.9 \cdot \dot{y} \leq \dot{x} \leq 1.1 \cdot \dot{y}$

Example of perturbed semantics: clock drifting

- **Timed automaton** \mathcal{A}

\[
\begin{align*}
\ell_0 & \xrightarrow{a, x := 0} \ell_1 & 2 \leq x \leq 3 & \xrightarrow{b, y := 0} \ell_2 & 0 \leq x \leq 5 \\
& & & & 3 \leq y \\
& & & & c \\
\ell_f &
\end{align*}
\]

- **Run with desynchronised clocks:** $0.9 \cdot \dot{y} \leq \dot{x} \leq 1.1 \cdot \dot{y}$

Example of perturbed semantics: clock drifting

- Timed automaton \mathcal{A}

- Run with desynchronised clocks: $0.9 \cdot \dot{y} \leq \dot{x} \leq 1.1 \cdot \dot{y}$

Example of perturbed semantics: clock drifting\(^1\)

- **Timed automaton** \(\mathcal{A}\)

 \[
 \ell_0 \xrightarrow{a, x := 0} \ell_1 \quad \ell_1 \xrightarrow{2 \leq x \leq 3} \ell_2 \quad \ell_2 \xrightarrow{0 \leq x \leq 5} \ell_f
 \]
 \[
 \ell_0 \xrightarrow{b, y := 0} \ell_1 \quad \ell_1 \xrightarrow{3 \leq y} \ell_f
 \]

- **Run with desynchronised clocks:** \(0.9 \cdot \dot{y} \leq \dot{x} \leq 1.1 \cdot \dot{y}\)

Example of perturbed semantics: guard enlargement

- **Timed automaton** A:

![Timed automaton diagram]

ℓ_0: $0 \leq x \leq 1$ \hspace{1cm} $0 \leq y \leq 1$

ℓ_1: $1 \leq x \leq 2$

ℓ_f: $0 \leq y \leq 1$

$\ell_0 \xrightarrow{a_1, y := 0} \ell_1 \xrightarrow{a_2} \ell_f$

Example of perturbed semantics: guard enlargement

- Timed automaton A:

![Diagram of timed automaton]

Example of perturbed semantics: guard enlargement

- Timed automaton A:

- Representation of an enlarged guard $0 \leq x \leq 1 \wedge 0 \leq y \leq 1$

Emily Clement

Robustness of timed automata
Example of perturbed semantics: guard enlargement

- Timed automaton A:

- Representation of an enlarged guard $0 \leq x \leq 1 \land 0 \leq y \leq 1$

Example of perturbed semantics: delay perturbation

- Timed automaton A:

- Run with delay perturbations of at most $\delta = 0.2$
Example of perturbed semantics: delay perturbation

- Timed automaton \mathcal{A}:

- Run with delay perturbations of at most $\delta = 0.2$
Example of perturbed semantics: delay perturbation

- **Timed automaton** \mathcal{A}:

 ![Timed automaton diagram](image)

- **Run with delay perturbations of at most** $\delta = 0.2$

Emily Clement Robustness of timed automata
Example of perturbed semantics: delay perturbation

- Timed automaton A:

$$0 \leq x \leq 1 \quad 0 \leq y \leq 1 \quad a_1, y := 0$$

$$1 \leq x \leq 2 \quad 0 \leq y \leq 1 \quad a_2$$

- Run with delay perturbations of at most $\delta = 0.2$
Example of perturbed semantics: delay perturbation

- Timed automaton A:

- Run with delay perturbations of at most $\delta = 0.2$

Example of perturbed semantics: delay perturbation

- **Timed automaton \(\mathcal{A} \):**

 \[
 \ell_0 \xrightarrow{a_1, y := 0} \ell_1 \xrightarrow{a_2} \ell_f
 \]

 - \(0 \leq x \leq 1 \)
 - \(0 \leq y \leq 1 \)
 - \(1 \leq x \leq 2 \)
 - \(0 \leq y \leq 1 \)

- **Run with delay perturbations of at most \(\delta = 0.2 \)**
Example of perturbed semantics: delay perturbation

- Timed automaton A:

- Run with delay perturbations of at most $\delta = 0.2$

Emily Clement

Robustness of timed automata
Principle of robustness

1. Perturbed semantics
2. Model \mathcal{M}

Property φ

Robustness analysis

$\mathcal{M} \models \varphi$?
Principle of robustness

1. Perturbed semantics
2. Model \mathcal{M}

Property φ

Robustness analysis

$\exists \delta > 0 \text{ s.t. } \mathcal{M}^\delta \models \varphi$?

The permissiveness problem

$\mathcal{M} \models \varphi$?
Principle of robustness

1. Perturbed semantics
2. Model M

$\exists \delta > 0 \text{ s.t. } M^\delta \models \varphi$

The permissiveness problem

$\sup \left\{ \delta \geq 0 \mid M^\delta \models \varphi \right\}$
Principle of robustness

1. Perturbed semantics
2. Model \mathcal{M}
 - Property φ

Robustness analysis

$\exists \delta > 0 \text{ s.t. } \mathcal{M}^\delta \models \varphi$?

The permissiveness problem

$\sup \left\{ \delta \geq 0 \mid \mathcal{M}^\delta \models \varphi \right\}$

The fixed permissiveness problem

$\exists \delta > 0 \text{ s.t. } \mathcal{M}^\delta \models \varphi$?

Fix $\delta > 0$, $\mathcal{M}^\delta \models \varphi$?
Principle of robustness

1. Perturbed semantics

Model \mathcal{M}

Property φ

Robustness analysis

$\mathcal{M}^\delta \models \varphi$?

$\exists \delta > 0 \text{ s.t. } \mathcal{M}^\delta \models \varphi$?

The permissiveness problem

$\sup \{ \delta \geq 0 | \mathcal{M}^\delta \models \varphi \}$

The maximal-permissiveness problem

Fix $\delta > 0$, $\mathcal{M}^\delta \models \varphi$?

