Théorème des extrema liés 1,2

Leçons: 151, 159, 214, 215, 219

[Gou An], partie 5.3.2

Théorème

Soient $f, g_1, \dots, g_r : U \to \mathbb{R}$ des fonctions de classe C^1 sur un ouvert U de \mathbb{R}^n .

On pose $\Gamma = \{x \in U | \forall i \in [1, r], g_i(x) = 0\}.$

On suppose que:

- $-f|_{\Gamma}$ admet un extremum local en $a \in \Gamma$;
- les formes linéaires $Dg_1(a), \ldots, Dg_r(a)$ sont linéairement indépendantes.

Alors il existe $\lambda_1, \dots, \lambda_r \in \mathbb{R}$, appelés multiplicateurs de Lagrange, tels que : $\mathrm{D}f(a) = \sum_{i=1}^r \lambda_i \mathrm{D}g_i(a)$.

- 1. On peut aussi écrire "extremums" ou "extrémums", mais pas "extréma", "extremas" ou "extrémas".
- 2. Donnons de ce théorème quelques applications.

Le théorème spectral : Soit E un espace euclidien, $u \in \mathcal{L}(E)$ un endomorphisme symétrique (c'est-à-dire tel que $u^* = u$); alors il existe une base orthonormée de E formée de vecteurs propres de u. On considère les applications différentiables :

$$f: \left| \begin{array}{ccc} E & \to & \mathbb{R} \\ x & \mapsto & \langle u(x), x \rangle \end{array} \right| \ \text{et} \ g: \left| \begin{array}{ccc} E & \to & \mathbb{R} \\ x & \mapsto & \langle x, x \rangle \end{array} \right|.$$

On note aussi $S = \{x \in E | g(x) = 1\}$ la sphère unité; on est en dimension finie, donc elle est compacte. L'application f étant continue sur E, elle atteint son maximum sur S, en un point noté e_1 . Par ailleurs, pour $x \in E$ et $h \in E$:

$$Df(x).h = 2\langle u(x), h \rangle$$
 et $Dg(x).h = 2\langle x, h \rangle$.

D'après le théorème des extrema liés, $\exists \lambda_1 \in \mathbb{R}, \mathrm{D}f\left(e_1\right) = \lambda_1\mathrm{D}g\left(e_1\right)$. Autrement dit, $u\left(e_1\right) = \lambda_1e_1$. On peut à présent raisonner par récurrence ; soit $F = e_1^{\perp}$. Il suffit de montrer que $u_{|F}$ est symétrique et appliquer la récurrence.

L'inégalité entre les moyennes arithmétique et géométrique : On considère les applications :

$$f: \left| \begin{array}{ccc} \left(\mathbb{R}^+\right)^n & \to & \mathbb{R} \\ x & \mapsto & \sqrt[n]{x_1 \dots x_n} \end{array} \right| \text{ et } g: \left| \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{n} \sum_{i=1}^n x_i - 1 \end{array} \right|.$$

L'ensemble $K = \{x \in \mathbb{R}^n | x_1 \geqslant 0, \dots x_n \geqslant 0, g(x) = 0\}$ est un compact de \mathbb{R}^n . La fonction f atteint son maximum sur K en un point $a = (a_1, \dots, a_n)$; notamment $f(a) \geqslant f(1, \dots, 1) = 1$. En conséquence, $a \in (\mathbb{R}^{+*})^n$, ouvert sur lequel f et g sont de classe C^1 . Par ailleurs, pour $x \in (\mathbb{R}^{+*})^n$, $Dg(x) = \frac{1}{n}(1, \dots, 1)$. D'après le théorème des extrema liés,

 $\exists \lambda \in \mathbb{R}, \mathrm{D}f(a) = \lambda \mathrm{D}g(a).$ On montre alors que $\frac{\partial f}{\partial x_i}(a) = \frac{f(a)}{na_i}$ pour $i \in [\![1,n]\!].$ En conséquence, $f(a) = \lambda a_1 = \ldots = \lambda a_n$,

puis
$$a_1 = \ldots = a_n = 1$$
. Ainsi, $\forall x \in K, f(x) \leq 1$; puis, par homogénéité : $\forall x_1, \ldots, x_n \in \mathbb{R}^+, \sqrt[n]{x_1 \ldots x_n} \leq \frac{x_1 + \ldots + x_n}{n}$.

Une utilisation en statistiques : Soit X_1, \ldots, X_n un n-échantillon de moyenne ν et de variance σ^2 .

Quand $\sum_{i=1}^{n} a_i = 1$, on sait que $\sum_{i=1}^{n} a_i X_i$ est un estimateur non-biaisé de ν . Parmi tous les estimateurs de cette forme, on recherche celui de variance minimale.

Par le calcul, la variance de l'estimateur $\sum_{i=1}^{n} a_i X_i$ vaut $\sigma^2 \sum_{i=1}^{n} a_i^2$.

