Construction of the exclusion process

GRELA Fabrice, supervised by POQUET Christophe

Institut Camille Jordan Université de Lyon 1

September, 1st 2016

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Contents

Presentation of the exclusion process

2 Construction of the exclusion process

O Properties of the construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume given a matrix P of transition probability on the lattice $E = \mathbb{Z}^d$ (ie, nonnegative numbers that satify $\sum_{y \in E} p(x, y) = 1$ for each $x \in E$):

$$P = (p(x, y))_{x, y \in E}$$

うして ふゆう ふほう ふほう うらつ

We assume that, for all $x, y \in E$, p(x, y) is:

- translation invariant: p(x, y) = p(0, y x);
- If inite range: there exists a finite set B^p ⊆ E such that p(0, x) = 0 for all x ∉ B^p.

Description of the exclusion process

We define the **state** of the system as a set of occupied and vacant sites. For all $x \in E$,

$$\eta(x) := egin{cases} 1 ext{ if } x ext{ is occupied}; \\ 0 ext{ if } x ext{ is empty.} \end{cases}$$

Thus, we introduce the configuration of the system η on the state space $X = \{0, 1\}^{E}$:

$$\eta := \{\eta(x) \mid x \in E\}.$$

Objective: Construct rigorously a Markov process $\eta_t = (\eta_t(x))_{x \in E}$ that corresponds to the description given above.

Let $E_p^2 := \{(x, y) \in E^2 \mid p(x, y) > 0\}$ be the set of pairs of sites between which jump attents can happen.

Let $(\Omega, \mathcal{H}, \mathbb{P})$ a probability space on which is defined a family $\{\mathcal{T}_{(x,y)} \mid (x,y) \in E_p^2\}$ of mutually independent Poisson processes on the time line $[0, +\infty[$. The Poisson process $\mathcal{T}_{(x,y)}$ is homogeneous with rate p(x, y) and the jump times of $\mathcal{T}_{(x,y)}$ are the random times at which a particle

attempts to move from x to y.

Important hypothesis

The set of all times when a jump either in or out of x can happen has only finitely many jump times in every bounded interval]0, T].

Construction of the exclusion process Construction of the exclusion process

Graphical representation of the exclusion process

Assume given an initial state $\eta \in X$.

Construction of the exclusion process Construction of the exclusion process

Problem of this construction

A problem arises:

If the initial state η has infinitely many particles, an inifinity of particles may attempt to jump in every small time interval]0, ϵ [.

Example: To compute the value $\eta_t(0)$ for some t > 0, we have to consider $\eta_s(x)$, $0 \le s \le t$, with all sites x that interacted with 0 during]0, t]. And so on...

うして ふゆう ふほう ふほう うらう

The percolation argument

The percolation argument guarantees that for a short deterministic time interval $[0, t_0]$, the set *E* can be decomposed into disjoint finite components that do not interact during $[0, t_0]$. In each finite component, the evolution of the configuration η_t for $0 \le t \le t_0$ can be constructed because we consider only a finite number of time jumps.

For $0 \le s < t$, let $\mathcal{G}_{s,t}$ the undirected random graph with vertex set *E* and edge set $\mathcal{E}_{s,t}$ defined by:

 $\mathcal{E}_{s,t} = \{\{x,y\} \in E^2 \mid \mathcal{T}_{(x,y)} \text{ or } \mathcal{T}_{(y,x)} \text{ has a jump time in }]s,t]\}.$

Consequence: To compute the evolution $\eta_s(x)$ for $0 \le s \le t$, only the sites who are in the same connected component as x in the graph $\mathcal{G}_{0,t}$ are relevant.

Construction of the exclusion process Construction of the exclusion process

The percolation argument

Lemma:

Each edge $\{x, y\}$ is present in $\mathcal{G}_{s,t}$ with probability $1 - e^{-(t-s)(p(x,y)+p(y,x))}$, independently of the other edges.

Proof.

1 E F 1 E F E 99

Proposition: Percolation argument

If t_0 is small enough, the random graph \mathcal{G}_{0,t_0} has almost surely only finite connected components.

Proof.

Notations:
$$B_* = B^p \cup (-B^p)$$
; $R = \max_{x \in B_*} |x|_{\infty}$; $k_* = \text{Card}(B_*)$.
Remark: $\mathcal{T}_{(x,y)}$ contains jump times implies that $|y - x|_{\infty} \leq R$.

Let show that for t_0 fixed small enough, the connected component containing 0 is finite a.s.

We will use:

So The finite range assumption: there exists a finite set $B^p \subseteq E$ such that p(0,x) = 0 for all $x \notin B^p$. So The lemma: $\mathbb{P}(\{x,y\} \in \mathcal{G}_{s,t}) = 1 - e^{-(t-s)(p(x,y)+p(y,x))}$. So The assumption of translation invariance: p(x,y) = p(0, y - x) for all $x, y \in E$.

Construction of the exclusion process

To construct the process η_t for $0 \le t \le t_0$, we use the percolation argument and the "Important hypothesis".

Step 1: Construction with finitely many jump times on the time interval $[0, t_0]$ for a particular connected component.

Jump times:
$$0 < \tau_1 < \tau_2 < ... < \tau_n$$
.
Let $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ such that $\tau_k \in \mathcal{T}_{(x_k, y_k)}$.

We have:

$$\eta_t = \eta_0 \text{ for } 0 \le t \le \tau_1;$$

$$\begin{cases} \eta_{\tau_1} := \eta_{\tau_1^-}^{x_1, y_1} \text{ if } \eta(x_1) = 1 \text{ and } \eta(y_1) = 0 \\ \eta_{\tau_1} = \eta_{\tau_1^-} \text{ if } \eta(x_1) = 0 \text{ or } \eta(y_1) = 1 \end{cases}$$

and so on...

Construction of the exclusion process

To construct the process η_t for $0 \le t \le t_0$, we use the percolation argument and the "Important hypothesis".

Step 1: Construction with finitely many jump times on the time interval $[0, t_0]$ for a particular connected component.

Step 2: We repeat the construction for each connected component.

Step 3: Construction for all time $0 \le t < \infty$.

Conclusion: The evolution η_t can be constructed for all time $(0 \le t < \infty)$, for all initial configuration η and for all set of jump time processes $(\mathcal{T}_{(x,y)})_{(x,y)\in E_p^2}$.

Theorem 1:

 $\eta_t = (\eta_t(x))_{x \in E}$ defined by this construction is a Markov process.

Let Ω_0 the set of paths ω that satisfy "Important hypotesis" and for which the random graphs $\mathcal{G}_{kt_0,(k+1)t_0}$ have finite connected components for all $k \in \mathbb{N}$.

Theorem 2:

For all $(\eta, \omega) \in X \times \Omega_0$, the function $t \mapsto \eta_t^{\eta}(\omega)$ is right-continuous and has left limits for all $t \ge 0$.

Theorem 3:

The path $t \mapsto \eta_t^{\eta}(\omega)$ is continuous in $(\eta, \omega) \in X \times \Omega_0$.

- T. SEPPÄLÄINEN Translation Invariant Exclusion Processes (Book in progress), Department of Mathematics, University of Wisconsin Madison, 2008.
- J. NORRIS *Markov chains*, Cambridge Series in Statistical and Probabilistic Mathematics, 1997.
- P. BILLINGSLEY Convergence of Probability Measures, Wiley Series in Probability and Statistics, 1999.
- D. FLIPO, M. ROUSSIGNOL Files d'attente et fiabilité, Université des Sciences et Technologies de Lille, UFR de Mathématiques Pures et Appliquées.