The fixed permissiveness problem
Principle of robustness

1. Delay perturbed semantics
2. Timed automata

Reachability

Robustness analysis

\[M^\delta | = \varphi ? \]

\[\exists \delta > 0 \text{ s.t. } M^\delta | = \varphi ? \]

The permissiveness problem

Fix \(\delta > 0 \), \(M^\delta | = \varphi ? \)

The fixed permissiveness problem

\[\sup \left\{ \delta \geq 0 \mid M^\delta | = \varphi \right\} \]

The maximal-permissiveness problem

\[M^\delta | = \varphi ? \]
Our permissive semantics: a turn-based game

Player maximises the permissiveness

Opponent minimises the permissiveness

\[(0, 0) \quad 0 \leq x, y \leq 2 \quad a, y := 0 \quad 2 \leq x \quad 0 \leq y \leq 2 \quad b\]
Our permissive semantics: a turn-based game

Player

Opponent

Permissiveness = 2
δ₀ = 0

I₀ = [0, 2]
Permissiveness = 2
δ₀ = 0
Our permissive semantics: a turn-based game

Player

Opponent

Let $I_0 = [0, 2]$ and $I_1 = [2, 2]$. The permissiveness of the runs is $\delta_0 = 0$ and $\delta_1 = 2$. The player maximizes the permissiveness, while the opponent minimizes it.
Our permissive semantics: a turn-based game

Player: **maximises** the permissiveness

Opponent: **minimises** the permissiveness

![Diagram showing a turn-based game with states and transitions]

- \((0,0) \) with \(0 \leq x, y \leq 2 \)
- \(a, y := 0 \)
- \(l_0 = [0, 2] \)
- Permissiveness = 2
- \(\delta_0 = 0 \)

- \((0,0) \) with \(2 \leq x \)
- \(0 \leq y \leq 2 \)
- \(l_1 = [2, 2] \)
- Permissiveness = 0
- \(\delta_1 = 2 \)

Permissiveness of the run: \(\min (|l_0|, |l_1|) = \min (2, 0) = 0 \)
Our permissive semantics: a turn-based game

- **Player**: maximises the permissiveness
- **Opponent**: minimises the permissiveness

Player's turn:
- Initial state: $(0,0)$
- Constraints: $0 \leq x, y \leq 2$
- Transition: $a, y := 0$
- New state: $(1,0)$

Opponent's turn:
- Constraints: $2 \leq x$
- New state: $(2,2)$

Permissiveness of the run:
- $l_0 = [1, 2]$
- Permissiveness $= 1$
- $\delta_0 = 1$
- $l_1 = [1, 2]$
- Permissiveness $= 1$
- $\delta_1 = 1$

$\min(|l_0|, |l_1|) = \min(1, 1) = 1$
Our permissive semantics: a turn-based game

- **Player**: maximises the permissiveness
- **Opponent**: minimises the permissiveness

\[
\begin{align*}
\delta_0 &= 1 \\
\text{Permissiveness} &= 1 \\
I_0 &= [1, 2]
\end{align*}
\]

\[
\begin{align*}
\delta_1 &= 1 \\
\text{Permissiveness} &= 1 \\
I_1 &= [1, 2]
\end{align*}
\]

Permissiveness of the run: \(\min(|I_0|, |I_1|) = \min(1, 1) = 1\)

- **Opponent**: worst-case environment
- **Our goal**: compute the player best strategy, whatever the opponent decides
Permissiveness: an infinite number of choices

\[\ell_0 \xrightarrow{a,x := 0} \ell_1 \xrightarrow{b,y := 0} \ell_2 \xrightarrow{c} \ell_f \]

Rest of the automaton...

\[(\ell_1, v) \]
Permissiveness: an infinite number of choices

\[\ell_0 \xrightarrow{a,x \colonequals 0} \ell_1 \xrightarrow{2 \leq x \leq 3} \ell_2 \xrightarrow{x \leq 5, y \geq 3} \ell_f \]

Choice of interval \(I \), permissiveness = \(|I|\)

Current action/permissiveness

Player

Choice of delay \(\delta \in I \)

All future permissiveness

Opponent

Rest of the automaton...

Infinite choices...
Permissiveness: an infinite number of choices

\[\ell_0 \xrightarrow{a, x := 0} \ell_1 \xrightarrow{2 \leq x \leq 3} \ell_2 \xrightarrow{x \leq 5, y \geq 3} \ell_f \]

\[a, x := 0 \quad b, y := 0 \]

Choice of interval \(I \), permissiveness = \(|I|\)

Current action/permissiveness

Choice of delay \(\delta \in I \)

Player

Opponent

Choice of delay \(\delta \in I \)

All future permissiveness

Rest of the automaton

Infinite choices

\((\ell_2, v + 2[r])\)

\((\ell_2, v + 2.9[r])\)

\((\ell_2, v + 3[r])\)

\((\ell_2, v + 3[r])\)
Goal of this thesis: compute the maximal permissiveness

- Permissive semantics: a turn-based game
 - **Player**: Interval & action: \((I, a)\)
 - **Opponent**: delay \(\delta \in I\)

- Permissiveness
 - **Player** maximises
 - **Opponent** minimises
 - \(\min (|I_0|, |I_1|, |I_2|, \cdots)\)

Diagram

- **Delay perturbed semantics**
- **Timed automata**
- **Robustness analysis**
 - \(M \models \varphi?\)
 - **Permissiveness of the initial configuration**
 - **Reachability**

What is the maximal allowed perturbation?
Goal of this thesis: compute the maximal permissiveness

- Permissive semantics: a turn-based game
 - Player: Interval & action: \((I, a)\)
 - Opponent: delay \(\delta \in I\)

- Permissiveness
 - Player: minimises
 - Opponent: maximises
 - Minimises: \(\min (|I_0|, |I_1|, |I_2|, \cdots)\)

1. **1st contribution**
 - Symbolic computation of the permissiveness & the strategy of the player for acyclic TA and TG
 - Implemented

2. **2nd contribution**
 - Symbolic computation of the permissiveness for acyclic TA, with controlled approximate results

3. **3rd contribution**
 - Numerical computation of the permissiveness for acyclic TA, with approximate results

Robustness analysis

- **Reachability**

- **Permissiveness analysis**
 - What is the maximal allowed perturbation?

