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1 Introduction

The study of symplectic structures was to a large extent motivated by classical me-
chanics. More precisely, by the Hamiltonian formalism of the classical mechanics. Take
for exemple our solar system : the solutions of the equations ruling the movement of the
planets are very hard to compute in an exact way. But by writing these equations in
a Hamiltonian way, it appears that the maps of the associated flow preserve a specific
geometric structure on the phase space, a structure that the mathematicians now call
symplectic. Then, one can hope to get qualitative results on the systems coming from
classical mechanics by studying the transformations which preserve the symplectic form
on a space provided with such a form (called symplectic manifold) : this is the aim of the
symplectic geometry. The first part of this work is dedicated to give a brief introduction
to this subject, by given some motivations and questions for it.

In his paper ([Gro85]) of 1985, M. Gromov introduced the pseudo-holomorphic curves
in symplectic manifolds. Since, this theory has revolutionized the study of symplectic
geometry, making it possible to study in a very efficient way the global invariants of the
theory. One of the key point about these curves is that they somehow connect the usual
"Riemannian" area and what we could call the "symplectic area" (see Proposition 5 of this
work). In order to get some interesting results in symplectic geometry and especially in
order to answer the questions asked in the first part of this work, our strategy is to study
the compactness properties of the specific space in which these curves occur, called the
universal moduli spaces : this is what we do in the last part of this work. We will see that
some important results can be stated about these spaces without never talking about
symplectic (or even almost symplectic) structures ; however, the symplectic context will
play an essential role in the compactness results.

Before studying the universal moduli spaces and get symplectic results from its com-
pactness properties, we shall investigate the holomorphic properties held by pseudo-
holomorphic curves : this is the purpose of the seond part of this work. We successively
prove a result similar to the usual Schwarz lemma, a theorem about the removal of
singularities which recalls the removable singularity of the holomorphic functions, and
a generalized version of the Weierstrass theorem. Eventually, we prove Gromov’s com-
pactness theorem which sharply describe how some sequences of pseudo-holomorphic
curves can converge : this may be the most important result proved in this work. Unfor-
tunately, we would have to assume some very interesting results about the compactness
properties of the hyperbolic structures.

I would like to thank professor Ko Honda, who guided me in a very interesting and
pleasant way into this fascinating subject. I also thank Austin Christian, who read with
me and more generally helped me whenever I had some issues in my understanding. It
was a great pleasure to work with both of them.
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2 Symplectic geometry

The aim of this part is to give a brief introduction to the symplectic geometry, by
giving the reasons of its first introduction and two important questions in the theory.

2.1 Some motivations

Roughly speaking, the purpose of this section is to prove that each map φt of the
flow generated by some Hamiltonian equations (which are the classical equations in
mechanics) on a smooth manifoldM preserves a certain 2-form ω onM , called symplectic
form.

2.1.1 Classical mechanics

Consider a physical system whose configurations are described by points q in Eu-
clidean space Rn which move along trajectories q(t). Denote by

L : (t, q, v) 7→ Lt(q, v) ∈ R

the Lagrangian of the system, where we think of the element v of Rn as a tangent vector
at the point q. A trajectory q of the system satisfies the Hamilton’s principle :

At1,t2(q) = inf
q(t1),q(t2)=q(t1),q(t2)

At1,t2(q)

where A denotes the action functional of the system :

At1,t2(q) =
∫ t2

t1
Lt(q(t), q̇(t))dt

Proposition 1 (Euler-Lagrange equations). If q satisfies the Hamilton’s principle as-
sociated to a Lagrangian L, then q satisfies the Euler-Lagrange equations :

d

dt

∂Lt
∂v

(q(t), q̇(t)) = ∂Lt
∂q

(q(t), q̇(t))

where ∂Lt
∂v and ∂Lt

∂q stand for (∂Lt∂v1
, ..., ∂Lt∂vn

) and (∂Lt∂q1
, ..., ∂Lt∂qn

) respectively.

