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Assume given a matrix P of transition probability on the lattice
E = Zd (ie, nonnegative numbers that satify

∑
y∈E p(x , y) = 1 for

each x ∈ E ):
P = (p(x , y))x ,y∈E .

We assume that, for all x , y ∈ E , p(x , y) is:
1 translation invariant: p(x , y) = p(0, y − x);
2 finite range: there exists a finite set Bp ⊆ E such that

p(0, x) = 0 for all x /∈ Bp.
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Description of the exclusion process

We define the state of the system as a set of occupied and vacant
sites. For all x ∈ E ,

η(x) :=

{
1 if x is occupied;
0 if x is empty.

Thus, we introduce the configuration of the system η on the
state space X = {0, 1}E :

η := {η(x) | x ∈ E}.

Objective: Construct rigorously a Markov process ηt = (ηt(x))x∈E
that corresponds to the description given above.
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Let E 2
p := {(x , y) ∈ E 2 | p(x , y) > 0} be the set of pairs of sites

between which jump attents can happen.

Let (Ω,H,P) a probability space on which is defined a family
{T(x ,y) | (x , y) ∈ E 2

p } of mutually independent Poisson processes
on the time line [0,+∞[.
The Poisson process T(x ,y) is homogeneous with rate p(x , y) and
the jump times of T(x ,y) are the random times at which a particle
attempts to move from x to y .

Important hypothesis
The set of all times when a jump either in or out of x can happen
has only finitely many jump times in every bounded interval ]0,T ].
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Graphical representation of the exclusion process

Assume given an initial state η ∈ X .
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Problem of this construction

A problem arises:

If the initial state η has infinitely many particles, an inifinity of
particles may attempt to jump in every small time interval ]0, ε[.

Example: To compute the value ηt(0) for some t > 0, we have to
consider ηs(x), 0 ≤ s ≤ t, with all sites x that interacted with 0
during ]0, t]. And so on...
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The percolation argument

The percolation argument guarantees that for a short deterministic
time interval [0, t0], the set E can be decomposed into disjoint
finite components that do not interact during [0, t0].
In each finite component, the evolution of the configuration ηt for
0 ≤ t ≤ t0 can be constructed because we consider only a finite
number of time jumps.

For 0 ≤ s < t, let Gs,t the undirected random graph with vertex
set E and edge set Es,t defined by:

Es,t = {{x , y} ∈ E 2 | T(x ,y) or T(y ,x) has a jump time in ]s, t]}.

Consequence: To compute the evolution ηs(x) for 0 ≤ s ≤ t, only
the sites who are in the same connected component as x in the
graph G0,t are relevant.



Construction of the exclusion process
Construction of the exclusion process

The percolation argument

Lemma:
Each edge {x , y} is present in Gs,t with probability
1− e−(t−s)(p(x ,y)+p(y ,x)), independently of the other edges.

Proof.
P({x , y} ∈ Gs,t) = P({x , y} ∈ Es,t)

= P(T(x ,y)or T(y ,x) has a jump time in ]s, t])
= 1− P(T(x ,y) and T(y ,x) have not a jump time in ]s, t])
= 1− P(T(x ,y) has not a jump time in ]s, t])×

P(T(y ,x) has not a jump time in ]s, t])
= 1− P(the waiting time of T(x ,y) is bigger than t − s)×

P(the waiting time of T(y ,x) is bigger than t − s)

= 1− e−(t−s)(p(x ,y)+p(y ,x))

because waiting times are exponentially distributed.
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Proposition: Percolation argument
If t0 is small enough, the random graph G0,t0 has almost surely only
finite connected components.

Proof.
Notations: B∗ = Bp ∪ (−Bp); R = max

x∈B∗
|x |∞; k∗ = Card(B∗).

Remark: T(x ,y) contains jump times implies that |y − x |∞ ≤ R .

Let show that for t0 fixed small enough, the connected component
containing 0 is finite a.s.

We will use:
. The finite range assumption: there exists a finite set Bp ⊆ E
such that p(0, x) = 0 for all x /∈ Bp.
. The lemma: P({x , y} ∈ Gs,t) = 1− e−(t−s)(p(x ,y)+p(y ,x)).
. The assumption of translation invariance:
p(x , y) = p(0, y − x) for all x , y ∈ E .
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Construction of the exclusion process

To construct the process ηt for 0 ≤ t ≤ t0, we use the percolation
argument and the "Important hypothesis".

Step 1: Construction with finitely many jump times on the time
interval [0, t0] for a particular connected component.

Jump times: 0 < τ1 < τ2 < ... < τn.
Let (x1, y1), (x2, y2), ..., (xn, yn) such that τk ∈ T(xk ,yk ).

We have:
ηt = η0 for 0 ≤ t ≤ τ1;ητ1 := ηx1,y1
τ−1

if η(x1) = 1 and η(y1) = 0

ητ1 = ητ−1
if η(x1) = 0 or η(y1) = 1

and so on...
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Construction of the exclusion process

To construct the process ηt for 0 ≤ t ≤ t0, we use the percolation
argument and the "Important hypothesis".

Step 1: Construction with finitely many jump times on the time
interval [0, t0] for a particular connected component.

Step 2: We repeat the construction for each connected component.

Step 3: Construction for all time 0 ≤ t <∞.

Conclusion: The evolution ηt can be constructed for all time
(0 ≤ t <∞), for all initial configuration η and for all set of jump
time processes

(
T(x ,y)

)
(x ,y)∈E2

p
.
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Theorem 1:
ηt = (ηt(x))x∈E defined by this construction is a Markov process.

Let Ω0 the set of paths ω that satisfy "Important hypotesis" and
for which the random graphs Gkt0,(k+1)t0 have finite connected
components for all k ∈ N.

Theorem 2:

For all (η, ω) ∈ X × Ω0, the function t 7−→ ηηt (ω) is
right-continuous and has left limits for all t ≥ 0.

Theorem 3:

The path t 7−→ ηηt (ω) is continuous in (η, ω) ∈ X × Ω0.
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