Timed automata

- **Reachability**

Permissiveness of the initial configuration

- **Permissiveness**
Goal of this thesis: compute the maximal permissiveness

- **Permissive semantics**: a turn-based game
 - Player: Interval & action: (I, a)
 - Opponent: delay $\delta \in I$

- **Permissiveness**
 - Player: maximises
 - Opponent: minimises
 - $\min(|I_0|, |I_1|, |I_2|, \cdots)$

1st contribution
- Symbolic computation of the permissiveness & the strategy of the player for acyclic TA and TG
- Implemented

2nd contribution
- Symbolic computation of the permissiveness for acyclic TA, with controlled approximate results
Goal of this thesis: compute the maximal permissiveness

- Permissive semantics: a turn-based game

 Player: Interval & action: \((I, a)\)

 Opponent: delay \(\delta \in I\)

- Permissiveness

\[
\min (|I_0|, |I_1|, |I_2|, \cdots)
\]

1st contribution

Implemented

Symbolic computation of the permissiveness & the strategy of the player for acyclic TA and TG

2nd contribution

Symbolic computation of the permissiveness for acyclic TA, with controlled approximate results

3rd contribution

Implemented

Numerical computation of the permissiveness for acyclic TA, with approximate results

What is the maximal allowed perturbation?

Robustness analysis

Reachability

Delay perturbed semantics

Timed automata

Permissiveness of the initial configuration

\[M \models \varphi?\]
First contribution: an exact symbolic computation4

Strategy of the player: maximises

\[
\min \left(|\beta - \alpha|, \inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \delta [r]) \right)
\]

Permissiveness of the current mode

Permissiveness of the successor

Opponent's best strategy

\[
\text{Opponent strategy lemma (linear case): player: } (\alpha, \beta, a, r) \xrightarrow{\text{\text{Opponent's best strategy}}} \alpha \text{ or } \beta
\]

\[
\inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \delta [r]) = \min \left(P_{i-1}(\ell', v + \alpha [r]), P_{i-1}(\ell', v + \beta [r]) \right)
\]
Strategy of the player: maximises

\[
\min \left(|\beta - \alpha|, \inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \delta [r]) \right)
\]

- **Opponent strategy lemma** (linear case):

 player : \(([\alpha, \beta], a)\) \[\text{Opponent's best strategy}\] \(\alpha\) or \(\beta\)

\[
\inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \delta [r]) = \min \left(P_{i-1}(\ell', v + \alpha [r]), P_{i-1}(\ell', v + \beta [r]) \right)
\]
(1st contribution) The permissiveness function

- A recursive function

\[P_i(\ell, v) = \sup_{([\alpha, \beta], a) \in \text{p-moves}(\ell, v)} \left(\min \left(\beta - \alpha, \inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \delta[r]) \right) \right) \]
The permissiveness function

- A recursive function

\[
P_i(\ell, v) = \sup_{([\alpha, \beta], a) \in p\text{-moves}(\ell, v)} \left(\min \left(\beta - \alpha, \inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \alpha \cdot [r]) \right) \right)
\]

For linear timed automata:

\[
P_i(\ell, v) = \sup_{([\alpha, \beta], a) \in p\text{-moves}(\ell, v)} \left(\min \left(\beta - \alpha, P_{i-1}(\ell', v + \alpha \cdot [r]), P_{i-1}(\ell', v + \beta \cdot [r]) \right) \right)
\]

\[
\lim_{i \to +\infty} P_i(\ell, v) = \text{the permissiveness on } (\ell, v)
\]
A recursive function

\[P_i(\ell, v) = \sup_{([\alpha, \beta], a) \in p\text{-}moves(\ell, v)} \left(\min \left(\beta - \alpha, \inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \delta[r]) \right) \right) \]

For linear timed automata:

\[P_i(\ell, v) = \sup_{([\alpha, \beta], a) \in p\text{-}moves(\ell, v)} \left(\min \left(\beta - \alpha, P_{i-1}(\ell', v + \alpha[r]), P_{i-1}(\ell', v + \beta[r]) \right) \right) \]

\[\lim_{i \to +\infty} P_i(\ell, v) = \text{the permissiveness on } (\ell, v) \]

limit reached in \(d_\ell \) steps
A recursive function

\[
P_i(\ell, v) = \sup_{([\alpha, \beta], a) \in \text{p-moves}(\ell, v)} \left(\min \left(\beta - \alpha, \inf_{\delta \in [\alpha, \beta]} P_{i-1}(\ell', v + \delta[r]) \right) \right)
\]

For linear timed automata:

\[
P_i(\ell, v) = \sup_{([\alpha, \beta], a) \in \text{p-moves}(\ell, v)} \left(\min \left(\beta - \alpha, P_{i-1}(\ell', v + \alpha [r]), P_{i-1}(\ell', v + \beta [r]) \right) \right)
\]

\[
\lim_{i \to +\infty} P_i(\ell, v) = \text{the permissiveness on } (\ell, v)
\]

Goal of our algorithm

Compute \(v \mapsto P_{d_\ell}(\ell, v)\) knowing \(v \mapsto P_{d_\ell-1}(\ell', v)\)
• Goal: find the α and β that maximises:

$$\min \left(|\beta - \alpha|, \mathcal{P}_{i-1} (\ell', v + \alpha[r]), \mathcal{P}_{i-1} (\ell', v + \beta[r]) \right)$$
Goal: find the α and β that maximises:

$$\min \left(|\beta - \alpha|, \mathcal{P}_{i-1} (\ell', v + \alpha [r]), \mathcal{P}_{i-1} (\ell', v + \beta [r]) \right)$$
Goal: find the α and β that maximises:

\[
\min \left(\left| \beta - \alpha \right|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]) \right)
\]

$\nu \mapsto \mathcal{P}_i(l, \nu)$: a 2-Lipschitz piecewise-affine function
(1st contribution) Steps of the algorithm (linear timed automata)

- **Goal**: find the α and β that maximises:

\[
\min \left(|\beta - \alpha|, \mathcal{P}_{i-1}(\ell', v + \alpha [r]), \mathcal{P}_{i-1}(\ell', v + \beta [r]) \right)
\]

- $v \mapsto \mathcal{P}_i(\ell, v)$: a 2-Lipschitz piecewise-affine function

- **Steps**: for each couple of cells (h_α, h_β)

 (a) **Step 1**: compute $S(h_\alpha, h_\beta)$

 (b) **Step 2**: compute the possible α and β interval to be played

 (c) **Step 3**: compute the optimal α and β
Steps of the algorithm (linear timed automata)

- **Goal:** find the α and β that maximises:

$$\min \left(|\beta - \alpha|, \mathcal{P}_{i-1}(\ell', v + \alpha [r]), \mathcal{P}_{i-1}(\ell', v + \beta [r]) \right)$$

- $v \mapsto \mathcal{P}_i(\ell, v)$: a 2-Lipschitz piecewise-affine function

- **Steps:** for each couple of cells (h_α, h_β)