Proof. The idea is to write the fact that all the directional derivatives of At1,t2 at q must
vanish. One could find a detailed proof of this result in [SM98] Lemma 1.1.

Let L be the Lagrangian of a system satisfying the Legendre condition :

det( ∂L

∂vi∂vj
) 6= 0
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We will see that the Legendre transformation produces a system of first-order differential
equations in the variables :

q ∈ Rn and p = ∂Lt
∂v

(q, v) ∈ Rn

According to the implicit function theorem, there exists a function :

v : (t, q, p) 7→ vt(q, p) ∈ Rn

such that :
(p = ∂Lt

∂v
(q, v))⇔ (v = vt(q, p))

Then the Hamiltonian associated to the Lagrangian L is the function :

H : (t, q, p) 7→ Ht(q, p) = 〈p,vt(q, p)〉 − Lt(q,vt(q, p))

One can then easily check the following proposition.

Proposition 2 (Hamiltonian differential equations). Let L be the Lagrangian of a system
satisfying the Legendre condition. Let H be the Hamiltonian associated to L. If q satisfies
the Euler-Lagrange equations, then the functions :

q : t 7→ q(t) and p : t 7→ ∂Lt
∂v

(q(t), q̇(t))

satisfy the Hamiltonian differential equations :

q̇(t) = ∂Ht

∂p
(q(t), p(t)), ṗ(t) = −∂Ht

∂q
(q(t), p(t))

Example (Kepler’s problem). Consider a planet orbiting around the sun, or a (classical)
point charge orbiting around a fixe centre. Then the Lagrangian is given by the difference
between the kinetic and potential energies :

L(q, v) = 1
2 |v|

2 + 1
|q|

while the Hamiltonian is given by their difference :

H(q, p) = 1
2 |p|

2 − 1
|q|

The corresponding Euler-Lagrange and Hamiltonian equations are nothing but these
given by the Newton’s law :

d2q

dt2
= − q(t)
|q(t)|3
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In the coordinates :
a = (q, p) ∈ Rn × Rn = R2n

the Hamiltonian equations can be written in the form :

ȧ(t) = −J0∇Ht(a(t))

where ∇Ht denotes the gradient of Ht with respect to the standard inner product µ0 on
R2n, and J0 denotes the standard complex structure on R2n defined by :

J0x = J0(x1, x2) = (−x2, x1)

where we think of :
x = (x1, x2) ∈ Rn × Rn

as a tangent vector at some point a of R2n.
Observe that we can define a non-degenerate skew symmetric bilinear form ω0 on

R2n by the formula :
ω0(x, y) = µ0(J0x, y)

The following theorem shows the crucial importance of ω0 in the study of the Hamiltionan
equations.

Theorem 1 (Poincaré’s theorem). If (φt)t is a smooth family of diffeomorphisms of R2n

generated by some Hamiltonian differential equations via :

d

dt
φt = −J0∇Ht ◦ φt, φ0 = id

then φt preserves ω0 for every t, i.e :

φ∗tω0 = ω0

for every t, where φ∗tω0 denotes the pullback of ω0 by φt.

2.1.2 Generalization

The purpose of this paragraph is to state and prove a generalized version of the
Poincaré theorem. First, we generalize the key structures which appeared in the last
paragraph.

Definition. Let M be a smooth manifold. We give the following definitions :

1. A Riemannian structure on M is a family µ = (µa)a∈M , depending smoothly on a,
where µa is an inner product on TaM

2. An almost complex structure on M is a family J = (Ja)a∈M , depending smoothly
on a, where Ja is an endomorphism of TaM satisfying :

J2
a = −1
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3. An almost symplectic structure onM is a family ω = (ωa)a∈M , depending smoothly
on a, where ωa is a nondegenerate skew symmetric bilinear form on TaM ; in other
words, ω is a nondegenerate 2-form on M

Observe that the dimension of an almost symplectic manifold is necessarily even because
of the non-degeneracy condition.

