Méthode des petits pas

Leçons: 224

[Rom], partie 8.5.4

Théorème

Soit $f:]-1,1[\to \mathbb{R}$ une fonction continue, et admettant un développement limité en 0 de la forme : $f(x)=x-\alpha x^{p+1}+\beta x^{2p+1}+o(x^{2p+1})$, avec $\alpha>0$, $\beta\in\mathbb{R}^*$ et p>0.

Sous de bonnes conditions initiales, la suite définie par $x_{n+1} = f(x_n)$ vérifie :

$$x_n = \frac{1}{\sqrt[p]{pn\alpha}} - \frac{\gamma}{p^2\alpha^2\sqrt[p]{p\alpha}} \frac{\ln n}{n\sqrt[p]{n}} + o\left(\frac{\ln n}{n\sqrt[p]{n}}\right), \text{ quand } \gamma := \frac{(1+p)\alpha^2}{2} - \beta \neq 0.$$

Démonstration:

Étape 1: On peut écrire f(x) = xg(x) et $x - f(x) = \alpha x^{p+1}h(x)$, avec g(x) et h(x) qui tendent vers 1 quand x tend vers 0.

Ainsi, $\exists \eta > 0, \forall x \in [-\eta, \eta], g(x) > 0 \text{ et } h(x) > 0.$

En particulier, $\forall x \in]0, \eta], 0 < f(x) < x \leq \eta$.

 $[0, \eta]$ est stable par f donc si $x_0 \in]0, \eta]$, (x_n) est bien définie et à valeurs dans $[0, \eta]$.

Étape 2 : De plus, $\forall n \in \mathbb{N}, 0 < x_{n+1} < x_n$, donc (x_n) est décroissante et minorée par 0.

Donc elle converge vers un point fixe l de f, car f est continue, avec $l \in [0, \eta]$.

De l'inégalité f(x) < x valable sur $]0, \eta]$, on déduit l = 0.

Étape 3 : Soit $\lambda \in \mathbb{R}$; on note $y_n = x_{n+1}^{\lambda} - x_n^{\lambda}$. Dès lors :

$$y_{n} = x_{n}^{\lambda} \left(\left(1 - \alpha x_{n}^{p} + \beta x_{n}^{2p} + o\left(x_{n}^{2p}\right) \right)^{\lambda} - 1 \right) = x_{n}^{\lambda} \left(-\lambda \alpha x_{n}^{p} + \lambda \beta x_{n}^{2p} + \frac{\lambda(\lambda - 1)}{2} \left(\alpha x_{n}^{p}\right)^{2} + o\left(x_{n}^{2p}\right) \right)$$

$$= -\lambda \alpha x_{n}^{\lambda + p} + \left(\lambda \beta + \frac{\lambda(\lambda - 1)}{2} \alpha^{2} \right) x_{n}^{2p} + o\left(x_{n}^{2p}\right)$$

Cette relation ne nous intéresse vraiment que pour $\lambda = -p$:

$$y_n = p\alpha + \left(-p\beta + \frac{-p(-p-1)}{2}\alpha^2\right)x_n^p + o\left(x_n^p\right) = p\alpha + p\underbrace{\left(\frac{p+1}{2}\alpha^2 - \beta\right)}_{=\gamma}x_n^p + o\left(x_n^p\right)\underset{n\to\infty}{\longrightarrow} p\alpha$$

(Remarquons qu'on a ici utilisé le fait que $x_n \underset{n \to \infty}{\longrightarrow} 0$ et p > 0.)