(a) Step 1: compute $S(h_\alpha, h_\beta)$

(b) Step 2: compute the possible α and β
• **Goal:** find the α and β that maximises:

\[
\min \left(|\beta - \alpha|, P_{i-1}(\ell', v + \alpha[r]), P_{i-1}(\ell', v + \beta[r]) \right)
\]

• $v \mapsto P_i(\ell, v)$: a 2-Lipschitz piecewise-affine function

• **Steps:** for each couple of cells (h_α, h_β)

(a) Step 1: compute $S_{(h_\alpha, h_\beta)}$

(b) Step 2: compute the possible α and β

(c) Step 3: compute the optimal α and β
\[
S(h_\alpha, h_\beta)
\]

(a) Step 1

\[
\ell_0 \rightarrow \ell_1 \rightarrow \ell_f
\]

\(0 \leq x \leq 1\)
\(0 \leq y \leq 1\)
\(a_1, y := 0\)
\(1 \leq x \leq 2\)
\(0 \leq y \leq 1\)
\(a_2\)

(b) Step 2

(c) Step 3

interval to be played

\(a_1, y := 0\)

Emily Clement

Robustness of timed automata
(1st contribution) Example

(a) Step 1

(b) Step 2

(c) Step 3

- Permissiveness on ℓ_1: maximise

$$\min (\beta - \alpha, P_0(\ell_f, v + \alpha), P_0(\ell_f, v + \beta))$$

 Fixing the cells of arrival of the successors h_α and h_β: \mathbb{R}^2
Permissiveness on ℓ_1: maximise
\[\min (\beta - \alpha, \mathcal{P}_0(\ell_f, \nu + \alpha), \mathcal{P}_0(\ell_f, \nu + \beta))\]

Step 1: computing $S(h_\alpha, h_\beta)$

(Fourier-Motzkin algorithm)
Step 2: computing the intervals of \(\alpha \) and \(\beta \) (Fourier-Motzkin algorithm)

\[
I_\alpha^y = I_\beta^y = \left[\max \left(0, 1 - x \right), \min \left(2 - x, 1 - y \right) \right]
\]
Step 3: computing the optimal α and β, s.t $\alpha \leq \beta$, that maximises...

- Permissiveness on ℓ_1: maximise
$\min (\beta - \alpha, P_0(\ell_f, v + \alpha), P_0(\ell_f, v + \beta))$
Step 1:

\[S(h_\alpha, h_\beta) \]

(a) Step 1

Step 2:

\[h_\beta \quad h_\alpha \]

(b) Step 2

Step 3:

\[\ell_0 \quad 0 \leq x \leq 1 \]
\[0 \leq y \leq 1 \]
\[a_1, y := 0 \]
\[\ell_1 \quad 1 \leq x \leq 2 \]
\[0 \leq y \leq 1 \]
\[a_2 \]
\[\ell_f \]

- **Permissiveness on** \(\ell_1 \): maximise
 \[\min (\beta - \alpha, P_0 (\ell_f, v + \alpha), P_0 (\ell_f, v + \beta)) \]

(b) Permissiveness on \(\ell_f \)

Step 3: computing the optimal \(\alpha \) and \(\beta \), s.t \(\alpha \leq \beta \), that maximises...

\[\min (\beta - \alpha, P_{i-1} (\ell', v + \alpha [r]), P_{i-1} (\ell', v + \beta [r])) \]

(a) Permissiveness on \(\ell_1 \)
Step 1:

- Permissiveness on ℓ_1: maximise
 \[
 \min (\beta - \alpha, \mathcal{P}_0(\ell_f, v + \alpha), \mathcal{P}_0(\ell_f, v + \beta))
 \]

Step 2:

- Interval to be played

Step 3: computing the optimal α and β, s.t $\alpha \leq \beta$, that maximises...

\[
\min (\beta - \alpha, +\infty, +\infty)
\]
(1st contribution) Example

Step 1

Step 2

Step 3: computing the optimal α and β, s.t $\alpha \leq \beta$, that maximises...

\[\min (\beta - \alpha, +\infty, +\infty) \]

(technical lemma)
Permissiveness on ℓ_1: maximise
\[
\min (\beta - \alpha, \mathcal{P}_0(\ell_f, v + \alpha), \mathcal{P}_0(\ell_f, v + \beta))
\]

Step 3: computing the optimal α and β, s.t $\alpha \leq \beta$, that maximises...

\[
\min (\beta - \alpha, +\infty, +\infty) \quad \text{(Technical lemma)}
\]

\[
\alpha^* = \max (0, 1 - x) \quad \beta^* = \min (2 - x, 1 - y)
\]
\(S(h_\alpha, h_\beta) \)

(a) Step 1

(b) Step 2

(c) Step 3

- Permissiveness on \(\ell_0 \): maximise
 \[
 \min (\beta - \alpha, \mathcal{P}_1 (\ell_1, v + \alpha), \mathcal{P}_1 (\ell_1, v + \beta))
 \]

Let us fix \(h_\alpha = h_\beta = x - y \)
Step 1: Computing the corresponding entry set $S_{(h_\alpha, h_\beta)}$

(Fourier-Motzkin algorithm)
Step 2: Computing the set of possible α and β (Fourier-Motzkin algorithm):

$$I_\alpha^v = I_\beta^v = [0, \min(1 - x, 1 - y)]$$
(1st contribution) Example

\[S(h_\alpha, h_\beta) \]

- Permissiveness on \(\ell_0 \): maximise
 \[\min (\beta - \alpha, P_1(\ell_1, \nu + \alpha), P_1(\ell_1, \nu + \beta)) \]

Step 3: For \(y \leq x \): Computing the optimal \(\alpha \) and \(\beta \) in \([0, 1 - x]^2\), s.t \(\alpha \leq \beta \), that maximise:

\[\min (\beta - \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x) \] (Technical lemma)
Example

(a) Step 1

(b) Step 2

(c) Step 3

Step 3: For \(y \leq x \): Computing the optimal \(\alpha \) and \(\beta \) in \([0, 1 - x]^2\), s.t \(\alpha \leq \beta \), that maximise:

\[
\min (\beta - \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x)
\]

(technical lemma)
(1st contribution) Example

Step 1: Given $h_\alpha = h_\beta$, the step involves setting $a_1, y := 0$.

Step 2: The interval to be played is determined.