We will say that :

1. An almost symplectic structure ω and an almost complex structure J are compat-
ible if the family µ defined by :

µa(x, y) = ωa(x, Jay)

is a Riemannian structure

2. An almost complex structure J and a Riemannian structure µ are compatible if
the family ω defined by :

ωa(x, y) = µa(Jax, y)

is an almost symplectic structure

3. An almost symplectic structure ω and a Riemannian structure µ are compatible if
the family J defined by :

ωa(x, y) = µa(Jax, y)

is an almost complex structure

This gives rise to the following important proposition.

Proposition 3. If (M,ω) is an almost symplectic manifold, then there exists an almost
complex structure on M compatible with ω.

Proof. Let µ be any Riemannian metric on M , and choose an arbitrary point a in M .
Let f be the endomorphism of TaM defined by :

µa(f(x), y) = ωa(x, y)

for x and y in TaM . Since ω is non-degenerate, f is an automorphism of TaM . By the
skew symmetry of ω we get :

f∗ = −f

for the µ-adjoint map f∗ of f . Hence (−f2) is positive definite and symmetric with
respect to µ ; let g be its unique positive square root. Then denote by Ja the endormor-
phism of TaM defined by :

Ja = f ◦ g−1

and observe that the family (Ja)a∈M has the desired properties.
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Now we generalize the Hamiltonian formalism.

Definition (Hamiltonian vector field). Let (M,ω) be an almost symplectic manifold. A
vector field X on M is said to be Hamiltonian if there exists a smooth function H on
M and some compatible almost complex and Riemannian structures J, µ on (M,ω) such
that :

X(a) = −Ja∇H(a)

for all a in M , where ∇H is the gradient of H with respect to the Riemannian structure
µ.

Using Proposition 3, one can easily check the following result, which gives an inter-
esting characterization of the Hamiltonian vector fields.

Proposition 4. Let (M,ω) be an almost symplectic manifold. A vector field X on M
is Hamiltonian if and only if there exists a smooth function H on M such that :

ιXω = dH

where ιX denotes the interior product.

Consider an almost symplectic manifold (M,ω), and let (φt)t be a smooth family of
diffeomorphisms of M generated by a family (Xt)t of Hamiltonian vector fields on M .
At this point, one could hope that φt will preserve ω for every t, but this is actually
false. The key point to understand this is to write the relation :

d

dt
(φ∗tω) = φ∗t (LXtω)

where LX denotes the Lie derivative with respect to X. Using the Cartan’s formula :

LX = ιX ◦ d+ d ◦ ιX

and the previous proposition we get :

d

dt
(φ∗tω) = φ∗t (ιXtdω)

Then, it will be easy to show that the Poincaré theorem is generally false in an almost
symplectic manifold as soon as we will give an example of an almost symplectic form
which is not closed.

Example (A non-closed almost symplectic form). The 6-sphere S6, when considered as
the set of unit norm imaginary octonions, inherits an almost complex structure J from
the octonion multiplication. Using the proof of Proposition 3, we can easily show that
there exists an almost symplectic structure ω on S6 compatible with J . Assume that ω
is closed in order to get a contradiction. Then it represents a cohomology class [ω] in
H2(S6). But H2(S6) is trivial, and the non-degeneracy property of ω implies that the
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3-fold exterior power ω3 of ω is a volume form on S6. Because the integral of a closed
differential form on a closed manifold only depends on its cohomology class, we have :

Vol(S6) =
∫
S6
ω3 = 〈[ω3], [S6]〉 = 〈[ω]3, [S6]〉 = 0

where 〈., .〉 denotes the duality bracket between H6(S6) and H6(S6), [S6] denotes the
element of H6(S6) representing by S6, and [ω]3 denotes the 3-fold cup power of [ω].
This is contradictory since the volume of S6 is non-zero, and then ω is not closed.

The above discussion motivates the following definitions, which will eventually serve
to generalize the previous section.

Definition (Symplectic structure). A symplectic structure on a smooth manifold M is
an almost symplectic structure ω on M which is closed.