On pose:

$$f: \left| \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & x_1^2 + \ldots + x_n^2 \end{array} \right| \text{ et } g: \left| \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & x_1 + \ldots + x_n - 1 \end{array} \right|.$$

On veut minimiser f sur l'ensemble où g s'annule.

Par le théorème des extrema liés, si f admet un extremum en (a_1, \ldots, a_n) , alors

$$\exists \lambda \in \mathbb{R}, \mathrm{D}f\left(a_1,\ldots,a_n\right) = \lambda \mathrm{D}g\left(a_1,\ldots,a_n\right).$$

Mais
$$\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n)=2a_i$$
 et $\frac{\partial g}{\partial x_i}(a_1,\ldots,a_n)=1$.

Donc $\forall i \in [[1, n]], 2a_i = 1.$

On montre alors que $a_1 = \ldots = a_n = \frac{1}{n}$; c'est bien un minimum, car $f(1,0,\ldots,0) = 1 > n\frac{1}{n^2} = \frac{1}{n}$.

Démonstration:

Étape 1: Commençons par quelques petites remarques.

On voit déjà que nécessairement $r \le n$ car les formes linéaires $Dg_1(a), \ldots, Dg_r(a)$ forment une famille libre de $(\mathbb{R}^n)^*$.

De plus, si r = n, le résultat est trivial, car alors $Dg_1(a), \ldots, Dg_r(a)$ forment une base de $(\mathbb{R}^n)^*$.

On peut donc supposer désormais que r < n.

Soit $s = n - r \geqslant 1$; on procède à l'identification entre $(x, y) \in \mathbb{R}^s \times \mathbb{R}^r$ et $(x_1, \dots, x_s, y_1, \dots, y_r) \in \mathbb{R}^n$.

On écrit alors $a = (\alpha, \beta)$, où $\alpha \in \mathbb{R}^s$ et $\beta \in \mathbb{R}^r$.

Étape 2: Intéressons-nous à une matrice qui va nous être utile pour la suite. ³

Soit
$$A = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_s} & \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_1}{\partial y_r} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial g_r}{\partial x_1} & \cdots & \frac{\partial g_r}{\partial x_s} & \frac{\partial g_r}{\partial y_1} & \cdots & \frac{\partial g_r}{\partial y_r} \end{pmatrix} (a) \in \mathcal{M}_{r,n}(\mathbb{R}).^4$$

Comme $(Dg_i(a))_{1 \le i \le r}$ est une famille libre, on a : rg A = r. ⁵

On peut donc extraire de A une sous-matrice inversible de format $r \times r$; quitte à renuméroter les

variables... on peut supposer que det
$$\left(\frac{\partial g_i}{\partial y_j}(a)\right)_{1 \leqslant i,j \leqslant r} \neq 0$$
!

En notant $g = (g_1, \dots, g_r)$, ceci se reformule en " $D_y g(a)$ est inversible".

Étape 3 : On applique le théorème des fonctions implicites à g au voisinage de a. 6

Il nous fournit ici:

- U', voisinage ouvert de α dans \mathbb{R}^s ,
- Ω , voisinage ouvert de *a* dans \mathbb{R}^n et
- $-\varphi = (\varphi_1, \dots, \varphi_r) : U' \to \mathbb{R}^r$ de classe \mathcal{C}^1 , tels que : $(x \in U', (x, y) \in \Omega \text{ et } g(x, y) = 0) \Leftrightarrow (x \in U' \text{ et } y = \varphi(x)).$

En d'autres termes, les éléments de $\Gamma \cap \Omega$ s'écrivent $(x, \varphi(x))$.

Étape 4: On pose
$$h: \begin{bmatrix} U' \to \mathbb{R} \\ x \mapsto f(x, \varphi(x)) \end{bmatrix}$$

Comme $h(\alpha) = f(a)$ et $\forall x \in U', (x, \varphi(x)) \in \Gamma$, ensemble où f admet un extremum local en a; on obtient que h admet un extremum local en α .

On note $\psi = (\mathrm{Id}_{\mathbb{R}^s}, \varphi)$.

- 3. Si elle ne servait à rien, on n'en parlerait pas...
- 4. Cette notation, bâtarde, signifie

$$A = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(a) & \dots & \frac{\partial g_1}{\partial x_s}(a) & \frac{\partial g_1}{\partial y_1}(a) & \dots & \frac{\partial g_1}{\partial y_r}(a) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial g_r}{\partial x_1}(a) & \dots & \frac{\partial g_r}{\partial x_s}(a) & \frac{\partial g_r}{\partial y_1}(a) & \dots & \frac{\partial g_r}{\partial y_r}(a) \end{pmatrix}.$$

Elle a le mérite de prendre moins de place au tableau.