Step 3: Computing the optimal α and β in $[0, 1-y]^2$, s.t $\alpha \leq \beta$, that maximise:

$$\min (\beta - \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x)$$
(1st contribution) Fourier-Motzkin algorithm

- The principle of the algorithm

\[
\begin{align*}
x + \alpha - 1 & \geq 0 \\
x + y + \alpha - 3 & \geq 0
\end{align*}
\]

System of linear equations (S)
The principle of the algorithm

\[x + \alpha - 1 \geq 0 \]
\[x + y + \alpha - 3 \geq 0 \]

System of linear equations \((S)\)
The principle of the algorithm

\[x + \alpha - 1 \geq 0 \]
\[x + y + \alpha - 3 \geq 0 \]

System of linear equations \((S)\)

Fourier-Motzkin
Eliminate \(\alpha\)

\[-x + 1 \leq x + y - 3 \]

System of linear equations of
\[\{(x, y) | \exists \alpha \text{ s.t. } (x, y, \alpha) \text{ verify } (S)\} \]
The principle of the algorithm

\[
\begin{align*}
 x + \alpha - 1 & \geq 0 \\
 x + y + \alpha - 3 & \geq 0
\end{align*}
\]

Eliminate \(\alpha \)

\[
-x + 1 \leq x + y - 3
\]

System of linear equations (\(S \))

System of linear equations of \(\{(x, y) \mid \exists \alpha \text{ s.t. } (x, y, \alpha) \text{ verify } (S)\} \)

Computing the entry set \(S_{(h_\alpha, h_\beta)} \): the set of \((x, y) \in \mathbb{R}_+^2 \text{ s.t. } \exists \alpha, \beta \text{ s.t.} \)
The principle of the algorithm

System of linear equations (S)

\[\begin{align*}
 x + \alpha - 1 & \geq 0 \\
 x + y + \alpha - 3 & \geq 0
\end{align*} \]

Fourier-Motzkin

Eliminate \(\alpha \)

\[-x + 1 \leq x + y - 3 \]

\[\text{System of linear equations of } \{(x, y) \mid \exists \alpha \text{ s.t. } (x, y, \alpha) \text{ verify } (S)\} \]

Computing the entry set \(\mathcal{S}(h_\alpha, h_\beta) \): the set of \((x, y) \in \mathbb{R}^2 \) s.t. \(\exists \alpha, \beta \) s.t.

\[\begin{align*}
 0 & \leq \alpha \leq \beta \\
 v + \alpha & \models g \\
 v + \beta & \models g \\
 v + \alpha [y] & \in h_\alpha \\
 v + \beta [y] & \in h_\beta
\end{align*} \]
The principle of the algorithm

\[
\begin{align*}
x + \alpha - 1 & \geq 0 \\
x + y + \alpha - 3 & \geq 0
\end{align*}
\]

System of linear equations \((S)\)

\[-x + 1 \leq x + y - 3\]

System of linear equations of \(\{(x, y) | \exists \alpha \text{ s.t. } (x, y, \alpha) \text{ verify } (S)\}\)

Computing the entry set \(S(h_{\alpha}, h_{\beta})\): the set of \((x, y) \in \mathbb{R}^2_+\) s.t. \(\exists \alpha, \beta\) s.t.

\[
\begin{align*}
0 & \leq \alpha \leq \beta \\
v + \alpha & \models g \\
v + \beta & \models g \\
v + \alpha[y] & \in h_{\alpha} \\
v + \beta[y] & \in h_{\beta}
\end{align*}
\]

\[
\begin{align*}
0 & \leq \alpha \leq \beta \\
0 & \leq x + \alpha \leq 1 \\
0 & \leq y + \alpha \leq 1 \\
0 & \leq x + \beta \leq 1 \\
0 & \leq y + \beta \leq 1 \\
0 & \leq x + \alpha \leq 1 \\
0 & \leq x + \beta \leq 1
\end{align*}
\]
(1st contribution) Fourier-Motzkin algorithm

- The principle of the algorithm

\[\begin{align*}
 x + \alpha - 1 & \geq 0 \\
 x + y + \alpha - 3 & \geq 0
\end{align*} \]

System of linear equations \((S)\)

\[-x + 1 \leq x + y - 3 \]

System of linear equations of \(\{(x, y) \mid \exists \alpha \text{ s.t. } (x, y, \alpha) \text{ verify } (S)\}\)

- Computing the entry set \(S_{(h_\alpha, h_\beta)}\): the set of \((x, y) \in \mathbb{R}_+^2 \text{ s.t. } \exists \alpha, \beta \text{ s.t.}\)

\[\begin{align*}
 0 \leq \alpha \leq \beta \\
 v + \alpha & \models g \\
 v + \beta & \models g \\
 v + \alpha [y] & \in h_\alpha \\
 v + \beta [y] & \in h_\beta
\end{align*} \]

\[\begin{align*}
 0 \leq \alpha \leq \beta \\
 0 \leq x + \alpha & \leq 1 \\
 0 \leq y + \alpha & \leq 1 \\
 0 \leq x + \beta & \leq 1 \\
 0 \leq y + \beta & \leq 1
\end{align*} \]
(1st contribution) Fourier-Motzkin algorithm

- The principle of the algorithm

\[
\begin{align*}
 x + \alpha - 1 & \geq 0 \\
 x + y + \alpha - 3 & \geq 0
\end{align*}
\]

\[
\text{Fourier-Motzkin} \quad \rightarrow \quad \neg x + 1 \leq x + y - 3
\]

System of linear equations (S)

\[
\text{System of linear equations of } \{(x, y) \mid \exists \alpha \text{ s.t. } (x, y, \alpha) \text{ verify } (S)\}
\]

- Computing the entry set \(S_{(h_{\alpha}, h_{\beta})}\): the set of \((x, y) \in \mathbb{R}_+^2 \text{ s.t. } \exists \alpha, \beta \text{ s.t.}\)

\[
\begin{align*}
 0 & \leq \alpha \leq \beta \\
 v + \alpha & \models g \\
 v + \beta & \models g \\
 v + \alpha[y] & \in h_{\alpha} \\
 v + \beta[y] & \in h_{\beta}
\end{align*}
\]

\[
A \leq \alpha, \alpha \leq B, 0 \leq C
\]

\[
\begin{align*}
 \alpha & \geq 0 \\
 \alpha & \leq \beta \\
 \alpha & \geq -x \\
 \alpha & \leq 1 - x \\
 \alpha & \geq -y \\
 \alpha & \leq 1 - y \\
 \beta & \geq -x \\
 \beta & \leq 1 - x \\
 \beta & \geq -y \\
 \beta & \leq 1 - y
\end{align*}
\]
\(\text{Fourier-Motzkin algorithm} \)

