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Introduction

When we try to describe physical phenomenons such as the weather, the evolution of the solar system
or the repartition of a gas in a room, it is convenient to work in the formalism of dynamical systems.
This theory traduces intuitive notions such as stability, recurrence and mixing. In particular, the case
of ergodic systems - in which the points explore (almost) all the system - has been highly studied and
gives information about the long time behaviour of points. The goal of hitting time statistics theory in
ergodic systems is to estimate how fast the points enter regions of the system, refining the estimations
provided by ergodic theory.

This document aims at presenting several ideas and basic constructions from ergodic theory. It is
mostly divided in two parts:

e Sections [I] to [7] deal with general results and definitions of ergodic theory

e The rest of the document is dedicated in proving two hitting/return time statitics theorems.

1 Notations

If X is a set, for T : X — X we will denote by T™ the n'* iteration of T" under composition. For
A C X, T7"A is the inverse image of A under T™.

Let (X, .#,u) be a measure space. If T': X — X is measurable, we denote by pr the image measure
of u by T, defined as up(A) := u(T~1A), for A € Z. ur is the unique measure on (X,.#) which
satisfies the equation:

For all f € L'(p / foTdu = / fdur.

If x € X we will often denote by Tz the image of by T. (Tx = T(x)).
We will often not distinguish elements of LP and elements of ZP.
A will denote the Lebesgue measure.

2 DMeasure preserving systems

In this section we introduce the notions of dynamical system and measure preserving transfor-
mation. Then we prove Poincaré Recurrence Theorem, which gives a rough idea of the behaviour of
the orbit of points under iterations of the tranformation.

2.1 Definitions

Let (X, %, u) be a measure space.

Let T : X — X be a measurable tranformation.

(X,.Z,u,T) is called a dynamical system.

We say that T is measure preserving if for any measurable set A, one has u(T~1A4) = u(A).
(X, Z#,u,T) is then called a measure preserving system.

To verify that some map is measure preserving, it suffices to prove it for a big enough familly of
sets:

Lemma 2.1. Let (X,.%, 1) be a measure space with finite measure (u(X) < 400). Let T : X — X
be a measurable map.
Suppose that & C F is closed under finite intersections and generates F (i.e the smallest o-algebra



containing & is F ).
If T preserves the measure on &, then T is measure preserving, that is:

Forall E€ &, w(TT'E) = w(E) = For all A€ .Z, u(T™1A) = u(A).
Proof. Suppose T is measure preserving on &. Let
M = {A € F| W(TtA) = ,u(A)}.

A 1s a monotone class:
- Since T71(X) = X, we have X € /.
-If A, B € # with A D B, then

(T~ A\B)) = (T~ A) = w(T™' B) = p(A) = p(B) = p(A\B),

hence A\B € .4 .
- Let (A,)n be an increasing sequence of elements of .Z.

—1 . —1 _ : -1 _ : —
(T~ (UnAn)) = p(UnT™"Ayp) = ngrfooﬂ(T Ay) = ngrfooﬂ(An) = p(UnAn),
and U, A, € .
By hypothesis we have & C .# and by the monotone class lemma, we get

F =0(8)=m(&)C M CZF,
where o(&) is the o-algebra generated by & and m(&’) is the monotone class generated by &. O

Let us give some simple examples:
Let X = [0, 1] endowed with its Borel sigma algebra and the Lebesgue measure \.
e 7: X — X defined by T'(z) = 22 mod (1) (called the doubling map)
e More generally, any 7 : X — X defined by T'(z) = ma mod (1), m € N*
o7 : X — X defined by T'(x) = (r + a) mod (1), @ € [0,1] (it is the rotation of angle a on the
circle)
All these maps are A-preserving.
Let us prove it for the doubling map (the proof is very similar for the other maps). Thanks to Lemma
we can verify that T' is measure preserving only on the sets of the form [a,b), a < b € [0,1]. For
a<bel0,1],

and AM(T~Y([a,b))) = b —a = X[a,b)).

For x € X we might want to look at the set of the iterates of x under T, {T"(x); n € N} . We call
that set the orbit of x.

2.2 Poincaré Recurrence Theorem

Around 1880, Poincaré focussed on the three body problem:

Given a system of three bodies (let’s say planets) interacting through the law of gravitation, can we
predict the evolution of the system as time goes by?



Given the difficulty of the problem, Poincaré had the idea of describing the evolution of the system in

a qualitative point of view. Omne of his results was his now famous recurrence theorerm.

One can think of X as an evolving physical system, where time is represented by N. Under that
formalism the orbit of a point represents the different states it will explore. In the case where u is a
finite measure, Poincaré says that almost every point x is going to come back "near" its initial state.
More precisely,

Theorem 2.1. (Poincaré Recurrence Theorem)

Let (X, Z,u,T) be a measure preserving system with finite measure.

Let A be a measurable set with u(A) > 0. Then almost every point of A comes back to A infinitely
often: For almost every x € A, for infinitely many n, T"(z) € A.

Lemma 2.2. Under the previous conditions, let B € % with u(B) > 0. Then there exists n € N*
such that n(BNT~"B) > 0.

Proof of Lemma[2.3. Assume that for all 4, j € N with i # j we have u(T"*BNT7B) = 0.
Then for all n € N we have:

w(X) > p (U T"“B) => wT*B),
k=0

k=0
And since T is measure preserving,

w(X) = (n+1)u(B),

which is a contradiction for n big enough. O

Proof of theorem [2.1]
Let A be a fixed event with u(A) > 0. Let Ej be the set of points wich never come back to A:

Ey={xcAn>1, T"(zx) € A% = [\ (T "A°).
n>1
Since By C A one has By NT "FEy = () for all n > 1. Therefore Lemma implies that u(E7) = 0.
Applying the same argument to 7™ for each n > 1 shows that every E,, = {x € A|Vm > 1, T""(z) € A}

has measure zero.
We finally get that

© UEn =0,

n>1

And since F := {z € Alzx doesn’t come back to A infinitely often} is contained in U E,, we get
n>1

p(A\F) = p(A),
that is: Almost every point of A returns infinitely often. O

In the case where X is rich enough we can state that almost every point will come back in any
accuracy of its starting location:

Corollary 2.1. Let (X, d) be a separable metric space endowed with its Borel sigma algebra .F and a
finite Borel measure p which gives positive measure to balls.

Let T : X — X be a measure preserving transformation.

Then for almost every x € X there exists an increasing sequence (ny)g>o such that T"(x) — = as k
goes to infinity.



Proof. Let D be a dense countable subset of X. Let 2 = {B(xz,r); v € D, r € Q% }.
For each B € £ there exists Np C B with measure zero such that every point of B\NNp comes back
infinitely often to B. Then, N := U Np has measure zero. For x € X\ N, let (By)x be a sequence of

Be#
balls centred in x with rational radii converging to zero. Since x has to come back infinitely often in any

By, one can construct a sequence (ng )y such that for all k, 7" x € By. Consequently, 7" (x) — . O

Back to the physical problem that motivated Poincaré, we can look at systems for which the total
energy is preserved as time goes by. It is the case for a system of planets interacting via the law of
gravitation and for the movement of gas particules in a box, among others. For a system of N bodies,

we work in the phase space X = ROV of all possible states of the sytem: If y € X, y = <X>, where
v

X1

X = .|, with x,, denoting the position vector of the n'™™ body. Likewise, v € R3N is the velocity

XN
vector.
Hamiltonian systems theory shows that under reasonable regularity assumptions the flow

pr: X — X
y +— ¢(y) = the value of y after t units of time

preserves the Lebesgue measure in the phase space X, that is
For all t > 0 and A C R%" measurable, we have Ay (07 *A) = An(A),

where Agn is the 6/V-dimensional Lebesgue measure.

Then, discretizing the system setting T' = @1 provides a Lebesgue preserving transformation in the
phase space. We thus can apply Poincaré recurrence theorem to the system (X, T, \¢n) to get the
following funny fact:

If you put a glass filled with gas in an empty room, then after some time all the gas particules will
come back in the glass.

More details about Hamiltonian mechanics can be found in [2].

Poincaré’s theorem also implies that under the rotation of angle «, Lebesgue-almost every point
of the circle is going to pass near its initial state. Note that there are two different cases:
- If av is rational, then the orbit of every point is periodic (that is, for all x € [0, 1] there exists p € N*
such that TPx = x). This implies that the rotation acts in an "isolated" way: It is impossible for a
point to explore all the circle.
- If « is irrational, the sytem is more complicated. One can show that the orbit of every point is
dense in [0, 1], it is a consequence of the fact that the rotation of an irrational angle is an ergodic
tranformation. This leads us to the next section.

3 Ergodicity

3.1 Definition and properties

Let . = (X, %, 1, T) be a measure preserving system. We say that .7 is ergodic if it has no proper
subsystems: Forall A€ #, T1A=A4 = p(A) =0or u(X\A) =0.



Remark 3.1. Depending on the context, we will either say that T or p is ergodic.

In the case where p is finite, ergodicity has many equivalent definitions (we denote by AAB the
symetric difference of A and B):

Proposition 3.1. Let (X, .%,u,T) be a measure preserving system with finite measure. The following
are equivalent:

(1) T is ergodic.

(ii) Forall A€ Z, W(T-PAAA) =0 = u(A) =0 or p(A) = p(X).

(i7i) For all A € F with u(A) >0, p U T "A | = p(X).
n>1
(tv) For all A,B € F with u(A), (B) > 0, there exists n > 1 such that pf(ANT"B) > 0.

We are going to use the following elementary results.

Lemma 3.1.

o for A,B,C € .7 we have un(AAC) < u(AAB) + u(BAC).

o for A,B € . we have n(AAB) = 0= pu(A) = u(B).

o For A,Be€.% andn € N we have T""(AAB) = (T "A)A(T™"B).

Proof of Lemma [3.1]
e It is easier to get the first point thanks to a drawing.
e Since for A, B € % we have

p(A) = p(A\(AN B)) + (AN B) and u(B) = p(B\(AN B)) + u(AN B),

we get
i(A) — p(B) = p(A\(AN B)) — u(B\(AN B)) < u(AAB),

hence if u(AAB) = 0, we have u(A) < u(B). In the same way, we get u(B) < u(A).
e Comes from the fact that the inverse image is compatible with intersections and unions. O

Proof of proposition [3.1]
(1) = (i1):
Let A € F with p(T7'AAA) = 0 (we say that A is almost invariant). The idea is to construct
a set B wich is invariant and satifies u(AAB) = 0. Ergodicity and Lemma then ensure that
u(A) = u(B) € {0, u(X)} . k

L . _
Let B—hmnsupT A= ﬂ U T 7A.

n>0k>n
Then B is invariant, and satifies u(AAB) = 0:

wAAB) = pl | OYUT*AnaA )+ | [T F4|nA

n>0 k>n n>0 k>n

< pl{UTmA)na ) +u| T4 nA
n>0 n>0
< > (T "AAA).
n>0
The first point of Lemma [3.1] gives for n € N:

(T "AAA) < (T AAT~ (D A) 4. 4 (T7LAAA).