Par téléscopage, et par le lemme de Cesàro (qui sera démontré par la suite) :

$$\frac{1}{n}\left(x_n^{-p} - x_0^{-p}\right) = \frac{1}{n}\sum_{k=0}^{n-1} y_k \underset{n \to \infty}{\longrightarrow} p\alpha$$

Il s'ensuit alors facilement : $\frac{1}{n}x_n^{-p} \underset{n \to \infty}{\longrightarrow} p\alpha$, d'où $x_n \underset{n \to \infty}{\sim} \frac{1}{\frac{p}{np\alpha}}$

Étape 4: On suppose désormais $\gamma \neq 0$; comme $y_n = p\alpha + p\gamma x_n^p(1 + o(1))$, on a :

$$\sum_{k=0}^{n-1} y_k = np\alpha + p\gamma \sum_{k=0}^{n-1} x_k^p (1 + o(1)).$$

On note
$$S_n = \frac{\sum\limits_{k=0}^{n-1} y_k - np\alpha}{p\gamma}$$
, de sorte que $S_n = \sum\limits_{k=0}^{n-1} x_k^p (1 + o(1))$.

Mais $x_n^p \underset{n \to \infty}{\sim} \frac{1}{np\alpha} \underset{n \to \infty}{\sim} \frac{1}{(n+1)p\alpha}$, et comme $\sum_{n \ge 0}^{\infty} \frac{1}{n+1}$ diverge, on a :

$$S_n \underset{n \to \infty}{\sim} \frac{1}{p\alpha} \sum_{k=0}^{n-1} \frac{1}{k+1} \underset{n \to \infty}{\sim} \frac{1}{p\alpha} \sum_{k=0}^{n-1} \ln\left(1 + \frac{1}{k+1}\right) \underset{n \to \infty}{\sim} \frac{1}{p\alpha} \ln\left(\prod_{k=0}^{n-1} \frac{k+2}{k+1}\right) \underset{n \to \infty}{\sim} \frac{1}{p\alpha} \ln\left(n+1\right) \underset{n \to \infty}{\sim} \frac{\ln n}{p\alpha}$$

D'où
$$\sum_{k=0}^{n-1} y_k = np\alpha + \frac{\gamma}{\alpha} \ln n(1+o(1)).$$

Puis $x_n^{-p} = np\alpha + \frac{\gamma}{\alpha} \ln n + o(\ln n).$

Enfin $x_n = (np\alpha)^{-\frac{1}{p}} \left(1 + \frac{\gamma}{\alpha} \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)\right)^{-\frac{1}{p}} = \frac{1}{\sqrt[p]{np\alpha}} \left(1 - \frac{\gamma}{p^2\alpha^2} \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)\right).$

Ce qui revient à conclure : $x_n = \frac{1}{\sqrt[p]{pn\alpha}} - \frac{\gamma}{p^2\alpha^2} \frac{\ln n}{\sqrt[p]{p\alpha}} + o\left(\frac{\ln n}{n\sqrt[p]{n}}\right).$

Lemme (Cesàro)

Soit
$$(a_n) \in \mathbb{C}^{\mathbb{N}}$$
, une suite qui converge vers $l \in \mathbb{C}$.
Alors $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = l$.

Démonstration:

Soit $\varepsilon > 0$; $\exists N \in \mathbb{N}^*, \forall n > N, |a_n - l| < \varepsilon$. Alors, pour n > N:

$$\left| \sum_{k=1}^{n} a_k - nl \right| \leq \underbrace{\left| \sum_{k=1}^{N} a_k - Nl \right|}_{=:K} + \left| \sum_{k=N+1}^{n} a_k - (n-N)l \right| \leq K + \sum_{k=N+1}^{n} |a_k - l| \leq K + (n-N)\varepsilon \leq K + n\varepsilon$$

Puis
$$\forall n > N$$
, $\left| \frac{1}{n} \sum_{k=1}^{n} a_k - l \right| \leqslant \frac{K}{n} + \varepsilon$.
Or, $\exists N_1 \geqslant N, \forall n \geqslant N_1, \frac{K}{n} < \varepsilon$ et alors $\forall n > N_1, \left| \frac{1}{n} \sum_{k=1}^{n} a_k - l \right| \leqslant 2\varepsilon$.

Références

[Rom] J.-E. ROMBALDI – Éléments d'analyse réelle : CAPES et agrégation de mathématiques, EDP Sciences, 2004.