- **The principle of the algorithm**

\[
\begin{align*}
x + \alpha - 1 & \geq 0 \\
x + y + \alpha - 3 & \geq 0
\end{align*}
\]

System of linear equations \((S)\)

\[
-x + 1 \leq x + y - 3
\]

Eliminate \(\alpha\)

System of linear equations of \(\{(x, y) \mid \exists \alpha \text{ s.t. } (x, y, \alpha) \text{ verify } (S)\}\)

- **Computing the entry set** \(S(h_\alpha, h_\beta)\): the set of \((x, y) \in \mathbb{R}_+^2 \text{ s.t. } \exists \alpha, \beta \text{ s.t.} \)

\[
\begin{align*}
A & \leq \alpha \leq B, 0 \leq C \\
0 & \leq \alpha \leq \beta \\
v + \alpha & \models g \\
v + \beta & \models g \\
v + \alpha [y] & \in h_\alpha \\
v + \beta [y] & \in h_\beta
\end{align*}
\]

\[
\begin{align*}
\alpha & \geq 0 \\
\alpha & \leq \beta \\
\alpha & \geq -x \\
\alpha & \leq 1 - x \\
\alpha & \geq -y \\
\alpha & \leq 1 - y \\
\beta & \geq -x \\
\beta & \leq 1 - x \\
\beta & \geq -y \\
\beta & \leq 1 - y
\end{align*}
\]

max (\(A\)) \leq min (\(B\))

\[
\begin{align*}
0 & \leq x \leq 1 \\
0 & \leq y \leq 1
\end{align*}
\]

\[
0 \leq C
\]
Technical Lemma

\[f : a \cdot \alpha + b \]
\[g : c \cdot \beta + d \]
\[h : \beta - \alpha \]

Domain \(D \) of \(\alpha \) and \(\beta \)

\[\text{Input} \]

Technical lemma

\[\text{arg sup } \min (h, f, g) \]

\(\alpha, \beta \in D \)

\[\text{Output} \]
Technical Lemma

\[f : a \cdot \alpha + b \]
\[g : c \cdot \beta + d \]
\[h : \beta - \alpha \]

Domain \(D \) of \(\alpha \) and \(\beta \)

Input

\[l'_\alpha \times l'_\beta \]

\[\alpha \mapsto P_i (l', v + \alpha [r]) \]
\[\beta \mapsto P_i (l', v + \beta [r]) \]

Output

\[\text{arg sup } \min_{\alpha, \beta \in D} (h, f, g) \]
(1st contribution) Technical Lemma

\[f : a \cdot \alpha + b \]
\[g : c \cdot \beta + d \]
\[h : \beta - \alpha \]

Domain \(\mathcal{D} \) of \(\alpha \) and \(\beta \)

Input

Output

- When \(a > 0 \) and \(c < 0 \):

(a) Domain \(\mathcal{D} \)

(b) \(\min(f, g, h) \) on \(\mathbb{R}_+^2 \)

Technical lemma

\[\text{arg sup } \min_{\alpha, \beta \in \mathcal{D}} (h, f, g) \]
Technical Lemma

\[f : a \cdot \alpha + b \]
\[g : c \cdot \beta + d \]
\[h : \beta - \alpha \]

Domain \(\mathcal{D} \) of \(\alpha \) and \(\beta \)

Input

Output

- When \(a > 0 \) and \(c < 0 \):

\[\text{arg sup} \min_{\alpha, \beta \in \mathcal{D}} (h, f, g) \]
The algorithm

- Limited to acyclic timed automata
Complexity and issues

- The algorithm
 - Limited to acyclic timed automata
 - Upper bound time complexity: non-elementary
 - Complexity: grows with the number of cells, of clocks and d_ℓ
(1st contribution) Complexity and issues

- The algorithm
 - Limited to acyclic timed automata
 - Upper bound time complexity: non-elementary
 - Complexity: grows with the number of cells, of clocks and d_ℓ

- Causes of the high complexity
 - Overtiling
 - Exploration of all couple of cells (h_α, h_β)

(a) Step 1: compute $S_{(h_\alpha, h_\beta)}$
(b) Step 2: compute the possible α and β
(c) Step 3: compute the optimal α and β
Based on *pplpy*

<table>
<thead>
<tr>
<th>Clocks</th>
<th>Nb. of transitions</th>
<th>Runtime for ℓ_0</th>
<th>Runtime for ℓ_1</th>
<th>Runtime for ℓ_2</th>
<th>Runtime for ℓ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0.82</td>
<td>0.059 (2 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.071 (6 cells)</td>
<td>0.062 (3 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.73</td>
<td>0.034 (3 cells)</td>
<td>-</td>
<td>0.14 (6 cells)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.16 (582 cells)</td>
<td>1.01 (25 cells)</td>
<td>0.09 (3 cells)</td>
<td>0.41 (12 cells) 0.56 (6 cells) 0.14 (6 cells)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.95 (234 cells)</td>
<td>0.39 (12 cells)</td>
<td>0.59 (6 cells) 0.14 (6 cells)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.48 (1825 cells)</td>
<td>0.39 (12 cells)</td>
<td>0.59 (6 cells) 0.14 (6 cells)</td>
<td>-</td>
</tr>
</tbody>
</table>

Runtime results on a case where the number of cells is constant:

(a) A m transitions timed automaton

(b) Runtimes depending on the number of transitions (m)
Based on \textit{pplpy}

Covers the case of \textbf{linear timed automata} with \textbf{polyhedral} guards

<table>
<thead>
<tr>
<th>Clocks</th>
<th>Nb. of transitions</th>
<th>Runtime for ℓ_0</th>
<th>Runtime for ℓ_1</th>
<th>Runtime for ℓ_2</th>
<th>Runtime for ℓ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0.82 (2 cells)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.059 (2 cells)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.071 (6 cells)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.062 (3 cells)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.034 (3 cells)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Runtime results on a case where the number of cells is constant:

$\ell_0 \leq x \leq 10 \leq y \leq 1$

(a) A m transitions timed automaton

Runtime (sec.)