The third point of Lemma and the invariance of p then give u(T""AAA) =0
we conclude that u(AAB) = 0.
Let A € .7 such that ;u(A) > 0. Let B= | J T""A. Then T~'B C B and

n>1
u(T'BAB) = u(B\T"'B) = u(B) — u(T~'B) = 0,

And since p(B) > u(A) > 0 we have p(B) = u(X).
(131) = (iv):
Let A, B € .# such that u(A), u(B) > 0. Then,

p(A) = u(Am U T—"B> = u( U T—anA>.
n>1 n>1
Consequently, there exists n > 1 such that u(T""BNA) >0
(iv) = (z)
Let A € .Z such that T~'A = A. Assume that u(A) > 0.
If u(A€) > 0, then there exists n > 1 such that 0 < u(ANT""A°) = p(AN A°), contradiction.
Hence u(A) = p(X). O

Proposition 3.2. Under the conditions of Proposition T is ergodic if and only if for every
f: X — R measurable, foT = f almost everywhere implies that f is constant almost everywhere.

Proof.
e Assume that T is ergodic and let f : X — R measurable such that foT = f almost everywhere.

For k € Z and n € N*, set
1
A = { <re bt }
n

Then T-'AKA AR = {k <foT< k“ }Aa{E E<f< kH} is contained in {f o T # f}, hence u(T~'AEAAE) =

0.

By ergodicity, each A¥ has measure 0 or u(X).

Since for all n € N* we have X = U AF | there exists a unique k(n) such that pu(AF) = pu(X).

kEZ

By construction, (@)n is a non decreasing and bounded sequence, hence limn@ exists. Let

Y = ﬂ AR Then (V) = p(X) and for z € Y, f(z) = lim, k(:), hence f is constant almost
neN*

everywhere.

e Suppose now that f ol = f almost everywhere implies f is constant almost everywhere, and let
A € 7 such that T7'A = A. Then 1, is measurable and satifies 1 407 = 17-14 = 14. By hypothesis,
14 is constant to 0 or 1 almost everywhere, which means that p(A) =0 or u(A) = u(X). O

Remark 3.2. To prove that T is ergodic, it suffices to prove that for one p € [1,400], for all
feLP(u), fol = f implies f is constant (Since it suffices to prove it only for 14, for all A € F).

Example 3.1. Let T : [0,1] — [0, 1] be the rotation of angle o, where o is irrational. Let f € L*(\)
such that foT = f.

For almost every x € [0, 1] we have f(x Z cn€?™T 5o that for almost every x,
nez
D enet D) = f(Ta) = f(o) = Y cac ™,
nez ne’



whence for almost every x € [0, 1]

Z c (1 o eQinTra)eQiﬂnx -0
n = 0.

The uniqueness of the Fourier coefficients and the fact that 1 — e*™™ £ 0 for n # 0 then gives: for
alln#0, ¢, =0, and f = co almost everywhere.

3.2 Ergodic Theorems

In 1871 Boltzmann introduced his Ergodic Hypothesis, which stated that at an equilibirum state of
a physical dynamical system, for every integrable function the mean time value and the mean space
value are the same, that is, for all f: X — R integrable,

n—1

1 1
lim = > :foTk:/ fdu.
s w(X) Jx

This is false in the general case but it is true to a certain extent (depending on what type of convergence
we are looking at) in the ergodic case.
More precisely,

Theorem 3.1. (Von Neumann’s ergodic theorem)
Let (X, %,u,T) be a measure preserving system, with possibly infinite measure. Then, for all f €
L?(u), there exists f in L*(u) such that f is invariant ( foT = f ) and %Snf — fin L? as n goes

n—1
to infinity, where S, f = Z foTk.
k=0
If T is ergodic and w is finite, then f = ﬁ fX fdu in L?.

We might want the convergence to be pointwise, which will be a powerful tool to establish "almost
everywhere" results. The following theorem will help.

Theorem 3.2. (Birkhoff’s ergodic theorem)
Let (X, %,u,T) be a measure preserving system with finite measure. Let f be in L'(n). Then there

n—1
exists an invariant function f in L' () such that %Snf = %Z foT* — f almost everywhere and in
Ll. k=0
. . r 1
If T is ergodic, we have f = me fdu.

3.2.1 Proof of Von Neumann’s theorem

Von Neumann’s theorem uses a general result in Hilbert spaces:

Proposition 3.3. Let 5 be a Hilbert space and U € L(J€) a continuous operator with ||U|| < 1.

n—1

Then for all x € F, %Z UF(z) — w(x), where © : A — ker(I — U) is the orthogonal projection.

k=0
n—1
Remark 3.3. In other words, the Cesaro sums % Z U*(x) tend to be invariant under the composition
k=0

with U.

10



Proof of proposition [3.3
The proof counsists in splitting ¢ into spaces where the theorem is obvious: We are going to show
that 2 = ker(I —U) @ Im(I — U).

n—1

Let’s begin by noticing that if 2 is in ker(I — U), then for all n, * Z UF(z) =z, and if 2 = y — Uy
k=0

n

n—1 n—1
1
is in Im(I — U) then % E UF(z) = E(y — U"y), and since ||y — U™y[| < 2|y, 2 E U*(x) tends to
k=0 k=0

zero. Notice that if x is only a limit point of Im(I — U) the result still works:
Let x be in Im(I — U), and let (z,,) be a sequence of Im(I —U) converging to x. Let e > 0. There exists

n—1
m such that ||z — 2,|| < §, and there exists N > 0 such that for all n > N %Z Uk (x| < 5
k=0
Then, for n > N,
1 n—1 1 n—1 1 n—1
EDBAGIEESS HUk(x—xm)H + |- 2 UF )|
— k=0 k=0

and since ||U|] <1 we get

1 n—1 1 n—1 p 1 n—1
1 k < € 1 k
nZU (z)|| < n22+ nZU (zm)||
k=0 k=0 k=0
n—1
hence %Z Uk(z)|| < e,
k=0
And we proved that
n—1
1
IN € N* >N, ||- k :
Ve > 0, e N*, Vn> N, nk:ZOU (x)|| <€

We now show that the cases we looked at are essentially the unique ones to consider, that is:

H =ker(I —U) @ Im(I —-U).

We prove that Im(I — U)* C ker(I — U).
Let # € Im(I — U)*. Then,

1(1 = U)z|? = [[a]|* + [U2|* = 2(z, Uz) < 2(||2|* — (2, Ux))
and since (z,Uz) = (z,Uzx — z) + ||z||? = ||z||?, we get ||(I — U)z|| = 0.

Let’s prove the other inclusion.
We first prove that ker(I — U) = ker(I — U*).
If x € ker(I — U™),

11 = U)al* = [|2|* + [U2]* - 2{z, Uz) < 2||z|]* - 2(z, Uz)

and (z,Uz) = (z,(U — Dz) +||z||> = (U - I)*x,z) + ||z||* = ||z||?, hence ||( — U)z||> = 0. We thus
have ker(I — U*) C ker({ —U).
Applying the same argument to U* gives the converse inclusion.

11



Back to the proof of the inclusion Im(I — U)* D ker(I — U).
Let x € ker( —U) and y € S, we have

(z,(I = U)y) = (I =U)"z,y) =0,

since ker(I — U*) = ker(I — U).
Finally
H =ker(I —U) @ ker(I —U)*T =ker(I —U) @ (Im(I — U)*H)*,

Which is the desired decomposition of J# and the theorem is proved. O

To establish Von Neumann’s ergodic theorem, let U : L? — L? be the Koopman operator, defined
by U(f) = foT. U is a well defined unitary operator, since we have

JirorPan= [ 11Pdur = [ 1770

because T' is measure preverving.

Applying Proposition to U with s# = L? gives the first part of the theorem.

For the second part, since for f in L? we have 7(f)oT = 7(f), ergodicity of the system provides that
7(f) is constant in L2

Integrating 7(f) gives:

[ 7= ()
X

Now using the fact that for all n > 1 we have

/X Sy fp = /X I

we get by the Dominated Convergence Theorem (see remark

/deu=/X7r(f)du-

1
W(f):,u(X)/deu'

Remark 3.4. It is not straightforward. Note that if f is bounded the result holds, and if not, apply
the previous result with the bounded functions min(f, L) for L > 0. A dominated convergence allows

Finally, we have (in L?)

us to conclude.

3.2.2 Proof of Birkhoff’s ergodic theorem
We will need the following result.

Lemma 3.2. Let (ap)nen and (by)nen be non negative sequences. Suppose that there exists an integer
M > 0 such that for all n € N there exists 1 < m < M wverifying

m+n—1 m+n—1

E: (M72 E: bk.
k=n k=n

Then, for all N > M, we have
N—

—_

N—-M-1
ap > 2: my
k=0

12
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Proof of lemma[3.9

Let N > M. By hypothesis, one can construct an increasing finite sequence of integers (m;)o<i<n
such that one has m,, < N, M +m,, > N, mg=0and forall0 <i<n

Mi41— 1 mi41— 1
E ag > E bk.

Adding all these inequalities and using the fact that the ax and b are non negative lead to

N-1 mp—1 mp—1 N—-M-1
da= Y aw= Y b= Y b
k=0 k=0 k=0 k=0

Proof of theorem [3.1]

We prove the theorem for non negative functions (we then get the general result by writing for any
measurable function f = f — f7).

Let f: X — Ry measurable. For # € X define f(z) = liminf, S, f(z) and f(z) = limsup,, S, f(z).
f and f are T-invariant. We are going to show that those two functions coincide almost everywhere
and that we have [ fdu = [y fdu = [y fdu. To prove it we just have to show that

/ fdu > / fdu 2/ fdu,
X X X
since we know that f < f.

Let us prove that f;fd,u > [y fdp.

Let L > 0 and 0 < ¢ < 1. By definition of the upper limit, for all x there exists m > 1 such

that
Smf(z)
m

> F(2)(1 - ¢) > min(F(x), L)(1 - o).