5. Cela se démontre par l'absurde; supposons que rg A < r. Alors il existe une famille de scalaires non-nulle (μ_1, \dots, μ_r) telle que : $\forall j \in [\![1,n]\!], \sum_{i=1}^r \mu_i \frac{\partial g_i}{\partial z_j}(a) = 0$, où on a désigné les variables $(x_1, \dots, x_s, y_1, \dots, y_r)$ par (z_1, \dots, z_n) . En conséquence,

$$\sum_{i=1}^r \mu_i \mathrm{D} g_i(a) = 0$$
 ; contredisant ainsi la liberté de la famille $(\mathrm{D} g_i(a))_{1\leqslant i\leqslant r}$.

6. Si je rappelle son énoncé, c'est pas pour vous offenser, c'est juste que ça me fait du bien.

Théorème (des fonctions implicites)

Soient U un ouvert de $\mathbb{R}^s \times \mathbb{R}^r$, (a,b) un point de U, et $f \in \mathcal{C}^1$ (U,\mathbb{R}^r) .

On suppose que f(a,b) = 0 et que $\det D_{\nu} f(a,b) \neq 0$.

Alors l'équation f(x,y)=0 peut être résolue localement par rapport aux variables y, c'est-à-dire : il existe un voisinage ouvert V de a dans \mathbb{R}^s , un voisinage ouvert W de b dans \mathbb{R}^r , avec $V\times W\subset U$ et une unique application $\varphi:V\to W$ de classe \mathcal{C}^1 telle que :

$$(x \in V, y \in W \text{ et } f(x, y) = 0) \Leftrightarrow (x \in V \text{ et } y = \varphi(x)).$$

De plus, $D_y f(x_0, y_0)$ est inversible pour tout $(x_0, y_0) \in V \times W$.

$$\begin{split} & \text{Ainsi}: \forall i \in [\![1,s]\!], 0 = \frac{\partial h}{\partial x_i}(\alpha) = \frac{\partial (f \circ \psi)}{\partial x_i}(\alpha) = \sum_{j=1}^s \frac{\partial f}{\partial x_j}(\psi(\alpha)) \frac{\partial \psi_j}{\partial x_i}(\alpha) + \sum_{j=1}^r \frac{\partial f}{\partial y_j}(\psi(\alpha)) \frac{\partial \psi_{s+j}}{\partial x_i}(\alpha). \\ & \text{Cependant}, \forall j \in [\![1,s]\!], \frac{\partial \psi_j}{\partial x_i} = \delta_{i,j} \text{ et } \forall j \in [\![1,r]\!], \frac{\partial \psi_{s+j}}{\partial x_i} = \frac{\partial \varphi_j}{\partial x_i}. \\ & \text{Dès lors}: \forall i \in [\![1,s]\!], 0 = \frac{\partial f}{\partial x_i}(a) + \sum_{j=1}^r \frac{\partial f}{\partial y_j}(a) \frac{\partial \varphi_j}{\partial x_i}(\alpha). \end{split}$$

Dès lors :
$$\forall i \in [1, s], 0 = \frac{\partial f}{\partial x_i}(a) + \sum_{i=1}^r \frac{\partial f}{\partial y_i}(a) \frac{\partial \varphi_j}{\partial x_i}(\alpha)$$

De plus, $g \circ \psi$ est nulle sur U' donc sa $k^{\text{ème}}$ composante, $g_k \circ \psi$ (où $k \in [1, r]$), aussi; en conséquence :

$$\forall i \in [1, s], 0 = \frac{\partial g_k}{\partial x_i}(a) + \sum_{j=1}^r \frac{\partial g_k}{\partial y_i}(a) \frac{\partial \varphi_j}{\partial x_i}(\alpha).$$

Posons alors:

$$M = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) & \dots & \frac{\partial f}{\partial x_s}(a) & \frac{\partial f}{\partial y_1}(a) & \dots & \frac{\partial f}{\partial y_r}(a) \\ & & & & \end{pmatrix} \in \mathcal{M}_{r+1,n}(\mathbb{R}).$$

Les s premières colonnes de M sont combinaisons linéaires des r dernières ; ainsi rg $M \leq r$. Les r + 1 lignes de M sont alors liées!

Ainsi,
$$\exists (\mu_0, ..., \mu_r) \in \mathbb{R}^{r+1} \setminus \{0\}, \mu_0 Df(a) + \sum_{i=1}^r \mu_i Dg_i(a) = 0.$$

Mais $(Dg_i(a))_{1 \le i \le r}$ est une famille libre, donc $\mu_0 \ne 0$ (car sinon, tous les μ_i devraient être nuls).

On obtient alors le résultat souhaité en posant : $\forall i \in \llbracket 0, r \rrbracket, \lambda_i = \frac{\mu_i}{\mu_i}$

Références

[Gou An] X. GOURDON – Les maths en tête : Analyse, 2e éd., Ellipses, 2008.