(b) Run times depending on the number of transitions (m)
Based on *pplpy*

Covers the case of **linear timed automata** with **polyhedral** guards

Runtime results on our examples:

<table>
<thead>
<tr>
<th>Clocks</th>
<th>Nb. of transitions</th>
<th>Runtime for ℓ_0</th>
<th>Runtime for ℓ_1</th>
<th>Runtime for ℓ_2</th>
<th>Runtime for ℓ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0.82 (2 cells)</td>
<td>0.059 (2 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.071 (6 cells)</td>
<td>0.062 (3 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.73 (24 cells)</td>
<td>0.034 (3 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>38.16 (582 cells)</td>
<td>1.01 (25 cells)</td>
<td>0.09 (3 cells)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>19.95 (234 cells)</td>
<td>0.41 (12 cells)</td>
<td>0.56 (6 cells)</td>
<td>0.14 (6 cells)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>143.48 (1825 cells)</td>
<td>0.39 (12 cells)</td>
<td>0.59 (6 cells)</td>
<td>0.14 (6 cells)</td>
</tr>
</tbody>
</table>
Based on *pplpy*

Covers the case of **linear timed automata with polyhedral guards**

Runtime results on our examples:

<table>
<thead>
<tr>
<th>Clocks</th>
<th>Nb. of transitions</th>
<th>Runtime for ℓ_0</th>
<th>Runtime for ℓ_1</th>
<th>Runtime for ℓ_2</th>
<th>Runtime for ℓ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0.82 (2 cells)</td>
<td>0.059 (2 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.071 (6 cells)</td>
<td>0.062 (3 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.73 (24 cells)</td>
<td>0.034 (3 cells)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>38.16 (582 cells)</td>
<td>1.01 (25 cells)</td>
<td>0.09 (3 cells)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>19.95 (234 cells)</td>
<td>0.41 (12 cells)</td>
<td>0.56 (6 cells)</td>
<td>0.14 (6 cells)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>143.48 (1825 cells)</td>
<td>0.39 (12 cells)</td>
<td>0.59 (6 cells)</td>
<td>0.14 (6 cells)</td>
</tr>
</tbody>
</table>

Runtime results on a case where the number of cells is constant:

(a) A m transitions timed automaton

(b) Runtimes depending on the number of transitions (m)
(1st contribution) The overtiling

- Example of overtiling

\[0 \leq y \leq 1 \]
\[y := 0 \]
\[1 \leq x \leq 2 \]
\[0 \leq y \leq 1 \]

(a) Permissiveness on \(\ell_0 \)

(b) Permissiveness computed by our tool
(1st contribution) The causes of the overtiling

- Redundancy in the technical lemma
Redundancy in the technical lemma
Maximisation/Minimisation (when comparing candidate permissiveness functions)
The causes of the overtiling

- Redundancy in the technical lemma
- Maximisation/Minimisation (when comparing candidate permissiveness functions)

- Example of maximisation: computing $\max(f, g)$

(a) f: $f_0(x, y) = 2 - x$, $f_1(x, y) = 1 - y$, $f_2(x, y) = x - y$

(b) g: $g_0(x, y) = (1 - x) / 2$, $g_1(x, y) = 1 - y$
(1st contribution) The causes of the overtiling

- Redundancy in the technical lemma
- Maximisation/Minimisation (when comparing candidate permissiveness functions)

• Example of maximisation: computing $\max(f, g)$

![Diagram](image)

(a) Wrong result

(b) Correct overtilled result $\max(f, g)$
The causes of the overtilling

- Redundancy in the technical lemma
- Maximisation/Minimisation (when comparing candidate permissiveness functions)

- Example of maximisation: computing $\max(f, g)$
(1st contribution) Acyclic timed automata

- Example of an acyclic timed automata

\[0 \leq x \leq 1 \land 0 \leq y \leq 1 \]

\[y := 0 \]

1 \leq x \leq 2 \land 0 \leq y \leq 1

- (1st contribution) Its permissiveness on \(\ell_0 \)

\[\begin{array}{c}
0 \leq x \leq 1 \\
0 \leq y \leq 1 \\
y := 0 \\
1 \leq x \leq 2 \\
0 \leq y \leq 1 \\
1 \leq x \leq 2 \\
0 \leq y \leq 1
\end{array} \]
Second contribution: binary and levelled permissiveness.
Binary permissiveness principle

Fix $p \geq 0$ and ℓ, compute $S(p, \ell) = \{v \mid \mathcal{P}_{d\ell}(\ell, v) \geq p\}$

Permissiveness function

Binary permissiveness, $p = 0$
• Binary permissiveness principle

\[\text{Fix } p \geq 0 \text{ and } \ell, \text{ compute } S(p, \ell) = \{ v \mid P_{d\ell}(\ell, v) \geq p \} \]

• Permissiveness function

• Binary permissiveness, \(p = 1/2 \)

• Some reductions
(2nd contribution) Binary and Levelled permissiveness

- **Binary permissiveness principle**

 \[S(p, \ell) = \{ v \mid P_{d\ell}(\ell, v) \geq p \} \]

- **Binary permissiveness, \(p = 1/2 \)**

- **Permissiveness function**

- **Some reductions**

 - **Linear Lemma**: for linear TA, \(S(p, \ell) \) is a polyhedron.
(2nd contribution) Binary and Levelled permissiveness

- **Binary permissiveness principle**

 \[\text{Fix } p \geq 0 \text{ and } \ell, \text{ compute } S(p, \ell) = \{ v \mid P_{d\ell}(\ell, v) \geq p \} \]

- **Permissiveness function**

 - **Binary permissiveness**, \(p = \frac{1}{2} \)

- **Some reductions**

 - **Linear Lemma**: for linear TA, \(S(p, \ell) \) is a polyhedron.
Binary and Levelled permissiveness

- **Binary permissiveness principle**

 Fix $p \geq 0$ and ℓ, compute $S(p, \ell) = \{ v \mid P_{d_{\ell}}(\ell, v) \geq p \}$

- **Permissiveness function**

- **Binary permissiveness, $p = 1$**

- **Some reductions**

 - **Linear Lemma**: for linear TA, $S(p, \ell)$ is a polyhedron.
Binary and Levelled permissiveness

Binary permissiveness principle

Fix $p \geq 0$ and ℓ, compute $S(p, \ell) = \{v \mid P_{d\ell}(\ell, v) \geq p\}$

Permissiveness function

Levelled permissiveness for $\{0, 1/2, 1\}$

Some reductions

- **Linear Lemma**: for linear TA, $S(p, \ell)$ is a polyhedron.

