Algorithme du gradient à pas optimal

Leçons: 232, 215, 219, 226, 229

[HU], exercice II.8 [X-ENS Al3], exercice 2.35

Théorème

Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $b \in \mathbb{R}^n$; on veut minimiser $f: x \mapsto \frac{1}{2}\langle Ax, x \rangle + \langle b, x \rangle$, quand x parcourt \mathbb{R}^n . Il existe une unique solution à ce problème, et elle est caractérisée par $\nabla f(\overline{x}) = 0$.

Il existe une unique solution à ce problème, et elle est caractérisée par $\nabla f\left(\overline{x}\right)=0$. De plus, l'algorithme défini par $\begin{cases} x_0 \in \mathbb{R}^n \\ \forall k \in \mathbb{N}, x_{k+1} = x_k + t_k d_k \end{cases}$, où $d_k = -\nabla f\left(x_k\right)$ et où t_k est l'unique réel minimisant la fonction $t \mapsto f\left(x_k + t d_k\right)$, converge vers \overline{x} .

Démonstration:

1. Soit \overline{x} un point minimal, alors nécessairement $\nabla f(\overline{x}) = 0$.

Or, pour tous
$$x, h \in \mathbb{R}^n$$
: $f(x+h) = \frac{1}{2} \langle A(x+h), x+h \rangle + \langle b, x+h \rangle$

$$= \frac{1}{2} \langle Ax, x \rangle + \frac{1}{2} \langle Ah, x \rangle + \frac{1}{2} \langle Ax, h \rangle + \frac{1}{2} \langle Ah, h \rangle + \langle b, x \rangle + \langle b, h \rangle$$

$$= f(x) + \langle Ax, h \rangle + \langle b, h \rangle + \frac{1}{2} \langle Ah, h \rangle \quad \text{(car } A \text{ est symétrique)}$$

$$= f(x) + \langle Ax + b, h \rangle + o(\|h\|)$$

De ce calcul, il vient notamment que f est différentiable 1 et que $\forall x \in \mathbb{R}^n$, $\nabla f(x) = Ax + b$. Mais A étant symétrique définie positive, f est strictement convexe et on en déduit : $\overline{x} = -A^{-1}b$. Procédons alors au calcul de la valeur optimale :

$$\overline{f}:=f\left(\overline{x}\right)=\frac{1}{2}\langle-b,-A^{-1}b\rangle+\langle b,-A^{-1}b\rangle=\frac{1}{2}\langle A^{-1}b,b\rangle-\langle A^{-1}b,b\rangle=-\frac{1}{2}\langle A^{-1}b,b\rangle$$

- 2. Soit $k \in \mathbb{N}$; on suppose que $d_k \neq 0$, car sinon $Ax_k = -b$ et alors l'algorithme a convergé en temps fini, et on n'a plus rien à dire.
- 3. On va maintenant calculer t_k .

Pour
$$t \in \mathbb{R}$$
, on pose $g(t) := f(x_k + td_k) = f(x_k) + \langle \underbrace{Ax_k + b}_{=-d_k}, td_k \rangle + \frac{1}{2} \langle Atd_k, td_k \rangle.$

Et donc,
$$g(t) = f(x_k) - t ||d_k||^2 + \frac{t^2}{2} \langle Ad_k, d_k \rangle$$
.

Ainsi ², g atteint son minimum en $t_k = \frac{\|d_k\|^2}{\langle Ad_k, d_k \rangle}$ (on rappelle que $d_k \neq 0$, assurant que $\langle Ad_k, d_k \rangle \neq 0$, étant donné que A est symétrique définie positive).

4. Calculons l'erreur commise entre $f(x_k)$ et \overline{f} .

$$f\left(x_{k+1}\right) = f\left(x_{k} + t_{k}d_{k}\right) = f\left(x_{k}\right) - \frac{\left\|d_{k}\right\|^{4}}{\left\langle Ad_{k}, d_{k}\right\rangle} + \frac{1}{2} \frac{\left\|d_{k}\right\|^{4}}{\left\langle Ad_{k}, d_{k}\right\rangle} = f\left(x_{k}\right) - \frac{1}{2} \frac{\left\|d_{k}\right\|^{4}}{\left\langle Ad_{k}, d_{k}\right\rangle}$$