By an increasing continuity argument we get that for all § > 0 there exists M > 0 such that the set

S f ()

m

Xo = {xeX\ﬂlgmgM, zmin(f(a;),L)(l—e)}

has measure greater than (X) — 0. Define F': X — Ry by F(z) = f(z) if x € X and F(z) = L if

z € (Xp)¢ Then, f < F : it is clear on Xy, and if z € (X()¢, then f(z) = S1f(z) < min(f(z),L)(1 —
€) < L.

Now, for z € X, let a,, = F(T"x) and b,, = min(f(z), L)(1 — ¢) (independant from n). (a,) and (b,)
satisfy the conditions of Lemma (3.2

Let n > 0.

o If T"x € Xy, there exists 1 < m < M such that

F(T"z) + -+ F(T"" z) > f(T"2) + - + (T )
> mmin(f(z),L)(1 — ¢)
= bn + - +bn+m71-

o If T"x ¢ X, take m = 1 since

an = L > min(f(z),L)(1 —¢€) = by,.

13



By lemma [3.2] for all N > M,

Z f(T*z) > (N — M) min(f(z), L)(1 — €).

Since M and N are independant from x € Xj, integrating both parts of this inequality and using the
invariance of u gives, for all N > M,

N/XFd,u >(N—-M) /Xmin(f(:c),L)(l —€)dp.
We thus have
[ sz | gau
X Xo

- / Fp — Lu(X\ Xo)
N M/mln L)(1 —€)dp — Lo.

Now, letting N tend to infinity and  to zero we have

/fdu>/ min(F(z), L)(1 — €)dp.

We now let € tend to zero and L to infinity. The Monotone Convergence Theorem allows us to write

/X fdu > /X Fdu.

Thanks to the same kind of arguments we show that

| sin= [ sn

and the result is proved. O

3.3 Remark about the Ergodic hypothesis

Ergodic theory provides a generalisation of the notion of i.i.d (independent and identically distributed)
processes. Indeed, Birkhoff’s theorem is a generalisation of the strong law of large numbers:

Theorem 3.3. Let (2,.%,P) be a probability space, and let (X;); be an i.i.d sequence of real valued
random variables, with X, € L*(P).

n—1
Then the means %ZX’“ converge almost surely to E[X].
k=0

In Birkhoff’s Theorem, the X; are defined as X; = f o (T%). The X; are identically distributed: for
all Ae

W Xiy1 € A) = /X L(poritny-14dp = /X L(fori)-1adpr = /x L(foriy-1adp = p(X; € A)

by invariance of p; but the process (X;); may not be independent.

In section [9| we will see that for "chaotic enough" dynamical systems, some other properties of random
dynamical systems persist.

These results help answering the general question: To what extent can a deterministic dynamical
system behave like a random system as time goes by?

14



3.4 Mixing systems

We define here the notion of mixing dynamical systems, which is a particular case of ergodic systems.
Heuristically, it introduces the idea of "asymptotic independence", that we will be looking for in order
to compare mixing enough dynamical systems to random systems.

Definition 3.1. Let (X,.%#,u,T) be a measure preserving system with finite measure. We say that T
(or w, depending on what we are looking at) is mizing if we have for all A,B € F

WANT"B) —

Proposition 3.4. If (X, %, u,T) is a mizing system, then it is ergodic.

Proof. Suppose T is mixing. Then for A, B € %,

_ n(A)pu(B)
ANT"B) — — 0

Let A be an invariant set. Then

- p(A)u(T™"A)

ANT™"A) - —0

and by invariance we get

pA) _ (u(A))2

pX)  A\puX)/
which implies that p(A) = 0 or p(X). O

We now introduce some notions we will use in the rest of the document.

4 Expanding maps, Markov partitions and Gibbs Measures

In this section, X = [0,1] and £ is the Borel sigma algebra on X.
Let a € (0, 1].

Definition 4.1. (€T maps, epanding maps)

T:X — X is said to be a piecewise €T map if T is a piecewise (with finite subdivision) €' map
with, in every piece where T' is defined, T is a-Holder (that is, there exists a constant ¢ such that for
all x and y, d(Tx, Ty) < cd(x,y)*).

For B > 1, we say that T is B-expanding if (everywhere where T' is defined) |T'| > 3.

Definition 4.2. (Markov partition)

Let T : X — X be a piecewise €17 map.

Let 7 ={Jn; 0<n < N} be a finite family of closed intervals where every J, C X. We say that ¢
1s a Markov partition according to T if we have the following properties:

o For alli, T is a €7 diffeomorphism from int(J;) onto its image

N

o X = U Ji and if i # j we have int(J;) N int(J;) =0
=0

o If T'(int(J;)) N int(J;) # 0, we have J; C T(J;).

Remark 4.1. One can see a Markov partition as a minimal decomposition of the space X which is
compatible with the reqularity of T.
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Example 4.1. Let T' be the doubling map. Then the family 7 = {[0, %] , [%, 1]} 15 & natural Markov
partition.

If ¢ is a Markov partition according to 7', we note 9.7 := U dJ and we define S as
Je g

S:=JT02).
neN

Note that the set where T” is not defined is contained is S. For x not in S, define:
e [, () is the element of the partition containing 7" x.
eForn>1, Zy(z)={yeX|foral0<k<n—1, Ty €I (x)}. Zn(x) is called the n-cylinder
of z.

We can now define the class of Gibbs measures. Let T : X — X be a piecewise €7 map. Assume
that there exists a Markov partition ¢ compatible with 7.

n—1
Recall that S,¢(z) = Z o TH(x).
k=0

Definition 4.3. Let ¢ : X\S — R be a Holder function and p be a T-invariant probability meaure.
We say that p is a Gibbs measure for the potential ¢ if u(S) = 0 and if there exists a pressure
P(p) € R such that for some k > 1, for alln > 0 and x € X\S the following holds:

L a( @)

Kk — eSne(x)—nP(p)

Example 4.2. Section [9.1] will provide o family of examples. For instance, if T is the doubling
map and _Z is the Markov partition of example then Lebesgue measure is a Gibbs measure for
o = —logT" under the potential P(p) = 0.

Definition 4.4. We say that T : X — X 1s topologically mizing if
For all A, B open sets of X, there exists N € N such that for alln > N, ANT "B # ().

The next section motivates the introduction of fractal dimension for the study of dynamical sys-
tems.

5 How dimension theory appears in dynamical systems

The following example shows how dynamical systems and Fractal theory can be related.
Let X =[0,1], H = (3, 2) and

373
1
T: X\H — X
. - 3xifa:€[0,%]
31—a)ifze[3,1].
0 1

16



For x € X\ H, the orbit of x is defined by the set {T"x; n such that for all 1 < k < n, TFz € X\H}
We say that (X, Zx\pg, A, T) is a dynamical system with a hole (H is called the hole).
We can now look at the set A of points which never fall into the hole.
One can see that A is the Cantor set, defined as follows:
For I = [a,b] define f(I) := I\ (a + ZFT“, a+ @) as the set I from which we removed the middle
third.
Let CO = X.
If C, = U I3 is constructed, where each I3 is a closed interval, define Cp 41 = U f(IJT»‘).
J J
Finally, define the Cantor set as the decreasing intersection C' = ﬂ Ch.
n

Figure 1: The first iterations in the construction of the Cantor set

This is an example of fractal set which naturally appears when studying some dynamical systems.
In this case, we might be interested by finding an appropriate measure - an invariant ergodic measure
that would lie in the fractal set, called the attractor.
The attractor can be seen as the "limit set" in which lies the dynamical system. Let us introduce

another example. Let
T: X — X

r +— 2z(1—-x)

be the logistic map of parameter % Note that T has two fixed points: 0 and % One can show
that Lebesgue-almost every point is attracted by % Hence the "limit set" (according to Lebesgue
measure) is reduced to a point; to study this dynamical system the Dirac measure § 1 is therefore an
appropriate measure. Note that the attractor is often X, for example for the doubling map, wich is
already ergodic according to Lebesgue measure.
In order to restrict our attention on the attractor, we thus search for an appropriate measure - an
invariant measure that sees the attractor (that is, a measure with small enough dimension).

As a consequence, the fractal dimension appears in the study of dynamical systems. We define it
in Appendix [4]
Hausdorff dimension is a useful tool if we want to study sets such as the Cantor set, for which Lebesgue
measure is zero. In the same way, the notions of Hausdorff dimension and pointwise dimension of a
measure will help.
Let u be a measure on a space (X,.#), where X C R". We define the Hausdorff dimension of y as

dimg (p) = inf {dimg(A); A such that u(A) > 0},
that is, dimy(u) gives the size of the smallest sets that have positive measure.

Remark 5.1. A Dirac measure has dimension zero, the d-dimensional Lebesque measure has dimen-
sion d.
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1 B
The lower and upper pointwise dimensions are defined by du(x) = lim i(I]lf W and
r— T
- 1 B
4,(z) = limsup 28HBE)
r—0 log r

1 B
When the limit exists, we define the pointwise dimention as d,(z) = lin% W.
r— ogr

Intuitively, the local dimension gives the power of r one has to calculate to have a rough idea of
the measure of a small ball of radius 7.

As an illustration of what ergodic theory provides, the next section shows that the local dimension
of an ergodic measure is almost everywhere equal to its Hausdorff dimension, by introducing two
quantities: Entropy and Lyapunov exponant.

6 Entropy, Lyapunov exponent and dimension

Let (X, %#,u,T) be a probability measure preserving system.

6.1 Entropy

Let £ be a finite partition of X such that every element of £ is measurable and has positive measure.
For n > 1 and x € X denote by fn(a:) the n-cylinder centred in z:

&n(z)={yeX|yeXo,....T" 'y e X1},

where X; is the element of ¢ containing x.

For n > 1 we define
— Y log (u(A)) u(A),
A€E,
where =, is the set of all n cylinders. The sequence (H,(&)) is subadditive, that is:

For all m,n > 1, we have Hy (&) < Hp(§) + Himn(§).

