Irréductibilité des polynômes cyclotomiques sur $\mathbb Z$

Leçons: 102, 141, 120, 121, 144

[Per], théorème 4.10

Théorème

Soit $n \in \mathbb{N}^*$; le polynôme cyclotomique Φ_n (qui est dans $\mathbb{Z}[X]$) est irréductible sur \mathbb{Z} , donc sur \mathbb{Q} .

Démonstration:

Étape 1: Par récurrence forte, on va commencer par montrer que $\forall n \in \mathbb{N}^*, \Phi_n \in \mathbb{Z}[X]$.

- Si *n* = 1, on a bien Φ₁ = *X* − 1 ∈ $\mathbb{Z}[X]$.
- Soit n > 1, on suppose : $\forall k \in [[1, n-1]], \Phi_k \in \mathbb{Z}[X]$.

Soit
$$F = \prod_{\substack{d \mid n \\ d \neq n}} \Phi_d$$
; on a $F \in \mathbb{Z}[X]$ et F unitaire. D'une part, $\Phi_n F = X^n - 1$.

Et comme F est unitaire, on peut faire la division euclidienne de $X^n - 1$ par F dans $\mathbb{Z}[X]$:

$$X^n - 1 = PF + R$$
 avec $P, R \in \mathbb{Z}[X]$ et deg $R < \deg F$.

Cette division euclidienne est aussi vraie dans C[X]; elle y est même unique, et on obtient : $P = \Phi_n$ et R = 0.

Conséquemment, $\Phi_n \in \mathbb{Z}[X]$.

Étape 2 : Soit $\xi \in \mathbb{C}$ une racine primitive n^e de l'unité ; soit p premier, avec $p \nmid n$.

Ainsi, ξ^p est aussi une racine primitive n^e de l'unité, on note $\omega = \xi^p$.

Étape 3 : Soit π_{ξ} (respectivement π_{ω}) le polynôme minimal de ξ (resp. ω) sur Q.

On va montrer que π_{ξ} et π_{ω} sont des éléments de $\mathbb{Z}[X]$.

 \mathbb{Z} est un anneau euclidien, donc a fortiori, \mathbb{Z} est factoriel, donc $\mathbb{Z}[X]$ est un anneau factoriel. ²

Donc on peut écrire $\Phi_n = \prod_{i=1}^r F_i^{\alpha_i}$, où les F_i sont irréductibles dans $\mathbb{Z}[X]$ et les α_i sont dans \mathbb{N}^* .

Quitte à multiplier les F_i par -1, comme Φ_n est unitaire, on peut supposer que les F_i sont unitaires.

Comme $\Phi_n(\xi) = \Phi_n(\omega) = 0$; $\exists i_0 \in [1, r], F_{i_0}(\xi) = 0$ et $\exists i_1 \in [1, r], F_{i_1}(\omega) = 0$.

Mais comme F_{i_0} et F_{i_1} sont irréductibles dans $\mathbb{Z}[X]$ (donc dans $\mathbb{Q}[X]$) et unitaires, ce sont les polynômes minimaux de ξ et ω , sur \mathbb{Q} .

Conséquemment, $F_{i_0} = \pi_{\xi}$ et $F_{i_1} = \pi_{\omega}$.

Ainsi, on a montré que $\pi_{\tilde{c}}|\Phi_n$ et $\pi_{\omega}|\Phi_n$ dans $\mathbb{Z}[X]$.

Étape 4: On va montrer désormais que $\pi_{\xi} = \pi_{\omega}$; supposons par l'absurde que $\pi_{\xi} \neq \pi_{\omega}$.

Comme $\pi_{\bar{e}}$ et π_{ω} sont irréductibles dans $\mathbb{Z}[X]$ et distincts, on a : $\pi_{\bar{e}}\pi_{\omega}|\Phi_n$ dans $\mathbb{Z}[X]$.

Par ailleurs, comme $\pi_{\omega}(\xi^p) = 0$, ξ est racine de $\pi_{\omega}(X^p)$; ainsi, π_{ξ} étant le polynôme minimal de ξ sur \mathbb{Q} , on a : $\pi_{\xi}(X)|\pi_{\omega}(X^p)$ dans $\mathbb{Q}[X]$.

Autrement dit, $\exists Q \in \mathbb{Q}[X]$, $\pi_{\omega}(X^p) = \pi_{\xi}(X)Q(X)$.