$$f\left(x_{k+1}\right) - \overline{f} = \left(f\left(x_{k}\right) - \overline{f}\right) - \frac{1}{2} \frac{\left\|d_{k}\right\|^{4}}{\left\langle Ad_{k}, d_{k}\right\rangle} = \left(f\left(x_{k}\right) - \overline{f}\right) \left(1 - \frac{1}{2\left(f\left(x_{k}\right) - \overline{f}\right)} \frac{\left\|d_{k}\right\|^{4}}{\left\langle Ad_{k}, d_{k}\right\rangle}\right)$$

$$\text{Mais en fait, } \langle A^{-1}d_{k}, d_{k}\rangle = \langle A^{-1}\left(Ax_{k} + b\right), Ax_{k} + b\rangle = \langle x_{k}, Ax_{k}\rangle + \langle x_{k}, b\rangle + \underbrace{\langle A^{-1}b, Ax_{k}\rangle}_{=\langle b, x_{k}\rangle} + \langle A^{-1}b, b\rangle$$

$$= 2\left(\frac{1}{2}\langle Ax_{k}, x_{k}\rangle + \langle b, x_{k}\rangle - \overline{f}\right) = 2\left(f\left(x_{k}\right) - \overline{f}\right)$$

^{1.} En même temps, f est polynomiale, donc la différentiabilité était déjà évidente.

^{2.} Je trouvais que le fait d'invoquer directement la formule bien connue des polynômes du 2nd degré était préférable à la dérivation, car cela permet d'aller plus vite, ce qui n'est pas négligeable sur ce développement.

On en déduit alors que :
$$f(x_{k+1}) - \overline{f} = \left(f(x_k) - \overline{f}\right) \left(1 - \frac{\|d_k\|^4}{\langle A^{-1}d_k, d_k \rangle \langle Ad_k, d_k \rangle}\right)$$
.

Lemme (*Inégalité de Kantorovitch* ³)

Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$, dont λ_1 et λ_n sont les plus petite et grande valeurs propres.

Alors
$$\forall x \in \mathbb{R}^n$$
, $\langle Ax, x \rangle \langle A^{-1}x, x \rangle \leqslant \frac{1}{4} \left(\sqrt{\frac{\lambda_1}{\lambda_n}} + \sqrt{\frac{\lambda_n}{\lambda_1}} \right) \|x\|^4$.

Démonstration du lemme:

En notant $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ dans une base orthonormée de vecteurs propres de A^5 , on fait les calculs

$$\langle Ax, x \rangle \langle A^{-1}x, x \rangle = \left(\sum_{i=1}^{n} \lambda_{i} x_{i}^{2}\right) \left(\sum_{i=1}^{n} \frac{1}{\lambda_{i}} x_{i}^{2}\right) \underset{\text{Schwarz}}{\geqslant} \left(\sum_{i=1}^{n} \frac{\sqrt{\lambda_{i}}}{\sqrt{\lambda_{i}}} x_{i}^{2}\right)^{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2} \geqslant 0$$

Mais comme on sait ⁶ que $\sqrt{ab} \leqslant \frac{1}{2}(a+b)$:

$$\sqrt{\langle Ax, x \rangle \langle A^{-1}x, x \rangle} = \sqrt{\frac{\lambda_1}{\lambda_n}} \sqrt{\left(\sum_{i=1}^n \frac{\lambda_i}{\lambda_1} x_i^2\right) \left(\sum_{i=1}^n \frac{\lambda_n}{\lambda_i} x_i^2\right)} \leqslant \frac{1}{2} \sqrt{\frac{\lambda_1}{\lambda_n}} \sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1} + \frac{\lambda_n}{\lambda_i}\right) x_i^2$$

On peut montrer que $\alpha: x \mapsto \frac{x}{\lambda_1} + \frac{\lambda_n}{x}$ est décroissante sur $(\lambda_1, \sqrt{\lambda_1 \lambda_n})$ et croissante sur $(\sqrt{\lambda_1 \lambda_n}, \lambda_n)$.

Toujours est-il que α admet son maximum en λ_1 ou en λ_n ; mais $\alpha(\lambda_1) = \alpha(\lambda_n) = 1 + \frac{\lambda_n}{\lambda_1}$

$$\mathrm{D'où}: \sqrt{\langle Ax, x\rangle \langle A^{-1}x, x\rangle} \leqslant \frac{1}{2} \sqrt{\frac{\lambda_1}{\lambda_n}} \sum_{i=1}^n \left(1 + \frac{\lambda_n}{\lambda_1}\right) x_i^2 = \frac{1}{2} \left(\sqrt{\frac{\lambda_1}{\lambda_n}} + \sqrt{\frac{\lambda_n}{\lambda_1}}\right) \sum_{i=1}^n x_i^2.$$

Ce qui donne finalement, en élevant au carré :
$$\langle Ax, x \rangle \langle A^{-1}x, x \rangle \leqslant \frac{1}{4} \left(\sqrt{\frac{\lambda_1}{\lambda_n}} + \sqrt{\frac{\lambda_n}{\lambda_1}} \right)^2 ||x||^4$$
.