Observe that the standard 2-form ω0 defined in the previous paragraph is a symplectic
structure on R2n. Indeed, it is easy to check that ω0 is exact, given by :

ω0 = dλ0 with λ0 =
n∑
i=1

xidyi

Definition (Symplectic vector field). Let (M,ω) be a symplectic manifold. A vector
field X on M is called symplectic if the 1-form ιXω is closed.

Observe that Proposition 4 implies that a Hamiltonian vector field is necessarily
symplectic. It is now easy (using the discussion above) to state and prove a correct
generalized version of the Poincaré theorem.

Theorem 2 (Generalized Poincaré’s theorem). Let (M,ω) be a symplectic manifold.
If (φt)t is a smooth family of diffeomorphisms of M generated by a family (Xt)t of
symplectic vector fields on M then φt preserves ω for every t.

2.2 Some questions

In this section, we have choosen to expose two important questions in symplectic
geometry, which could be related to qualitative issues in classical mechanics.

2.2.1 Uncertainty principle

Consider a Hamiltonian system which state is described by position coordinates qi
and momentum coordinates pi ; by taking a measurement at a time t, we might find out
that the state of the system lies somewhere in a subset of R2n, where n is the number
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of position coordinates. This subset certainly contains some r-ball, so that we have the
following uncertainty relations :

∆qi(t)∆pi(t) ≥
r2

2
for all i. The question here is about knowing if the system could evolved so that one
of the previous uncertainty relation vanish, making the precision on one of the couples
(qi, pi) better. M. Gromov answers by the negative to this question in 1985, by proving
its famous non-squeezing theorem. Indeed, the non-squeezing theorem can be thought
of as saying that no matter how the system is transformed, the uncertainty relations will
still hold for all i.

Now, we introduce the objects in order to state the non-squeezing theorem.

Definition (Symplectomorphism). A symplectomorphism from a symplectic manifold
(M1, ω1) to another (M2, ω2) is a diffeomorphism φ from M1 to M2 such that :

φ∗ω2 = ω1

We denote by B2n(r) the Euclidean ball with centre 0 and radius r, and by :

Z2n(R) = R2n−2 ×B2(R)

the symplectic cylinder with centre 0 and radius R. We can now state the non-squeezing
theorem.

Theorem 3 (Non-squeezing theorem). If there exists a symplectic embeeding of B2n(r)
into Z2n(R), then :

r ≤ R

This is a fundamental theorem in symplectic geometry which was first proved by M.
Gromov by using the theory of pseudo-holomorphic curves. In the last part of this work,
we will give a proof of a slightly generalized version of this theorem.

2.2.2 Invariants

Another basic question in geometry is about knowing what are the invariants of the
theory. In classical mechanics, this question can be thought of as a wish to know what
kind of objects may the maps of the flow of a Hamiltonian system preserves. The first
result in this direction is the following Darboux’s theorem (see [SM98] Theorem 3.15 for
a proof) which claims that there is no local invariants in symplectic geometry.

Theorem 4 (Darboux’s theorem). Any symplectic manifold (M,ω) is locally symplec-
tomorphic to (Rm, ω0), where m denotes the dimension of M . In other words, for each
point a in M , there exists a symplectomorphism between an open neighbourhood of a in
(M,ω) and an open subset of (Rm, ω0).
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This theorem led the mathematicians to look for global invariants in symplectic
geometry. We will see in the last part of this work that the non-squeezing theorem that
we stated in the previous paragraph will precisely allow us to define a non-trivial and
global symplectic invariant.

9



3 Pseudo-holomorphic curves

The aim of this part is to study some of the important properties of the pseudo-
holomorphic curves.

Definition (Pseudo-holomorphic curve). Let (M,J) be an almost complex manifold. A
J-holomorphic curve in M is a smooth map σ from a Riemann surface (i.e a surface
with a complex structure) (S, j) to (M,J) such that :

Tσ ◦ j = J ◦ Tσ

where Tσ denotes the differential of σ ; we will say that σ is a J-holomorphic curve in
M parametrized by (S, j). A pseudo-holomorphic curve in M is a J-holomorphic curve
in M for some almost complex structure J on M .