- Levelled permissiveness reduces to binary permissiveness
Algorithm

\[P_i(\ell, v) = \sup_{([\alpha, \alpha+p], a) \in p\text{-}\text{moves}(\ell, v)} \min (\beta - \alpha, P_{i-1}(\ell', v + \alpha[r]), P_{i-1}(\ell', v + \beta[r])) \]
\[
\mathcal{B}_i (\ell, v) = \sup_{([\alpha, \alpha+p], a) \in \text{p-moves}(\ell, v)} \inf_{\delta \in [\alpha, \alpha+p]} \left(\mathbb{1}_{v+\delta[r] \in S_{i-1}(p, \ell')} \right)
\]

- **Steps of the algorithm**
 - **Step 1:** Compute set of future enabled valuations \(S(\ell', p) \)

- **Step 2:** Compute the valuations \(v \) such that there exists \(\alpha \geq 0 \) that verifies:
(2nd contribution) Algorithm

\[B_i(\ell, v) = \sup_{([\alpha, \alpha+p], a) \in \text{p-moves}(\ell, v)} \inf_{\delta \in [\alpha, \alpha+p]} \left(1_{v + \delta[v] \in S_{i-1}(p, \ell')} \right) \]

• Steps of the algorithm

 ▶ **Step 1**: Compute set of future enabled valuations \(S(\ell', p) \)

 ▶ **Step 2**: Compute the valuations \(v \) such that there exists \(\alpha \geq 0 \) that verifies:
 - \([\alpha, \alpha + p]\) is an enabled move.
 - the successors are in \(S(\ell', p) \).
(2nd contribution) Algorithm

\[\mathcal{B}_i(\ell, v) = \sup_{([\alpha, \alpha+p], a) \in \text{p-moves}(\ell, v)} \inf_{\delta \in [\alpha, \alpha+p]} \left(\mathbf{1}_{v+\delta[\tau]} \in S_{i-1}(p, \ell') \right) \]

- **Steps of the algorithm**
 - **Step 1**: Compute set of future enabled valuations \(S(\ell', p) \)
 - **Step 2**: Compute the valuations \(v \) such that there exists \(\alpha \geq 0 \) that verifies:
 - \([\alpha, \alpha+p]\) is an enabled move.
 - the successors are in \(S(\ell', p) \).

Fourier-Motzkin
Upper bound complexity for...

Binary permissiveness algorithm:

\[O \left((4c_g)^2 \cdot d_\ell \right) \]

- maximal number of constraints of any guard
- longest path between \(\ell \) and a goal location
Upper bound complexity for...

Binary permissiveness algorithm:

\[\mathcal{O} \left((4c_g)^{2\cdot d_{\ell}} \right) \]
- longest path between \(\ell \) and a goal location
- maximal number of constraints of any guard

Levelled permissiveness algorithm \(\{p_0, \cdots, p_m\} \):

\[\mathcal{O} \left((m + 1) (4c_g)^{2\cdot d_{\ell}} \right) \]
- number of levels
Third contribution: an numerical approximative computation.
Algorithm

(3rd contribution) Algorithm

initial configuration

interval sampling

delay sampling

2nd step: Backtracking on delays

3rd step: Backtracking on intervals

Robustness of timed automata
(3rd contribution) Algorithm

2nd step: Backtracking on delays

3rd step: Backtracking on intervals
Exploring intervals

\[B = \max \left(n, \left(\frac{|I_{\text{max}}|}{s} \right)^2 \right) \]

Linear TA?

\[\mathcal{O}\left((2 \cdot B)^{d\ell}\right) \]

Exploring delays

\[\mathcal{O}\left((B \cdot \frac{M(A)}{s})^{d\ell}\right) \]
• A linear example
(3rd contribution) Implementation: runtime results

- A linear example

\[0 \leq x \leq 1 \quad 0 \leq y \leq 1 \quad y := 0 \]
\[1 \leq x \leq 2 \quad 0 \leq y \leq 1 \]

- An acyclic example
Error $\varepsilon = \text{Computed permissiveness} - \text{correct permissiveness}$
(3rd contribution) Implementation: precision results

Error \(\varepsilon = \text{Computed permissiveness} - \text{correct permissiveness} \)

- A linear example

- An acyclic example
Conclusion

- **Symbolic algorithm**
 - A non-elementary algorithm
 - Restricted to acyclic timed automata
 - Exact result
Conclusion

- **Symbolic algorithm**
 - A non-elementary algorithm
 - Restricted to acyclic timed automata
 - Exact result

- **Binary and levelled permissiveness**
 - A doubly-exponential algorithm
 - Linear w.r.t the number of levels
 - Restricted to linear timed automata
 - Controlled approximation of the permissiveness
Conclusion

- **Symbolic algorithm**
 - A non-elementary algorithm
 - Restricted to acyclic timed automata
 - Exact result

- **Binary and levelled permissiveness**
 - A doubly-exponential algorithm
 - Linear w.r.t the number of levels
 - Restricted to linear timed automata
 - Controlled approximation of the permissiveness

- **Numeric algorithm**
 - A doubly-exponential algorithm
 - Restricted to acyclic timed automata
 - Stability not proven
Current & future work

- Symbolic algorithm
 - Cyclic TA
 - Implementation of acyclic TA
 - Minimise the overtiling
Current & future work

- **Symbolic algorithm**
 - Cyclic TA
 - Implementation of acyclic TA
 - Minimise the overtiling

- **Binary and levelled permissiveness**
 - Acyclic (and cyclic) TA
 - Implementation with *pplpy*
Current & future work

- **Symbolic algorithm**
 - Cyclic TA
 - Implementation of acyclic TA
 - Minimise the overtiling

- **Binary and levelled permissiveness**
 - Acyclic (and cyclic) TA
 - Implementation with `pplpy`

- **Numeric algorithm**
 - Cyclic TA
 - Prove the stability
 - Implementation of polyhedral guards
Case of two polyhedra

Solved in 2001 by Bemporad, Fukuda and D. Torrisi:\(^5\):

- Computing convex hull by removing inequalities
- Solving a linear program

(1st contribution) Computing the union of several polyhedra

- **Case of two polyhedra**
 Solved in 2001 by Bemporad, Fukuda and D. Torrisi\(^5\):
 - Computing convex hull by removing inequalities
 - Solving a linear program

- **Case of several \((\geq 3)\) polyhedra**
 Open problem...