Indeed note that if @ and [ are finite partitions of X, putting a vV g := {ANB, A€ «a, B € B} we
have H(a Vv ) < H(a) + H(f), where H(7y) is defined for a measurable partition +y as

== log (u(A)) u(A).
Aey

This can be shown in the following way:

H(aVp) = ZZlog (AN B))u(AN B)

Aca BeS
=—>" 3 log ( AHB)) p(ANB) = > log(u(A))u(AN B)
A€o Bep A€a Bep
:—2210g< )>M(AHB)+H(Q).
Aca Beg

Now note that f : x — —xlog(z) is concave, hence by Jensen’s inequality

-3 e (M) wanm = X s (M5

Bep Aca

<) f(uANB))

Bep

= H(B).
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n—1

To conclude on the subadditivity of H,(§) remark that for n > 1 we have =,, = \/ T, and use the
i=0

fact that T is measure preserving to get

D log (u(A)) u(A) = > log (14(A)) p(A).
A€En, Ac \/;L:"Zn_lT_if
The entropy of T" according to £ is then defined as the limit

g (T) = i H, (©)

The limit exists by subadditivity.
We now define the entropy of T (according to i) as

hu(T) = sup hue(T),

¢ partition of X

where the partitions are taken to be finite and measurable.
The following theorem is a consequence of the Birkhoff Ergodic Theorem. We state it without proof.
For more details, see [3].

Theorem 6.1. (Shannon-McMillan-Breiman,)
Let (X,.7,u,T) be an ergodic dynamical system with u(X) = 1, and let £ be a finite measurable
partition of X. Then, for almost every x € X, we have

i = (60 () = g (T).

6.2 Lyapunov exponent

We define here the Lyapunov exponent in the case where X = [0,1] and T is differentiable with
7’| > 0.
The Lyapunov exponent of T at z is defined as the limit, when it exists,

A () = lim % log |(T"Y| (2).

One can see Ay (z) as the mean expansion value of the iterates of 7" in z. The following theorem is an
immediate consequence of Birkhoff’s ergodic theorem.

Theorem 6.2. Suppose that T : [0,1] — [0,1] is a €' ergodic transformation with respect to p, with T’
measurable and |T'| > €, where € > 0. Then the Lyapunov exponent of T is defined almost everywhere
and for almost every x € [0, 1] we have

wr@) = [ g (T | (2)dula) = Ar(n)
0,1]

Proof. By hypothesis log |T”| is bounded (and measurable). It is therefore in L!.
Since for n > 1 we have for almost every x

flog‘ (ry Zlog T o T*(z)),
Theorem allows us to conclude. O
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6.3 Entropy, Lyapunov exponent and local dimension

The following theorem links the previous quantities to the local dimension in ergodic systems. A proof
can be found in [§]

Theorem 6.3. Let T : [0,1] — [0,1] be a €%, expanding, p-preserving transformation, where y is
a Gibbs measure. Then the local dimension d,, is constant almost everywhere and for almost every
z € [0,1] we have

dy(x) = = dimp ().

7 Induced transformation, Kac’s lemma

Let (X, #,u,T) be a measure preserving system with finite measure.
For A measurable with ;1(A) > 0, and for z € A define

Ta: A — NU{+oo}
x +—— inf{n > 1|T"z € A}.

T4 is measurable. Indeed, for n € N,

{ra<n}=|JT"AeFand {ra=+oc} = (T "4 Z.
k=1 n>1

Thanks to the Poincaré Recurrence Theorem, we know that 74 is finite almost everywhere. 74 is
called the return time map.

What Poincaré’s Theorem doesn’t tell is the time for a given point to come back to A. Kac’s
lemma goes in that way. In order to prove it we introduce the induced dynamical system on A:

Let %4 := {AN B; B € Z} be the trace sigma algebra on A.
Define pa on F 4 by pa(B) = %, for all B € 7.
Poincaré Recurrence Theorem insures the existence of a set N C A such that pu(N) = 0 and for all
x € A\N, there exists n > 1 such that 7"z € A.
Now, let M ={z € A\N|3In>1T"z € N}. Since M is contained in U T "N, and

n>1

p(JT"N) <> (T "N) =0

n>1 n>1

by T-invariance of p, we have u(M) = 0.

For all z € A\M, 74(z) < +00.

Now, let T4 : A\M — A be defined by Ty(z) = T™4®) g,

Ty and all its iterates are well defined measurable functions according to .74, by definition of M. We
call T4 the induced transformation of 7' on A, and (A, #|4, ua,Ta) is the induced dynamical
system.

The following property holds:

Proposition 7.1. If (X, %, u,T) is a finite measure preserving system, and A € F is a set of positive
measure, then (A, ﬁﬂA, pa,Ta) is a probability measure preserving system.
If in addition T is ergodic, Ts is ergodic.
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Proof.

e Let’s prove that Ty is pua preserving.

Let B € #|4. If we show that ,u(Tng) = u(T~1B), the result is proved by T-invariance of y.

For k>2let Cp = {z € X\A| Tz € X\A,...,T" 'z € X\A, TFz € A} and C; = (X\A)NT'A.

Using the fact that u(A) = p U {Ta =k} |, we get
k>1

wTy'B)=p | |J{ra=k}nT;'B)
k>1

—+oo
=p | J{ra=kInT B | =3 u{ra=k}nT7*B),
k>1 n=1

and since we have T7'A = {74 = 1} U Cy,

(T 'B) = w(T'BNT'A)
=p((T7'B)n{ra=1}) +p((T7'B)N Cy)
=u((T'B)N{ra=1}) +pu(T*B)NT'C1),

using T-invariance of p.
Note that for k > 1, T71C), = {74 = k + 1} U Cy1. Hence for all n > 1,

w(T'B)=pn(T'B)n{ra=1}) +p (T2B)Nn{ra=2}) + n((T"2B) N Cs)

=p((T'B)N{ra=1}) +u(T?B)N{ra =2}) + p (T*B)NT'Cy)
=u (' B)N{ra=1}) + u (T *B)n{ra=2}) + u (T °B)n{ra =3}) + u (I °B) N C3)

_ (ZM( T*B) N {rq = k})) p(T"B)NC,).

Now, since the C), are disjoint,

wX) > U(T "B)naC, Zu T"B)NChy) .

n>1

Consequently, i ((T"B) N Cy,) — 0 as n goes to infinity, and we get that u(T;'B) = uw(T~'B).

e Suppose that T is ergodic. Let f : A — R be a measurable function such that f is pa-almost
everywhere Ty invariant (f o T4 = f p4-almost everywhere) . Since pu(A) > 0, by ergodicity of T, for
almost every © € X there exists n > 1 such that T"z € A. Hence

rA X — N
r — min{n>1|T"z € A}
and
F: X — R
r o~ f(TA@)

are almost everywhere well defined.
In addition, F' is T-invariant: To see it, let * € X such that F(x) is well defined. We have to
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distinguish two cases.

(1) If ra(x) > 2 then 74 (Tx) = ra(z) — 1. In this case, F(Tx) = f(T"AT2)(Tx)) = f(T"A@)~YTx)) =
f(Tr2a@) ) = F(x).

(i) If r4(x) = 1 then Tz € A. We thus have F(Tz) = f(T"AT*)(Tx)) = f(TaTz) = f(TAT 4 z) =
f(T74@)z) = F(x) by Ty invariance of f. By ergodicity of T, F is constant almost everywhere, and
since F|4 = f we get that f is constant almost everywhere. O

Theorem 7.1. (Kac’s Lemma)
Let (X,.Z,u,T) be an ergodic system with finite measure, and let A € F with u(A) > 0. Then,

_ nX)
[f”@““MAy

Proof. Ergodicity of T4 allows us to apply Birkhoff’s theorem with respect to p4: (The sets of measure
0 contained in A are the same for p4 and p) For almost every x € A,

1n—1 N 1
— TAOT x—)/TAd,uA. (1)
n,;o AT (X)) Ja

n—1
Note that for n > 1 and for z € A\ M, the sum Z Ta0Tkxz =: N, (x) denotes the number of iterations
we have to wait before x comes back to A exackg}(f) n times. Consequently,
Ny (z)—1
14(T*z) = n.
k=0
Furthermore N, (x) — +00 as n goes to infinity. Applying Birkhoff’s theorem to u gives: for almost

every x in A,
Ny (z)—1

> 1a(Tha) —» =4 (2)

k=0

Nn(z)

as n goes to infinity.

Equations and then give:
For almost all x € A, N"n(x) — ’;((‘f)) and N"n(x) — “(IX) J47adpa. Now pick one x such that the two

previous convergences hold and the result is proved. O

Remark 7.1. We could have verified in an easy way that the result is true for i.i.d sequences. We
develop this heuristic argument in the next section.

8 Hitting time statistics - A naive approach

Suppose that (X, d) is a metric space. Let Z be the borel sigma algebra over X, p a probability
measure and 7" an ergodic transformation of X. Given zo € X and r > 0, for z € X, let 74, (7)
denote the first time x hits the ball B(xq,7):

TB(wo,r) (¥) = inf {n > 1| T"x € B(zo,7)} -

If A is a set of positive measure, Kac’s lemma gives an idea of the return time. We might want to have
more accurate estimates according to return/hitting times. More precisely, we would like to know the
behavior of the quantities

GKQZM<{$€B@mWWB@mﬂ@ﬂ>M@%;ﬁ»}>v
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for all ¢ > 0, when r is going to zero.

For example, does the limit lim,_,o G, (t) exist?

In section [9] we will see that for mixing enough dynamical systems, p(B(zo,7))7(z0,7)(.) converges
in law to an exponential of parameter one. In particular, for all t > 0, G,.(t) — e~ .

The following heuristic argument gives an explanation of this result:

Assume that X :=[0,1] and p = A is the Lebesgue measure. We make the hypothesis that the orbit
of every element is an i.i.d process.

Pick an i.i.d sequence Y (x) = (v;)i>0, where each y; is a X-valued random variable with distribution
A.

Assume that (y;)i>0 is the orbit of yo. Let T, = )\(B(xo, T))TB(IOJ)(.).

Then for t € R,

01,0 =BT = [ Ay, (o), ®)
And since for n > 1 we have
)\({TB(xO’T) = n}) =A{z € X|y1,...,Yn—1 € B(xo,7r)° and y,, € B(xg,r)})
= (1 - /\(B(aro,r)))n_lx\(B(aro,r))
= (1—2r)""'2r,
gives us:

2r
2r — (1 — e—2itr)

br,(t) =D _ ¥ (1—2r)" l2r =
n>1
Hence for all t € R, ¢7,.(t) — I%t as r goes to zero, which means that 7}. converges in distribution to
an exponential law of parameter one.

9 Hitting/Return time statistics for Gibbs measures

In all the section, X = [0, 1] endowed with its Borel sigma algebra 2.
For A € A, 74 is the hitting time in A: 74 : X — NU {400}.

9.1 The case of expanding maps

Expanding maps which preserve an absolutely continuous (according to Lebesgue) measure give an
example of dynamical systems for which Theorem is going to apply.

We first prove a general estimate for the size of cylinders.