We will see in the following that the area of these curves will play an essential role
to generalize some holomorphic properties.

Definition. Let S be an oriented surface. If ν is a Riemannian metric on S then we
denote by αν the corresponding area form on S defined by :

αν(ζ, η) =
√
ν(ζ, ζ)ν(η, η)− ν(ζ, η)2

for positively oriented couple (ζ, η) of vectors in some tangent space to S. Now if σ is a
smooth map from S to a Riemannian manifold (M,µ) then we denote by A(σ) its area
defined by :

A(σ) =
∫
S
ασ∗µ

If U is a open or closed subset of M then we will write A(σ ∩ U) for A(σ σ−1(U)).

3.1 Holomorphic properties

The purpose of this section is to investigate the holomorphic properties of the pseudo-
holomorphic curves, and then to prove Gromov’s compactness theorem which will be
crucial to find a non-trivial symplectic invariant in the last part of this work. In this
section, we will consider an almost complex compact manifold (M,J) provided with a
J-compatible Riemannian structure µ. We denote by ω the almost symplectic structure
on M induced by J and µ, and by m the dimension of M .

3.1.1 Gromov-Schwarz lemma

The purpose of this paragraph is to generalized the Schwarz lemma to the case of
pseudo-holomorphic curves.
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Theorem 5 (Gromov-Schwarz lemma). There are non-negative constants ε0, C0 such
that the following holds. If σ is a J-holomorphic curve inM parametrized by the Poincaré
half-plane H and contained in some ε0-ball, then :

‖Tσ‖ = sup
a∈M
‖Taσ‖ ≤ C0

In order to prove this theorem, we will use some of the area properties of the pseudo-
holomorphic curves, together with the following lemma which states a relation between
isoperimetric inequalies and derivatives bounds.

Lemma 1. Let I be a continuous map from (0,∞) to (0,∞) satisfying :∫ 1

0
( 1
I(t)2 −

1
4πt)dt <∞ and

∫ ∞
1

dt

I(t)2 <∞

There exists a constant c such that the following holds. If σ is a conformal map from
the unit disc D provided with some metric ν to (M,µ) such that :

I(A(σ D̄r
)) ≤ l(∂σ D̄r

)

for all r in (0, 1), then T0σ is bounded by c.

Proof. Let σ be as in the lemma and assume that T0σ is not zero. Denote by α, l, and
ε the functions defined by :

α(r) = A(σ D̄r
), l(r) = l(∂σ D̄r

) and ε(t) = 1
I(t)2 −

1
4πt

for r in (0, 1) and t in (0,∞). The important idea of the proof is that the area of σ
and its derivative are linked because σ is conformal. Indeed, saying that σ is conformal
means that there exists a function λ from D to R such that :

σ∗µ = λν

and it is not difficult to see that λ equals ‖Tσ‖2. In the usual polar coordinates, we then
have :

α(r) =
∫ ∫

D̄r
‖Tσ‖2ρdρdθ

Under the assumptions of the lemma, the derivative of α can be estimated using the
Cauchy-Schwarz inequality :

α′(r) =
∫ 2π

0
r‖Tσ‖2dθ ≥ 1

2πr (
∫ 2π

0
‖Tσ‖rdθ)2 = 1

2πr l(r)
2 ≥ 1

2πrI(α(r))2

Dividing by I(α(r))2 and integrating this inequality, we get :

φ(α(r2))− φ(α(r1)) ≥ 1
2π log(r2

r1
) for 0 < r1 < r2 < 1
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where φ is the primitive of 1/I2 defined by :

φ(s) =
∫ s

1

dt

I(t)2 = 1
4π log(s) +

∫ s

1
ε(t)dt

We now estimate :∫ α(r2)

1

dt

I(t)2 =
∫ α(r1)

1

dt

I(t)2 +
∫ α(r2)

α(r1)

dt

I(t)2 ≥
1

4π log(α(r1)) +
∫ α(r1)

1
ε(t)dt+ 1

2π log(r2
r1

)

