Mathematical models of tumor growth

Mathematical models of tumor growth

GRELA Fabrice

September, 1st 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mathematical models of tumor growth Introduction

Biological background

Definition: A cancer or a malignant tumor is a group of cells involving abnormal cell growth that tend to invade surrounding tissue or spread to other parts of the body.

Types of cells in a tumor:

うして ふゆう ふほう ふほう うらう

Mathematical models of tumor growth Reaction-diffusion equation: a macroscopic model

The reaction-diffusion equation

We consider the population number density u(x, t) at position $x \in \mathbb{R}^d$ and at time $t \ge 0$.

$$\frac{\partial u(x,t)}{\partial t} = \underbrace{\nabla \cdot (D(x)\nabla u(x,t))}_{\text{diffusion torm: colls motion}} + \underbrace{R(u(x,t))}_{R(u(x,t))}$$

diffusion term: cells motion

We assume that $u \in [0; 1]$:

 \blacktriangleright *u* = 0 : No invasive cell - healthy cells only;

 \blacktriangleright u = 1: Invasive cells have arrived to their maximum number density.

We model the reaction by:

$$R(u) = \underbrace{\rho(x, t)}_{\text{proliferation rate}} \times u$$

Resolution of the equation

We assume that:

- ► D is constant;
- ► the model is bidimensional;
- ➤ the tumor has a circular geometry.

Reaction-diffusion equation:
$$\frac{\partial u}{\partial t} = D\nabla^2 u + \rho u$$

Solution: $u(x, t) = \frac{N_0}{4\pi Dt}e^{\rho t}e^{-x^2/4Dt}$

Caracterisation of the tumor growth: the relation $\frac{\nu}{D}$ Fisher-Kolmogorov approximation: $D \approx \frac{v^2}{4\rho}$ where v is the linear speed of the tumor front.

Analysis of a simple biological model

We consider:

- \succ P density of proliferating cells;
- > Q density of quiescent cells;
- $\succ \overrightarrow{v}$ speed of cells;
- $\succ \alpha$ rate between birth and death cells.

Conservation of mass on P and Q:

$$\begin{cases} \frac{\partial P}{\partial t} + \nabla \cdot (\overrightarrow{v_P} P) = \alpha_P \\ \\ \frac{\partial Q}{\partial t} + \nabla \cdot (\overrightarrow{v_Q} Q) = \alpha_Q \end{cases}$$

うして ふゆう ふほう ふほう うらつ

We assume that: so cells are incompressible: P + Q = 1. Same speed: $\overrightarrow{v}_P = \overrightarrow{v}_Q = \overrightarrow{v}$.

We obtain:

$$\nabla \cdot \overrightarrow{\mathbf{v}} = \alpha_{P} + \alpha_{Q}.$$

Darcy's law through a porous medium: $\overrightarrow{v} = -k\nabla p$ (k is a constant)

So:

$$-k\Delta p = \alpha_P + \alpha_Q$$
 (Poisson equation)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hele-Shaw model and free boundary formulation

We define G a function which represents the cells birth/death rate. We assume that:

 \succ G is lipschitz; \succ $G'(\cdot) < 0;$ $\succ G(0) := G_M = \max G(\cdot);$ \succ ∃*P_M* > 0 with the property that *G*(*P_M*) = 0. We have: $\begin{cases} -\Delta p(x,t) = G(p(x,t)) & \text{if } x \in \Omega(t); \\ p(x,t) = 0 & \text{if } x \in \partial \Omega(t). \end{cases}$

The tumor grows with a normal speed: $v(x, t) = -\nabla p(x, t)$ with $x \in \partial \Omega(t)$ (Darcy's law).

So: $\dot{X}(t) = v(X(t), t)$ if $X(t) \in \partial \Omega(t)$ with v the normal speed. ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Fluid mechanical model

We consider the system of equations:

$$(S) \begin{cases} \frac{\partial n}{\partial t} + div(n\overrightarrow{v}) = nG(p(x,t));\\ \overrightarrow{v} = -\nabla p(x,t) \quad (\text{Darcy's law});\\ p(x,t) = \Pi(n) = n(x,t)^{\gamma} \quad \text{with } \gamma > 1. \end{cases}$$

We assume that the initials conditions satisfy:

 \square $n(x, t = 0) := n^0(x) \ge 0$ is a $L^1(\mathbb{R}^d)$ and a compact support function;

ション ふゆ アメリア メリア しょうくの

$$\square p(n^0) := p^0 \le P_M;$$

$$\square \nabla n^0 \in L^1(\mathbb{R}^d).$$

Hele-Shaw's limit

Let (n_{γ}, p_{γ}) be the unique bounded weak solution to (S). We can prove that, along some subsequence, there is a weak limit as $\gamma \longrightarrow \infty$ which turns out to be a solution of (S).

Theorem 1: Hele-Shaw's limit

When $\gamma \to +\infty$ in (S), we have:

The weak limit of (S) is:

$$\begin{cases}
\frac{\partial n_{\infty}}{\partial t} - div(n_{\infty}\nabla p_{\infty}) = n_{\infty}G(p_{\infty}) \\
n_{\infty}(x, t = 0) = n_{\infty}^{0}(x) \ge 0 \\
p_{\infty}(1 - n_{\infty}) = 0 \text{ avec } 0 \le n_{\infty} \le 1.
\end{cases}$$

Complementary formula

Theorem 2: Complementary relation

We have equivalence between:

•
$$\nabla p_{\gamma} \longrightarrow \nabla p_{\infty}$$
 in $L^2_{loc}(\mathbb{R}^d \times]0, +\infty[)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Equivalence between Hele-Shaw's limit and the fluid mechanical model

Theorem 3:

We have equivalence between:

Hele-Shaw's limit

$$\begin{cases} -\Delta p_{\infty} = G(p_{\infty}) & \text{if } x \in \Omega(t) \\ p_{\infty} = 0 & \text{on } \partial \Omega(t) \end{cases}$$
$$\dot{X}(t) = v(X(t), t) & \text{if } X(t) \in \partial \Omega(t) \end{cases}$$

Pluid mechanical model

$$p_{\infty}(\Delta p_{\infty}+G(p_{\infty})=0$$

$$\left\{ egin{aligned} &rac{\partial n_\infty}{\partial t} - div(n_\infty
abla p_\infty) = n_\infty G(p_\infty) \ &p_\infty = 0 \ \ \mbox{for} \ n_\infty < 1. \end{aligned}
ight.$$