Let T : X — X be a topologically mixing, piecewise €'T%, B-expanding map, compatible with a
Markov partition #. Define S = U T7"0_ 7.

n>0

Proposition 9.1. There exists C, D > 0 such that for any x not in S, we have
C < |(T™) (z)|diam (int_#,(x)) < D.

Lemma 9.1. Let ¥ : X — R be an a-Hdélder function. Then, for any x,y in the same n-cylinder,
with x,y not in S, we have

¥lq
|Sntp(z) — Sntp(y)] < Boa_1’
where |1|q is the a-Holder modulus of ¢ : |¢|, = sup M
Ty d(w7y)a
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Proof of Lemma [9.1]
Note that if x,y are in the same element of the Markov partition (without being in S), the Mean
Value Theorem ensures that for all z,y € X with & # y, we have % > [B. We deduce that if

n > k and x,y are in the same n-cylinder, we have

ATz, Thy) __d(T"e,Thy) AT 2, T y) oy
d(Tkz, Tky) — d(Tn 1z, Tn"1ly) """ d(Tkz,Tky) — )
Now, for z,y in the same n-cylinder, we get
n—1
[Sub(@) = Sutb(y)] < D d(W(T ), (T y))
k=0
n—1
<Y [lad(Tr 2, Thy)
k=0
n—1

Proof of proposition [9.1].
Note that ¢ = log [T"| is a-Holder (as a composition of Lispschitz functions with an a-Hélder function,
because T” is bounded by Hélder continuity). Applying the chain rule shows that for z,y in the same

n-cylinder,
(T")a
The lemma gives a constant D > 1 such that
(T™) x
‘ (T")'y =D @

Let x € X\S. For n > 0, thre exists i, ...,7,—1 such that

In(x) = Ji NT ', Nn---n 7= g,

n—17?

So that
int_¢,(z) = int(J;,) N T tint(J;,) N --- N T~ Ving(J;, ), (5)

because the interior of a finite intersection is the intersection of the interiors and that since the J; are
closed intervals, we have T %int(.J;) = int7~* (.J;) . (Inclusion C is easy. We get the other one writing
Jj = int(Jj) L 8J])

From equation , we conclude that int_#,(x) is an open interval and that 7" is a diffeomorphism
from int ¢, () onto its image (which is consequently an open interval).

If we write (a,b) := int_#,(x), we have T"(a,b) = (T"a,T"b) or (T™b,T"a), since T is increasing or
decreasing on every int(.J;).

The mean value theorem gives a y € int_¢,(x) such that

diam(T"int_#,(z)) = [(T™)"y|diam (int_#,(z)) .
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(In fact 7™ may not be continuous on the boundary of int_#,(x), but applying the Mean Value
Theorem to the continuous extension of 7™ on [a, b] gives the result)
Since y is in the n-cylinder of z, inequality is true. Now,

|(T") z|diam (int 7, (z)) < D|(T")'y|diam (int_#, (z)) = Ddiam(T"int_#,(z)) < D,

since diam(T" _#,(z)) < diam(X) = 1.
Let p = min diam.J > 0. Since by 1) we have

Je g
(T)'y
<D
o <2
we get
1 di T"int _#,
(") aldiam (int £, (x)) > |(T")'yldiam (int_, (x)) = T 00T ()
_ diam (intT" _#,(x))
B D
> L2
- D
since T" _#,(z) is a union of some of the J;. O

Corollary 9.1. In addition to the previous conditions, suppose that T preserves an absolutely con-
tinuous measure | with respect to Lebesgue measure X\, such that there exists 0 < dy < do with
dl)\ S 1% S dg)\

w is a Gibbs measure under the potential ¢ = —log |T"|.

Proof. Since we have 0 < d; < pu < dy and diam (int_#,,(x)) = A(_Zn(x)), we get

Cdy < |(T") ()| Fn(x)) < Dd.
Now set ¢ = —log|T’| and k = max(1 + Ddg, 1 + C%ll) The chain rule gives for all  not in S:

(Snp@) — 1

|(T™) ]

so that for all  not in S:
1o (@) _

K eSn o) —

Hence p is a Gibbs measure for the pressure P(yp) = 0. O

9.2 Statement of Theorem [9.1]
We now state the return/hitting time theorem.

Theorem 9.1. Let T : X — X be a piecewise topologically mizing €' expanding (|T'| > 8 > 1
for some () map. Suppose that T preserves a Gibbs measure of positive dimension p with a-Holder
potential p and pressure zero, such that there exists c verifying ¢ < ¢ < 0. Then for almost all xo € X,
the measurable functions u(B(zo,7))TB(70,7)(.) converge in law with respect to i and jig(y, ) to an
exponential of parameter one as r decreases to zero.

Example 9.1. The doubling map x — 2x mod (1) is the simplest example of such maps. It is
topologically mizing: Since we are dealing with open sets, it suffices to prove it for dyadic intervals.
Let I be an interval of X and J be a dyadic interval of length QLN Then, for alln > N, T7"INJ is
not empty.
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Remark 9.1. We actually know from a general theorem (Ruelle-Perron-Frobenius) that such a measure

exists and is unique. See [8].

We follow the proof of [§].

9.3 Idea of the proof of Theorem
Lemma [9.2 doesn’t use the hypothesis of theorem

Lemma 9.2. Let A € £ with u(A) > 0. Set 6(A) = sup |u(ta > n) — pa(ra > n)|. Then, for all
neN
n € N, we have

1(Ta > n) = (1= u(A))"] < 5(A).
Proof. The proof if based on the fact that for k& € N,
T 1y >k} = {x eX|T?re X\A,..., TFz € X\A,TF 'z ¢ A} ={r4>k+1}U (TlAm{TA oT > k}),
hence
T Hra>ky={ra>k+ 1} UT Y AN {ra > k}).
Since T' is measure preserving, we get
p({ra > k}) = p({ra > k+1}) + p(A)pa{ra > k}). (6)

Rewriting @ gives

p{ra >k +1}) = [1 = w(A)] p{7a > k}) + p(A) [u({7a > k}) — pa({7a > k})],

and thus passing to the supremum

[n({7a >k +1}) = [1 = p(A)] p({7a > k})| < n(A)5(A). (7)

Now, for n € N, using repeatedly in a chain of triangle inequalities gives

(ra > n) = (1= u(A)" < D (1~ n(A)*8(A)u(A)

O

Assume that for almost every zp € X we have lin%] d(B(zg,r)) = 0. Then we can prove Theorem

T

Proof. (of Theorem [9.1] having lin% d(B(xo,7)) = 0 for almost every z.)
r—
Let g € X such that lir% 0(B(xg,7)) = 0. This concerns almost all xg € X. Let A = B(xq,r) for
r—

r > 0.

Let t >0and n = Lﬁj Since we have p({u(A)Ta > t}) = p({7a > n}), we can apply lemma 1}
to get

({u(A)7a > 1) — 71| < 6(A) + (1 — p(A))" — e~

for all n € N. Since §(A) — 0 as r goes to zero, we control the second term.

(1= u(A)" — et < '(l_ f)”_e_t

n

)

Ha-Dr-a-uar).
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The first term goes to zero as n goes to +o0o and

TR R ) e P
I I T n _ -
n a =ns n
by the mean value theorem.
Finally, basic inequalities show that
t t
n|pu(A) — ” < E——

Now fix € > 0. Taking n big enough gives that for r small enough,

n{u(A)ra > 1)) — e <,

and the result is proved for p distributions (hitting times).
Finally, since

alp(A)yra > 1)) — '] < |u(u(A)ra > 1)) — | +6(4)

the statement is still true for p4 distributions (return times). O
We thus just have to prove that under the conditions of theorem the following result holds.

Proposition 9.2. For p-almost every xg € X we have §(B(xo,7)) — 0 as r goes to zero.

9.4 Proof of Proposition [9.2

Let T : X — X verifying the hypothesis of the theorem.
We admit the following two theorems. The proofs can be found in [§].

Theorem 9.2. u has the following mizing property:
There exists ¢ > 0 and 0 € (0,1) such that for all f : X — X Lipschitz and g : X — X £ we have

for alln e N
‘/ fgoT”du—/ fdu/ gdu‘ < 0" f1Lipl|9l]oo;
X X X

d(f(z), f(y))
d(z,y)

Theorem 9.3. Under the conditions of theorem Jor almost all x € X, the limit

where | f|Lip ts defined as: |f|rip = sup
T#Y

1 r
R(z) := lim 28 TBn ) )(@)
r—0 —logr

exists and 1s equal to the dimension of .

Also recall that from theorem we know that the pointwise dimension d,, is constant almost
everywhere and is equal to the dimension of u.

We now state Lebesgue’s density theorem. We won’t prove it. Note that it is a consequence of a
more general result: Lebesgue differentiation theorem, which is proved in [6].

Theorem 9.4. (Lebesgue’s density theorem)
Let ) # A € B. For x € A and r > 0 define d,(x) = %, Then for almost every x € A,
dr(z) — 1 as r goes to zero. We call such points density points of A.
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Lemma 9.3. For u-almost every xo € X and for all d € (0,dimpg(n)), we have

1
:U'B(xo,r) <{TB(:r,r) < T‘d}> —0

We call such xo a non sticky point.

as r goes to zero.

Proof. Let d € (0,dimg (p)). For ro > 0, let Ly, = {z € X| Vr < 1o, Tp(z2r)(® rd}
o [ :— U L,, has full measure (note that for r < ro, Ly, C Ly, s0o U Ly, = U L1 is measurable
ro>0 ro>0 n>1

):

Using theorem [0.3] almost every x € X satisfies R(x) = dimpy (u1). Let € X be such that the previous
equality is true.

Suppose that 7p(y 9r,)(z) < é for a sequence (ry,) of radii decreasing to zero. Then,

. . log B z,2ry (SU)
)= o) =, ")
dlogry,

lim =d,
n—+oo log 21y,

N

which is a contradiction. Hence there exists 7o > 0 such that for all r < ro we have 7p(; o) () > %d-
We thus know that there exists an rg such that x € L,,.

This proves that L has full measure.

o Let rg > 0 and 9 € L,,. Almost such xg is a density point of L,, by Lebesgue’s Density Theorem
- assume that z¢ is a density point. Let r < 7y and x € B(xo,r) such that 7p(, . (7) < T%, Then
TB(xo,2r) (T) < %d and v € X\L,,. Whence

1
IB(zo,r) ({TB(mg, ) < d}) < 1B(ao,r) (X \Lry) = 0

as 1 goes to zero, since xg is a density point of L,,. O

Lemma 9.4. For u-almost every xo € X and for all d € (0,dimpg(p)), we have
1
P\ Baon (@) = g | =0

Proof. For A measurable and k > 1, we have

p({ra < n}) = <U T kA)

as r goes to zero.