Then we have the following inequality, denoted in the following by (∗) :∫ α(r2)

1

dt

I(t)2 ≥
1

4π log(α(r1)
πr2

1
) + 1

2π log(r2) + 1
4π log(π) +

∫ α(r1)

1
ε(t)dt

Now observe that :

|α(r)− ‖T0σ‖2πr2| = |
∫ ∫

Dr
(‖Tσ‖2 − ‖T0σ‖2)ρdρdθ| ≤ sup

z∈Dr
|‖Tzσ‖2 − ‖T0σ‖2|πr2

so (α(r)/πr2) converges to ‖T0σ‖2 as r converges to 0. Taking the limit when r1 converges
to 0 and when r2 converges to 1 in (∗), the assumptions on I imply the result.

The aim of the following lemmas is then to investigate the area properties of the
pseudo-holomorhic curves. The key point of this study might be sum up in the following
proposition.

Proposition 5. If σ is a curve in M parametrized by a Riemann surface (S, j), then :∫
S
σ∗ω ≤ A(σ)

and the equality holds when σ is J-holomorphic.

Proof. Let (ζ, η) be a positively oriented couple of vectors in some tangent space of S.
If Tσ(ζ) equals 0 then we have :

σ∗ω(ζ, η) = 0 = ασ∗µ(ζ, η)

Thus assume that Tσ(ζ) is not zero and denote by ζ ′, η′ the vectors defined by :

ζ ′ = ζ and η′ = η − σ∗µ(ζ, η)
σ∗µ(ζ, ζ)ζ

Then ζ ′ and η′ are orthogonal with respect to σ∗µ and we have the following equalities,
denoted by (∗) in the following :

σ∗ω(ζ, η) = σ∗ω(ζ ′, η′) and ασ∗µ(ζ, η) =
√
σ∗µ(ζ ′, ζ ′)σ∗µ(η′, η′)

12



But since ω, J and µ are compatible, and by the Cauchy-Schwarz inequality, we have :

σ∗ω(ζ ′, η′) = ω(Tσ(ζ ′), Tσ(η′))
= µ(JTσ(ζ ′), Tσ(η′))

≤
√
µ(JTσ(ζ ′), JTσ(ζ ′))µ(Tσ(η′), Tσ(ζ ′))

=
√
µ(Tσ(ζ ′), Tσ(ζ ′))µ(Tσ(η′), Tσ(η′))

=
√
σ∗µ(ζ ′, ζ ′)σ∗µ(η′, η′)

and it is easy to show that the equality holds if σ is J-holomorphic (use Cauchy-Schwarz
inequality together with the fact that jζ ′ and η′ are colinear). Then the proposition
follows from (∗).

We can now begin to prove the lemmas for the proof of the theorem.

Lemma 2 (Isoperimetric inequality). There are non-negative constants ε0, C such that
the following holds. If σ is a compact J-holomorphic curve with boundary contained in
a r-ball of M for some r in (0, ε0), then :

4πA(σ) ≤ (1 + Cr)l(∂σ)2

The idea of the proof is the following. Assume that we are in the Euclidean case, i.e
that (M,ω, J, µ) is (Rm, ω0, J0, µ0). If σ is a compact J-holomorphic curve with boundary
in Rm, it follows from the previous proposition and the Stoke’s theorem (because ω0 is
exact) that σ is area minimizing among all the parametrized curves with same boundary
than σ. But area minimizing curves satisfy the classical isoperimetric inequality (see
[Hum97] Annex A for a proof) which is "similar" to the one claimed in the lemma. To
get closer to the Euclidean case, we are going to use the exponential map ofM , of which
we now give a definition.

Definition (Exponential map and injectivity radius). In local coordinates ofM , geodesics
are solutions of an ordinary differential equation of second order. Thus, for any tangent
vector u, there is a unique geodesic γu defined on an interval Iu such that :

0 ∈ Iu and γ̇u(0) = u

Observe that the set U defined by :

U = {u ∈ TM | 1 ∈ Iu}

is an open neighbourhood of the zero section of TM , and that we can define the expo-
nential map exp on U by :

exp(u) = γu(1)
Then the injectivity radius of M at a point a is the number injrad(M,a) defined by :

injrad(M,a) = sup{r > 0 | exp Ba(0,r) defines a diffeomorphism on its image}

where Ba(0, r) denotes the ball with centre 0 and radius r in TaM .
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We can now give a proof of the previous lemma.