Mais $\pi_{\xi} \in \mathbb{Z}[X]$ est unitaire; on a donc la division euclidienne dans $\mathbb{Z}[X]$:

$$\pi_{\omega}(X^p) = \pi_{\xi}(X)S(X) + R(X)$$
 avec $S, R \in \mathbb{Z}[X]$ et $\deg R < \deg \pi_{\xi}$.

Par unicité de la division euclidienne dans $\mathbb{Q}[X]$, on a : Q = S et R = 0.

En particulier, $\pi_{\xi}(X)|\pi_{\omega}(X^p)$ dans $\mathbb{Z}[X]$.

Dans la suite, on notera $\overline{P} \in \mathbb{F}_p[X]$ la réduction modulo p du polynôme $P \in \mathbb{Z}[X]$.

Le morphisme de Frobenius fournit alors : $\overline{\pi_{\xi}(X)} \Big| \overline{\pi_{\omega}(X^p)} = \overline{\pi_{\omega}(X)}^p$.

Soit *A* un facteur irréductible de $\overline{\pi_{\xi}}$ dans $\mathbb{F}_{p}[X]$.

Ainsi, $A|\overline{\pi_{\omega}}^p$, et par le lemme d'Euclide : $A|\overline{\pi_{\omega}}$.

Comme $\pi_{\xi}\pi_{\omega}|\Phi_n$ dans $\mathbb{Z}[X]$, $\overline{\pi_{\xi}\pi_{\omega}}|\overline{\Phi_n}$ dans $\mathbb{F}_p[X]$ et donc $A^2|\overline{\Phi_n}$ dans $\mathbb{F}_p[X]$.

Ensuite, $A^2|\overline{X^n-1}$, donc $\exists B \in \mathbb{F}_p[X], \overline{X^n-1} = A^2B$, puis en dérivant $\overline{nX^{n-1}} = A(2A'B + AB')$.

Donc, $A \mid \overline{nX^{n-1}}$ dans $\mathbb{F}_p[X]$.

Mais $A|\overline{nX^n-n}$ dans $\mathbb{F}_p[X]$, donc $A|\overline{n}\neq 0$.

^{1.} Cela se justifie bien en disant que les racines n^{es} de l'unité sont les racines primitives d^{es} de l'unité, avec d|n.

^{2. «} Je veux bien, je les connais ces résultats-là, mais si on me demande comment ça se démontre?

[–] Eh bien, tu n'as qu'à aller voir à la page ??. »

DÉVELOPPEMENTS POUR L'AGRÉGATION EXTERNE

En conséquence, $\deg A=0$, ce qui contredit l'irréductibilité de A (car \mathbb{F}_p est un corps donc les polynômes de degré nul sont inversibles dans $\mathbb{F}_p[X]$). On obtient donc (enfin) une contradiction : ainsi $\pi_{\xi}=\pi_{\omega}$.

Étape 5 : Montrons, par récurrence sur $s \in \mathbb{N}^*$ que :

$$\forall \alpha$$
 racine de π_{ξ} , $\forall p_1, \ldots, p_s$ premiers tels que $(p_1 \ldots p_s) \land n = 1, \pi_{\xi} (\alpha^{p_1 \ldots p_s}) = 0$.

- Si s=1, on a déjà vu ça dans l'étape précédente.
- Soit s > 1, α une racine de π_{ξ} , et $k = p_1 \dots p_s$ où les p_i sont des nombres premiers tels que $k \wedge n = 1$. On a $p_1 \dots p_{s-1} \wedge n = 1$ donc $\alpha^{p_1 \dots p_{s-1}}$ est racine de π_{ξ} par hypothèse de récurrence.

Or, aussi
$$p_s \wedge n = 1$$
, donc $\pi_{\xi} \left((\alpha^{p_1 \dots p_{s-1}})^{p_s} \right) = 0$, d'où $\pi_{\xi} \left(\alpha^k \right) = 0$.

Étape 6 : Ainsi, tous les éléments de μ_n^* sont racines de π_{ξ} , donc deg $\pi_{\xi} \geqslant \varphi(n)$.

Et comme $\pi_{\xi}|\Phi_n$, on a deg $\pi_{\xi}=\varphi(n)$; π_{ξ} et Φ_n étant unitaires, on obtient $\Phi_n=\pi_{\xi}$.

Références

[Per] D. Perrin – Cours d'algèbre, Ellipses, 1996.