By invariance of u we get
p({Ta < n}) < np(A). (8)

1 B
Now, let g € X such that du(x) (: lim M
r—0 log r

point by Theorem Then gives

1% ({TB(IO,T) < :Cl}) <rd leJ W7
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and

log (u(%mﬂ)) = log(r) [log(u(B(wow))) - log(rd)]

rd log r log r

" togt) [bg(u(lfgfio,?‘)))

- d} — —00, ~r—0 log(r) [dimg (u) — d]

since | B
log r
Therefore ;4(195*7”)) — 0 as r goes to zero. U

Lemma 9.5. There exists v and § > 0 such that for any xg € X, for any 0 < r small enough, we
have for all0 < p <7

w(B(zo, r)\B(zo,7 — p)) < v

Proof. Since for x not in .S we have ¢ < ¢ < 0, by the Gibbs property we get for x not in .S and for
keN
i Fu(@)) < reSee®) < ek,

so there exists a > 0 such that for k big enough,

() < 590 < ke, 9)

Besides, there exists b > 0 such that for k£ big enough,
diam(int_gy(z)) > e *0. (10)
To see it, use Lemma [9.1} Since we have
C< ‘(T”)’(w)‘ diam (int_#,(x)),

we get by the chain rule
C

¢
<Sup|T’|>
I

Now, if I is a small enough interval of X there exists k € N such that e=*+1b < diam (1) < e=*.
Equation and the fact that diam(I) < e *® then implies that I can’t overlap with 3 or more
k-cylinders. Hence by equation @) and the inequality e~ (*+1b < diam(I) we get that

diam (int_¢#,(z)) >

u(I) < 2e7% = 2(e7%)% < Kdiam(I)?,

where K = 2¢e%.
We thus get the desired result for v = 2K and § = ¢. O

Lemma 9.6. For p-almost every xo € X we have 6(B(xo,7)) — 0 as r goes to zero.

Proof. Let d € (0,dimpy(p)) and zg € X such that the results of lemmas and are true in
Zo-

For r > 0 and p € (0,7), write A := B(xo,7), A’ := B(xo,7 — p) and E,, := {74 > n}. We prove
several inequalities. Then we will chose an appropriate p. For n € N and g < n integer,

ANE, CANT9E,_gC (An{ra<g})U(ANT 9E,_,)
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and

ANT9E, 3= (ANE,)U(AN{ta<g}NTIE,_y) C (ANn{ra<g})U(ANE,),

therefore
IW(ANE,) —pw(ANTI9E,_g)| < p(AN{ra < g}). (11)
In the same way we get
|1(En) = (T En—g)| < p({7a < g}). (12)
For p € (0,7), Set ¢(x) = max(0,1 — d(%fv)). One can show that ¢ is %—Lipschitz by looking at

all the possible different cases. In addition, we have 14 < ¢ < 14. Hence
) = [ oda = luta) = [ oa] < (13
X X
Besides, theorem implies that
1
‘/ ¢(1p, ,oT")du— M(Eng)/ cbdu‘ <", (14)
X X p

where ¢ > 0 and 6 € (0,1).
Finally, since we have

1A'mT*9En,g < ¢1Enfg oTY < 1AmT*9En,g oTY,

Integrating every terms of the inequality, we get

WA NTE, ,) < /X o1, . o T9du < p(ANT9E,_,),

thus
‘ /X 6 (15, 0T%) du— p(ANT9E,_,)| < u(A\X) \T9E,_,) < p(A\A).  (15)
Now,
1
lwa(Ep) — p(En)| = A IWAN Ep) — p(A)u(Ey)|
< ,u(lA) < (AN E,) — p(ANT9E,_g)| + ‘,u(A NTI9E,_4) — /X Mg, , ngdu‘ +
+ ‘/X ¢1g, , o T9dp — M(En—g)/X¢dM‘ + ‘M(En—g)/x¢d,u— p(A)pu(En) )

p(A\A) et n
n(A)  p(A)p

thanks to equations , and .

We also have

<pa{ra <g}) + 7

(Eny) [ d— ()

Eny) [ d— ()

= ‘M(Eng)(/x ¢dp — u(A)) + (u(Eng) - u(En))u(A)’

< (B gu(A\A") + p(A) ({74 < g})
< w(A\A") + p(A)p({Ta < g}),
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by equations (12) and ([13)).
Finally,
pAA)
E,) — uw(Ey)| < TA<g})+2 + +p({ta < g}). 16
[na(En) = p(En)| < pa({7a < g}) WA aAp n({ra < g}) (16)

Note that for ¢ > n we have

lna({ta <n}) — p({ra <n})| < pa({ra <n}) + p({ra < n})
<pa{ra < g}) +u({ra < g}).

Consequently is true for all g > 1.
We thus have, passing to the supremum over n,

pA\A) et
0(A) Spa({ra < g}) +2 + +u({ra < g}).
(4) < pallra < 03) + 2220 + B (< )
We now take g = LT%J and p = 02, One can check that p < r by setting f(r) := 92Ga D _p and
showing that f is always negative (f is decreasing and f(r) — 0 as r > 0 goes to zero).

Now,
pa({ra < g}) =0

since xg is a non sticky point by lemma [9.3]

and
p{ra<g}) =0
by lemma [9.4]
Lemmashows that u(A\A') <407 . Asin lemma the existence of pointwise dimension ensures
that the two middle terms converge to zero as r goes to zero. O

10 Symbolic dynamics

Theorem deals with hitting/return time statistics according to balls in a metric space. It is not
always easy to do so: Sometimes it is easier to find estimates on cylinders. We thus code the system
in order to work with symbolic dynamics. Before defining the coding of a dynamical system, let us
give an example.

10.1 Coding of the doubling map

Let T': [0,1] — [0, 1] be the doubling map: Tx = 22 mod (1).

For x € [0,1] let (2,)n>0 € {0,1}" such that for n >0, 2, = 0 if T"z € [0, 3] and z, = 1 otherwise
(note that ¢ := {[0, %} , [%, 1]} is a Markov partition according to T'). We now work with the set of
sequences X := {0, I}N endowed with the product sigma-algebra (see Appendix and the map

o: X — X
(Zn)n>0 +— (Tn+1)n>0-

o is called the left shift over the alphabet {0,1}. It is measurable and is measure preserving according
to the Bernoulli probability P, defined as

P({0,1}") =1

and forn >1

P({%} wan} %o fas 3 x [T {0,1}> zzin,

kEN\{io,...,’L’n_1}
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for each finite family of a; with a; € {0,1} (we call such a set a n-cylinder). Theorem ensures
that P exists and is uniquely defined on X. To see that o is P-preserving it suffices to prove it for
the class of cylinders - for which the result is straightforward- which is closed under intersection and
generates the product sigma-algebra.

Note that if A is the Lebesgue measure on [0, 1], we have for z € [0,1]\S and n > 1

ACAe) = P( o) x Lo} oo e < T 013,

k>n

where S = U T7"0_¢. The product space (X,P) is thus a natural coding of the doubling map.
n>0
Remark that in addition, the symbolic system is ergodic (We would expect it since the map T is

ergodic):

Let A C X be a cylinder. Then for n > 1, 07" A is in the sigma-algebra generated by the projections
i, © > m, which we denote by .#™. As a consequence for all A C X measurable, 0" A € #". Now,
let A be an invariant subset. Then for all n > 0, A € #™. Hence A € ﬂ F".

neN
Note that by definition of P, the 7; are independent. The Kolmogorov Zero-One law then ensures that

P(A) € {0,1}.

10.2 Symbolic dynamics for expanding maps

The previous construction can be generalized to expanding maps of [0, 1]:

Let T : [0,1] — [0,1] be a piecewise €' B-expanding map. Suppose that there exists a Markov
partition ¢ = {Jo,...,Jp} compatible with T" (the a-Holder property is not required here).

Let & ={0,...,p}, and A = (a; ;) be a (p+ 1) x (p+ 1) matrix defined as

1 T CJ;
5 = .
0 otherwise.

A is called the transition matrix of T. Now set
X = {(:cn)ngN c N ForallneN, ay, 4,,, = 1} .

Remark 10.1. In the case where T is the doubling map, A is the 2 X 2 matriz filled with ones, whence
X = {0,1}".

For x € X, let p(z) := ﬂ T~ "(intJ,, ). Note that p(z) C [0, 1] and that the expension property

neN
of T ensures that ¢(x) = {a}, where a € [0, 1]:

If a and b are elements of ¢(x) for some = € X, then for all n € N T"a and T"b are in the same
element of the partition. We thus can apply the Mean Value Theorem to get for all n > 1
d(a,b) < ld(Ta,Tb) < id(T%,T?b) <. < id(T“a,T"b) < N 0,
&) B? pr pr
therefore d(a,b) = 0.
For x € X we define x(z) := a, where a is the unique element of ¢(z).

X : X — [0,1]\S is bijective by construction, where S = U T7"07. We sum up the coding in the
n>0
following diagram. o is the left shift.



Let 2 be the product sigma-algebra restricted to X. Suppose that p is an invariant measure over
[0,1] for which S has measure zero. For A € 2" define v(A) = u(xA).
Note that by construction, the coded system (X, 2", v) is ergodic if and only if the system ([0, 1], A([0, 1]), u)
is ergodic.

The next section introduces randomness in dynamical systems. Since the hitting/return time
statistics results are harder to establish than in the deterministic case, we forget the balls and look at
cylinders in symbolic dynamics.

11 Hitting time statistics for random dynamics

In this section we state and prove a hitting time statistics law under strong enough mixing assumptions.
The next paragraph gives an example of random dynamical system.

11.1 An example
Let T1,T» : [0,1] — [0, 1] defined as

1
1 1
Tiz — 2r+gifxe [O,g)
3z mod 1 otherwise
0 1
and
1
3z mod 1if z € [0, 2)
TQ.’I? =
2r — % otherwise.
0 1

The sets J; = [0, %], Jo = [%, %] and J3 = [%, 1] form a Markov partition according to 77 and 75.
The transition matrices are

0 1 1 1 1 1
Ai=|1 1 1| andA4s=1]1 1 1
1 11 1 10

We introduce randomness by flipping a coin at each step. Depending on the result we apply 71 or
Ts.
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More precisely, let © = {1,2}, 0 : Q — Q be the left shift and P be the (3 3) Bernoulli measure on
Q. Pick a sequence w € ) and define

T1[E if wo = 1
T,x =
TQSU if wo = 2

For z € [0, 1] we would like to look at the random iterates
Thi, 00Ty, oT,x.