Proof. Let R denotes the injectivity radius of M , i.e :

R = inf{injrad(M,a) | a ∈M}

Since M is compact, one can show (see [Hum97] Lemma I.1.1) that R is non-negative.
We will denote by expa the restriction of the exponential map to the R-ball Ba(0, R)
of TaM , where a is an arbitrary point of M fixed from now on. One can choose a
basis of TaM such that (TaM,ωa, Ja, µa) is isomorphic to (Rm, ω0, J0, µ0) (see [SM98]
Theorem 2.3) ; in particular, ωa is an exact symplectic form on TaM . Since expa is a
diffeomorphism from Ba(0, R) to the ball B(a,R) of M , every parametrized curve σ in
B(a,R) induces a parametrized curve σa in Ba(0, R) defined by :

σa = exp−1
a ◦σ

We will show at the end of the proof that there is an ε0 in (0, R) and some non-negative
constants C ′, C ′′ stricly smaller than 1/ε0 such that :

l(∂σa) ≤ (1 + C ′r)l(∂σ) (1)

when σ is a parametrized curve in B(a, r) for some r in (0, ε0), and such that :∫
σ∗ω ≤ 1

1− C ′′r

∫
σ∗aωa (2)

when σ is besides J-holomorphic. Now, suppose that σ is a compact J-holomorphic
curve with boundary in B(a, r) for some r in (0, ε0), and denote by S the surface which
parametrizes σ. By the classical isoperimetric inequality for parametrized surfaces in
Euclidean space, there exists a curve τ in B(a, r) parametrized by S, with same boundary
than σ and such that :

4πA(τa) ≤ l(∂τa)2 = l(∂σa)2

Hence we can write :

4πA(σ) = 4π
∫
S
σ∗ω by Proposition 5

≤ 4π
1− C ′′r

∫
S
σ∗aωa by (2)

= 4π
1− C ′′r

∫
S
τ∗aωa by Stoke’s theorem

≤ 4π
1− C ′′rA(τa) by Proposition 5

≤ 1
1− C ′′r l(∂σa)

2 by the classical isoperimetric inequality

≤ (1 + C ′r)2

1− C ′′r l(∂σ)2 by (1)
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and the lemma follows easily.
To conclude the proof of the lemma, it remains to show the inequalities (1) and (2).

By a compactness argument which we postpone to the end of the proof, there is an ε0
in (0, R) and some non-negative constant C ′ such that the following holds. For any x in
TaM and any u in Ba(0, ε0) we have :

|‖x‖ − ‖Tu expa(x)‖| ≤ C ′d(a, expa(u))‖Tu expa(x)‖ (3)
|‖x‖2 − ‖Tu expa(x)‖2| ≤ C ′d(a, expa(u))‖Tu expa(x)‖2 (4)

‖Jx− (Tu expa)−1JTu expa(x)‖ ≤ C ′d(a, expa(u))‖x‖ (5)

After making ε0 smaller, we may addiitionally assume that (1 − C ′ε0) is non-negative.
Using this, we get a non-negative constant C ′′ depending only on (M,J, µ) and ε0 such
that :

1− C ′′d(a, expa(u)) ≤ (exp−1
a )∗ωa(x, Jx) (6)

for any unitary vector x in TaM and any u in Ba(0, ε0). Namely, we have :

(exp−1
a )∗ωa(x, Jx) = ωa((Tu expa)−1x, (Tu expa)−1Jx)

= µ(J(Tu expa)−1x, (Tu expa)−1Jx)
= µ(Jx, Jx) + µ(J(Tu expa)−1x− (Tu expa)−1Jx, (Tu expa)−1Jx)
+ µ((Tu expa)−1Jx, (Tu expa)−1Jx)− µ(Jx, Jx)