Utilisons l'inégalité de Kantorovitch :

$$f(x_{k+1}) - \overline{f} \leqslant \left(f(x_k) - \overline{f} \right) \left(1 - \frac{4}{\left(\sqrt{c(A)} + \frac{1}{\sqrt{c(A)}} \right)^2} \right) = \left(f(x_k) - \overline{f} \right) \left(1 - \frac{4c(A)}{(c(A) + 1)^2} \right)$$

$$\leqslant \left(f(x_k) - \overline{f} \right) \left(\frac{c(A) - 1}{c(A) + 1} \right)^2$$

Et donc
$$\forall k \in \mathbb{N}, f(x_k) - \overline{f} \leqslant \left(f(x_0) - \overline{f}\right) \left(\frac{c(A) - 1}{c(A) + 1}\right)^{2k}$$
.

- 3. Dites juste que vous admettez l'inégalité de Kantorovitch et utilisez-la sans l'énoncer. Gardez un œil sur le chrono...
- 4. Comme $A \in \mathcal{S}_n^{++}(\mathbb{R})$, $\|A\|_2 = \sqrt{\rho({}^{\mathsf{t}}AA)} = \rho(A) = \lambda_n$ (dites "décomposition polaire") et aussi $\|A^{-1}\|_2 = \frac{1}{\lambda_1}$. Ainsi, on fait apparaître le conditionnement en norme 2 de A : $\operatorname{cond}_2(A) = \frac{\lambda_n}{\lambda_1}$, qu'on notera par la suite (pour plus de simplicité) c(A).
 - 5. Rappelez-vous le théorème spectral : toute matrice symétrique est diagonalisable dans une base orthonormée.
- 6. En fait, c'est une application toute bête des identités remarquables : comme $(a b)^2 \ge 0$, on sait que $a^2 + b^2 \ge 2ab$. Ainsi, $\left(\frac{1}{2}(a+b)\right)^2 = \frac{1}{4}\left(a^2 + b^2\right) + \frac{1}{2}ab \geqslant ab.$ 7. On peut, mais là, j'ai la flemme.

5. Pour finir, on va calculer l'erreur sur $\|x_k - \overline{x}\|$.

On a: $\|x_k - \overline{x}\|^2 \leqslant \frac{1}{\lambda_1} \langle A(x_k - \overline{x}), x_k - \overline{x} \rangle = \frac{1}{\lambda_1} \left(\langle Ax_k, x_k \rangle - \langle Ax_k, \overline{x} \rangle - \langle A\overline{x}, x_k \rangle + \langle A\overline{x}, \overline{x} \rangle \right)$ $= \frac{1}{\lambda_1} \left(\langle Ax_k, x_k \rangle - 2\langle x_k, A\overline{x} \rangle - 2\overline{f} \right) = \frac{1}{\lambda_1} \left(2f(x_k) - 2\overline{f} \right)$ $= \frac{2}{\lambda_1} \left(f(x_k) - \overline{f} \right)$ En fin de compte, $\|x_k - \overline{x}\| \leqslant \sqrt{\frac{2}{\lambda_1}} \sqrt{f(x_k) - \overline{f}} \leqslant \sqrt{\frac{2}{\lambda_1}} \left(f(x_0) - \overline{f} \right) \left(\frac{c(A) - 1}{c(A) + 1} \right)^k$.
Comme $\left| \frac{c(A) - 1}{c(A) + 1} \right| < 1$, on en déduit que la suite $(x_k)_{k \in \mathbb{N}}$ converge vers \overline{x} .

Références

[HU] J.-B. HIRIART-URRUTY – *Optimisation et analyse convexe*, EDP Sciences, 2009. [X-ENS Al3] S. FRANCINOU, H. GIANELLA et S. NICOLAS – *Oraux X-ENS Algèbre 3*, 2^e éd., Cassini, 2013.

^{8.} Vous souvenez-vous du quotient de Rayleigh?

^{9.} Ouf!