It is the topic of the next section.

11.2 Statement of theorem

Let (Q2,.%#,P) be a probability space and 0 :  — Q P-preserving.

Define a finite alphabet &7 := {1,...,m} for some m > 2.

Let X := /", endowed with the product sigma algebra 2~ and the left shift o : X — X.
For w € Q, let A(w) = (ai;(w))1<i j<m where for every w we have:

e For each 1 <4,j <m, a;; : Q@ — {0,1} is F-measurable

e A(w) has at least one non zero entry in each row and each column.

We then define, for w € €,
X, ={z € X|Vi>0, aza,,, (0'w)=1}.

X, represents all the admissible paths in &/ for a given sequence (6%(w));>o.

We assume that there exists a family of probability measures (uy,)weq on (X, Z7) such that:
e Forall Ae 2, wr py,(A) is measurable

e For all w € Q py, lies in X, (that is, if AN X, =0, then u,(A4) =0)

e For almost every w € €, we have for all i > 1 and A € 27: (07 A) = pgi,(A).

We now define a probability measure p on X as

p(A) = [ ()P,
Recall that for y € X, for n > 1, the n-cylinder centered in y is defined as

Cn(y) = {x €X| Lo = Yo, - Tp—1 :ynfl}-

For n > 1 we let 4, be the sigma algebra generated by n-cylinders.
We assume that there exists cg,hg > 0 and a summable function 1 : N — R™ such that for all
mn>1,4¢>0 A€ Z, and B € Z,,, we have:

D) |u(ANo ™ 9B) — u(A)u(B)| < ¥(g)
(IT) for P-almost every w € Q, for all y € X, %e*hon < uw(Cr(y)).-
(ITT) for P-almost every w € €,

|1 (AN o™ IB) — iy (A) prgnran(B)| < ¥(9) s (A) prgnto,(B)

V) s pa(Ci() <1
weNreX
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Remark 11.1. Assumption (II) is impossible in the case of infinite alphabets (for w € Q, y € X, and
n =1 the fact that there exists infinitely many disjoint 1-cylinders would be a contradiction).

We have the following lemma. We need it to state theorem [I1.1]

Lemma 11.1. Under asumptions (III) and (IV), there exists c1,ca,h1 > 0 such that for all y € X,
for all n,m > 1 and for P-almost every w € ), we have:

1, (Cn(y)) < cre” ™" (17)
and "
>~ b (Cul) N0 Culy)) < cre™ iy (Cul)) (18)
k=m
Proof.
o Let y € X and n > 1. We can write the n-cylinder centered in y as
n—1 ' '
Culy) =)o " (Ci(c'y)) .
i=0

Then for all 1 < ng < n,

Now use (IIT) to get for almost every w

o (Cuw)) < 5 ([1+ im0 — 1)) )50

where s =  sup p,(Ci(x)). Since 1 is summable and s < 1, there exists ng such that
weNxeX

[1+1(ng—1)]s<1,

and equation (|17)) is proved for n big enough. Changing the constant ¢; allows to use the inequality
for all n > 1.
e For the second point we use the fact that for 1 <k <n

aikC'n(y) C{x € X| Tp="Ynky s Tntk-1="Yn-1} =0 A},
where A} :={x € X| 0 = Yn—k,---,Tk—1 = Yn—1}. Then for almost all w

oo (Caly) N0 4Cuv)) < o (Caly) N 0" A7)

and by (III)
o (Caly) 1075 Culy) ) < [14+(0)] o (Cal)) ptomes (A7)

Equation then gives

o (Caly) N0 Cu(y)) < 1+ (0)] 1ty (Culy)) ™.
Using the fact that for all n > 1 we have
n +00 1
S etk < §7 etk - — emm
k=m k=m
we get equation ([18)). O
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For A € 2 define the hitting time 74 : X — NU {400} as
Ta(z) =inf{n > 1| 0"z € A}.
We can now state the hitting time statistics law for the measures u,. We follow the proof of [7].

Theorem 11.1. Suppose assumptions (I) to (IV) are true and that there exists q > 2% such that

¥(g)g? — 0 as g goes to infinity. Then for all z € X, and for almost every w € Q,
Oz \Cni )
n—too p(Cn(2))

o If z is a periodic point of period p > 1 and © :=
allt >0

exists, then we have for

t
lim i, P R
n—roo !’ (TW)—u(cn(z))) ‘

o [f z is not periodic, then for all t >0

t
lim g, (7, ) 2~ ) =€
nooo (C"“ u<cn<z>>>

Remark 11.2. Note that theorem doesn’t only deal with codings as in example of section [11.1]
It also aplies to symbolic systems which are not codings of "concrete” dynamics.

11.3 Proof of Theorem

We now prove theorem Note that the proof is simpler than the proof of theorem in a
theoretical point of view - this can be explained by the fact that we are dealing with cylinders and
not balls. However, the two proofs use the same kind of arguments.

Suppose that the assumptions of theorem [I1.1] are satisfied. We are going to work in the set

O ={weQVAEZ, Vi>1, pu(o'A) = g, (A)}

which has full probability by hypothesis.
For z € X, A, A’ € 2 such that z € A’ C A, define

02(A, A) = sup |y (Ao ({74 > §}) — pu (A0 {14 > j})]|,

Jjzp
where p = p(z) is the period of z if z is periodic, and p = 0 otherwise.

Lemma 11.2. For 2z € X, A, A" € 2 such that z € A’, set p = p(z). For almost every w € Q, we
have for k> p

k—p k—p i—1
Hew ({TA > k}) — Hok—py ({TA > p}) H (1 - M@iw(A,)) < Z 59%}("47 A/) H (1 - M@jw(A,)) .
i=1 i=1 j=1

Proof. For w € ), we have by the same calculus as in @ (in Lemma , for i > p,

po ({14 > i 4 1}) = poo ({74 > i}) — pow (AN {74 > i}),

therefore
o ({74 > i+ 1}) = (1 = p(A") pow ({74 > i})] < dpu (A4, A).

An induction of the previous inequality gives the desired result. O
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From now on, t > 0, z € X and p = p(z) are fixed. The proof of theorem consists in

C (O, £ odi
showing that for A, = Cy,(y), A, = (2)\Crp(2) if 2 s periodic and k, = LWJ, the
Cr(2) otherwise proltnty
term
knfp
pgen—sey ({72, >0} [ (1= pois(A7))
i=1

-6t

goes P-almost surely to e as n goes to infinity if © = lim exists, and that the error term
n

kn—p

2591 (Ap, AL) H(1—um < 2591 An,A/)

goes to zero P-almost surely.

Note that if z is not periodic, A, = A, and © = 1 exists.
Let M,( Z/,[/gz ). By hypothesis, M, : Q — Q is a random variable, with expectation
E(M,) = an(An) by the fact that 0 is P-preserving. Note that if © exists, we have

lim E(M,) = Ot.

n—-+o00

The next lemma shows that M, — E(M,,) — 0 P-almost surely. Lemma will then provide

kn—p
Hgkn—py, ({TA'n, > p}) H (1 - :U’H’w(A;L» — e Mn,
i=1
)
Lemma 11.3. If the limit © = lim exists, then we have
n p(An)
M, — Ot
as n goes to infinity.
+oo

Proof. The proof consists in showing that Z Var(M,,) < +o0, where Var(M,,) = E <(Mn - E(Mn))2)

Then for € > 0 we have by Chebyshev’s inequality
P([My — E(My)| =€) <

Summing these inequalities leads to

and Borel-Cantelli lemma gives

M, — E(M,) — 0 P — almost surely.

We now show that Z Var(M,,) < +o0.
n=1
We estimate the second moment of M,,.

kﬂ

E(M2) = Z/W ! Vi (AL)dP(w).

3,j=1
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Let m > 0. Equation gives

> /Queiw(Ail)uem(A%)dP(W)S > /Queiw(An)uem(An)dP(w)

[i—jl<m li—j|<m
< 3 e [ (A dBw)
ji—jl<m @

S Z Cle_hlniu(An)a

li—jl<m

by definition of p and the fact that 0 is P-preserving.
Thus for n big enough we have k, > 1 and

S [ A (AP < 2mere™ il A) < 2mere M u(A,),

fi—jl<m

which gives

S [ oAb AP < 2mmtere (19)
Q

li—jl<m

For the other terms of the sum, we have for n +p <m < k,

kn kn
Z / M@Zw(A;L)NOJw(A;L)d]P)(w) <2 Z Z </ 1/1(7” -—n- p):uﬁiw(A;L)Nij(A;L)d]P)
ji—j|>m i=1 j=m+i 79

+ / i (AL, a<“>A;>dP) ,
[9]

thaks to equation (III) and by symmetry of the terms of the sum. (Note that we have to be careful
when using (III), because A, € Z54p)

We thus get
kn kn  kn o
> / P (Al g1 (A7) AP(w) < 2k > p(Ap)p(m —n —p) +2> Y (A, o~ U047
< Q — et L
li—j|>m i=1 =1 j=i+1
kn  kn
< 2kpp(m—n—p)+2> D (¥(m—n—p)+u(4,)?)
i=1 j=i+1
< 2tkntp(m —n — p) + knp(A3,)? + kb (m —n —p),
kn  kn
using (I) and 22 Z 1 < k2. Then, putting the previous estimates together with the fact that
i=1 j=i+1

Var(M,) = E(M2) — (E(M,))* = E(M?2) — k2u(A’)? leads to
Var(M,) < 2mtcie™™™ + 2tk,p(m —n — p) + k2p(m — n — p) (20)

For n > 0 we chose m = m,, = Lehln/(1+E)J , where € > 0 can be chosen such that Z Var(M,,) < +oc.
neN

Indeed, in the first term is summable by definition of m,, and setting v = 2hg — ‘1%16 (we recall

that ¢ is introduced in the statement of theorem [11.1)), we have v < 0 for € > 0 small enough by the
hypothesis on ¢, and for n big enough, we get by (1I)

Y(my —n —p)

2tk (M — 1 — p) < kith(my —n —p) < t2cge?on Cp—
n

(mn —n—= p)qa
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whence for n big enough, since we have ¢(m,, —n — p)(m, —n —p)? <1 and m,, < 2(m, —n —p),
we have

24
katp(mn —n = p) < Hefe" 5 < at’cg2e™,
n

where « is a constant. (Comes from the integer part in m,)

Therefore Z Var(M,,) < 4+oc and the result is proved. O
neN

Lemma 11.4. For almost every w € 2, we have

kn—p
— My (w) __
ngr—lr-loo Hgkn—py, ({TA > p}> 1:[1 (1 - /1’970.)(‘4;1)) —e @) = 0.

We will need the following estimate:
Forn>1,0<e< % and x1,...,z, € [0,€], we have

exp (—(1—&-26)21’,) H 1—m;) <exp< (1 —2¢) sz> . (21)
i=1 i=1

To prove this, one only has to check it for n = 1. Then, the right inequality is a consequence of the
inequality 1 — 2 < e~® and we get the left one by studying the function z — e~ (1+26)z (1—2x).

Proof of Lemma[I1.4l Equation (L7)) gives that for all e > 0 there exists n > 0 such that for almost
every w € (), we have for all 1 <4 < ky, pgi(A,) € [0,€]. Since by lemma [11.3] the sequence (M,,) is
almost surely bounded, using . we get

kn
[T (1= pon(4y) —e ™) 0

i=1
for almost every w.
We thus just have to prove that as n goes to infinity, we have almost surely

kn—p kn
s (72, > ) TT (= p(420) = T] (1= pga(47)) = 0
i=1 i=1
as n goes to infinity.
Note that
kn_p kn kn
pgrn-rw ({74, >0} [T (1= 0o (A7) = T (1 = poia, (AL | < |ttgrn—ro {7, > 21— [ (1= pois(A3)]
i=1 i=1 i=kn,—p+1

and the two terms of the previous difference go to 1: For the first term, we have
tgrn—vy, ({74, > P}) =1 = pgrn-n, ({74, < p})

P
>1— Z Lhokn—p+ig (a_iAn)

>1—pere M,

using equation . Finally equation and the fact that A} C A, gives

kn
P
[T (- mla) = (1-ac™m)",
i=kn *p+1
and the almost everywhere convergence result is established. O

39



So far, lemmas [11.2] [TT.3] and [TT.4] give the estimate

kn—p
|Mw Ta, > kn) —@tl < Z Spico( AmA,
kn—p
+ Mokn—py, ({TAn > p}) H (1 - M@ZW(A;l)) - ean(w)
=1

X ‘e—Mn(w) —e O

where the two last term go P-almost surely to zero.
We now only have to prove that the first term goes P-almost surely to zero.
Let k> p and g < k be integers. For all A/, A € 2" with A’ C A, for w € Q, let

Ghg(w Zuw (A'n{ra < g})

Hy, g(w Zsup \pis (A" N 079 {74 > j}) — pgi,(A ) pgivow ({74 > j})|
i=1J2 >p
K g(w ZM@% Nigiv ({74 < g}) -

The following lemma shows that we only need to worry about the previous quantities to establish
the convergence result.

Lemma 11.5. With the previous notations, for g > n + p, we have

k—p

D " 6pis (A, A') < Grg(w) + Hyg(w) + K g(w).
=1

A proof of lemma can be found in [7].
For n € N we take A = A,, A = A k = k, and g = M2 We now write for w € Q
Gn(w) = Gk’,g(w)a Hn(w) = Hk:,g(w) and Kn(w) = Kk,g(w)'

Lemma 11.6. For P-almost every w, we have lim H,(w)= lim K,(w)=0.

n—-+oo n—-+oo

Proof. Since A}, € Z54p, (I11) gives for almost every w

kn

Hy(w) < 9(gn — 1 — pitgi(A}) < ¥(gn — 1 — p) My (w)
=1

and since (M,,) is almost surely bounded, H,(w) — 0 almost surely.
Now, using equation ,

po ({74, < gn}) = (Uo ‘A ) < Zuez n) < gncre ™",

thus
K, (w) < gncle_hlnMn(w) —0

and the result is proved. O
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We now show that G,, goes almost surely to zero. So far the results were independent of the
possible periodicity of z. In the following lemma we dinstinguish the aperiodic case from the periodic
one. We first split the expression of G,,: For w € 2 and n > 1 we have

kn,
Gn(w) = Z Hoiw (A;L N{7a, < gn})

=1
kn gn '
=> pgi, [ A no4,
=1 7=1
kn n ) kn gn )
S Z Z Hoiy, (A'/n N U_]An) -+ Z Z Hoiy, (14;1 N U_]An) .
=1 j=1 i=1 j=n+1

If z is periodic, the first term is null since A, N o7 A,, is empty for 1 < j < n + p — 1, by definition
of Al,.
We can therefore write

kn n kn gn
Gn(w) <D pigi, (A, 007 A) + Y Y pge, (A, N0 A4,),
i=1 j=1 i=1 j=n+p

where the first term is zero is z is periodic.
If z is not periodic, the next lemma shows that the first term goes to zero.

Lemma 11.7. If z is a non periodic point, we have for almost every w

kn n
Z Z Lgie (A;L N aijAn) —0

i=1 j=1
We are going to use the following result:

Lemma 11.8. If z is a non periodic point, then there exists a sequence (pn)n>1 of positive integers
going to infinity such that for every point x in A, the first return time of x in A, at least p,.

Proof of Lemma |11.8
Suppose that there exists an integer p > 1 and an increasing sequence (uy,) such that for all n > 1 there
exists a point « € A, such that there exists 1 < k,, < p satifying okng € Ay, - Then, there exists some
integer K < p and an increasing sequence (ny) x>0 such that for all k the set {x € Ay,, | TAun, (z) = K}
is not empty. Let k1 € N such that ng, > K, and let x € X such that TAuny, (x) = K. Sincexz € A

Un kq

and oz € Aunk we get 20 = 2K,...,2Kk—1 = 22K—1. Now taking ko € N such that ng, > 2K, the
1

same argument leads to (zo,...,22x-1) = (2K—1,.-.,23K—1). Using the same argument recursively

shows that z is periodic, which is a contradiction. ]

Proof of Lemma[I1.7 Lemma allows us to write
kn n _ ko n '
SN pgis (Ao A) =D g (A, No I A)

i=1 j=1 i=1 j=pn
consequently equation (L8)) gives

kn

n kn
Z Z Heig, (A;l N U_jA”) < Z CQe_hlpnlu’Hiw(An>
=1

i=1 j=1
< cpe P M (W)

and since (M, (w)),, is almost surely bounded, we get the desired result. O
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We can now conclude that (G,) goes almost surely to zero.

Lemma 11.9. For every z € X,

kn gn )
Z Z Lgie, (A, N7 A,) — 0
i=1 j=n+p

almost surely as n goes to infinity. (Recall that p =0 is z is not periodic)

Proof. We use (III) and equation to get

kn 9n kn 9n
Z Z Hoiw (Aim N UﬁJAn) < Z Z (Meiw(A%)/iein(An) + ¢(J -—n-—= p)ueiw(Alrz)MGi+jw(An))
i=1 j=n+p i=1 j=n+p

kn gn
< Z Hie, (A7) Z fgi+in(An) (1 +9(j —n —p))
i=1

j=n+p
< My (@)gn (1+ [[#]|oc) cre™™™,

which goes almost surely to zero as n goes to infinity. O

Theorem is thus proved.

Under the conditions of theorem [L1.1] we get the following corollary by integrating over € and
using the Dominated Convergence Theorem.

Corollary 11.1. Suppose assumptions (I) to (IV) are true and that there exists q > 2% such that
¥(g)g? — 0 as g goes to infinity. Then for all z € X |

o If z is a periodic point of period p > 1 and © := lim 1 (Cn(2)\Crp(2))
notoo p(Ch(2))
allt >0

t
lim TO () & ————— =e 9
ntoo ! ( Cnlz) = u<cn<z>>)

o If 2 is not periodic, then for allt >0

exists, then we have for

t
lim M( Z)Zet.
n-rtool \"O ) =, (2))
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A Hausdorff measure, Hausdorff dimension

A.1 Hausdorff measure

Let n > 1 and A C R™. Let § > 0. We say that (U;);en is a d-cover of A if A C U U; and for all

neN
i € N we have diam(U;) < §, where diam(U;) := sup d(x,y).
z,yeU;
For s > 0, define

;5 (A) = inf Zdiam(Ui)s; (U;); is a 0-cover of A
i>0
If 61 < d2 note that 757 (A) > 55 (A), hence by monotonicity the limit J%(A) := }irr(l) 5 (A) exists.
—

This limit is called the s-dimensional Hausdorff measure of A.

A.2 Hausdorfl dimension

The definition of the Hausdorff dimension is based on the following fact: Let A C R™” and let 0 < s < ¢.
If (U;) is a d-cover of A then

Zdiam(Ui)t = Zdiam(Ui)t_sdiam(Ui)S <o Zdiam(Ui)S,

i>0 i>0 i>0

so we get for all 6 >0
A5 (A) <85 (A).

We thus have: If J#%(A) < +o0, then for any t > s, #'(A) = 0.
We define the dimension of A as the unique s > 0 verifying: for all t < s, J#*(A) = +oo and

for all t > s, #'(A) = 0.
We write s = dimg(A).
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B Product o-algebra
Let (Ey,)nen be a sequence of subsets of N. For i € N let

T - H En — Ez
neN
(l’n)nzo —  Z;.

We define the product o-algebra on H E,,, denoted by ® &, as the smallest o-algebra over H E,

neN neN neN
for which all the 7; are measurable. One can check that the product o-algebra is generated by the set

of cylinders
{aig} x {ai, } x -+ x {ain_l} X H Ey; n>1, a; € B,
kEN\{i0,...sin—1}
The following theorem is a powerful tool to define probability measures on product spaces. Let us

first give a definition.

Definition B.1. Let (E,,&,)nen be a sequence of measurable spaces. We say that (pn)nen 1S a
projective sequence of probabilities on [[ E,, if:

n n n
e Forallm >0, uy is a probability measure on <HE“ ®é§>, where ®é‘; is the product o-algebra
=0 =0 =0

e Foralln e N and A € ®<§", we have
i=0

Mn—l—l(A X En-l—l) = Nn(A)
We don’t state Daniell theorem in its whole generality but in the case where the F,, are subsets of N.

Theorem B.1. (Daniell)
Let (Ep)nen be a sequence of subsets of N endowed with their power set P (E,,) o-algebra. Let (fin)neN
be a projective sequence of probabilities on H E,.

neN
There exists a probability measure P on H E,, ®éan> such that P extends all the piy:
neN neN

For alln € N, for all A € ®é"i, P(A x H E;) = pn(A).

=0 i>n

Daniell theorem is a consequence of Caratheodory’s extension theorem. The proof can be found
in [1].
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