Using the inequalities (3) and (5), we estimate :

|µ(J(Tu expa)−1x−(Tu expa)−1Jx, (Tu expa)−1Jx)|
≤ C ′d(a, expa(u))‖(Tu expa)−1x‖‖(Tu expa)−1Jx‖
≤ C ′d(a, expa(u))(1 + C ′)2d(a, expa(u))2

Furthermore, we deduce with (4) that :

|µ((Tu expa)−1Jx,(Tu expa)−1Jx)− µ(Jx, Jx)|

=
∣∣∣‖(Tu expa)−1Jx‖2 − ‖Jx‖2

∣∣∣
≤ C ′d(a, expa(u))

Then (6) follows together with :
µ(Jx, Jx) = 1

Wemay assume that ε0 is small enough for (1−C ′′ε0) to be non-negative. Now, inequality
(1) follows from (3) and (2) follows from (6).

Eventually, it remains to show the inequalities (3), (4) and (5). Let U be a ball inM
with radius R/2, and let U ′ be the ball in M with same center than U and radius R/4.
We trivialize TU with respect to an orthonormal basis field on U . Let V be the closed
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ball in Rm with center 0 and radius R/4, and let E denote the restriction to U ′ × V of
the exponential map with respect to the chosen trivialization. Then, for (a, u) in U ′×V
and x in Rm, we see that :

|‖x‖ − ‖D2E(a, u)(x)‖| ≤ ‖1−D2E(a, u)(x)‖‖x‖
≤ C ′‖u‖‖x‖ = C ′d(a,E(a, u))‖x‖

for some non-negative constant C ′ since D2E(a, 0)(x) is the identity (here D2 denotes
the differential with respect to the second factor). Now, cover M with finetely many
open R/4-balls in order to deduce that :

|‖x‖ − ‖Tu expa(x)‖| ≤ C ′d(a, expa(u))‖x‖ (7)

In the same way, one shows (3), (4) and (5). To that end, note that there exists some
constant c greater than 1 such that :

1
c
‖x‖ ≤ ‖D2E(b, u)(x)‖ ≤ c‖x‖

Then (3) is an immediate consequence of (7), and (4) follows together with :∣∣∣‖x‖2 − ‖D2E(a, u)(x)‖2
∣∣∣ = |‖x‖ − ‖D2E(a, u)(x)‖| (‖x‖+ ‖D2E(a, u)(x)‖)

Arguing as in the inequality before (7), one proves (5).

The next lemma can be seen as a consequence of the previous ; it will be usefull in
the following.

Lemma 3 (Monotocity lemma). There are non-negative constants ε0, CM such that
the following holds. If σ is a compact J-holomorphic curve in M whose boundary is
contained in the complement of a r-ball B(a, r), with a in σ and r in (0, ε0), then :

A(σ ∩ B̄(a, r)) ≥ CMr2

Proof. The idea of the proof is the following. Let ε0 be the constant of the previous
lemma, and let σ be a compact J-holomorphic curve in M whose boundary is contained
in the complement of a r-ball B(a, r), with a in σ and r in (0, ε0). Denote by σt the
restriction of σ to σ−1(B(a, t)). Then, we will show that there exists a compact subset
K0 of (0, r) of measure 0 such that the function :

α : t ∈ [0, r] 7→ A(σt)

is differentiable on (0, r) \K0 and satisfies :

α′(t) ≥ l(∂σt)
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Using the isoperimetric inequality satisfied by the J-holomorphic curves, it follows that
:

α′(t) ≥ 2κ
√
α(t)

for some non-negative constant κ depending only on (M,J, µ) and ε0. Since K0 is a
closed set of measure 0, this implies that :√

α(r) ≥ κr

and hence the claim.
It remains to show the existence of a set K0 as above. We may assume without loss

of generality that the surface S which parametrizes σ is connected. Consider the maps :

ρ : b ∈M 7→ d(a, b) and φ = ρ ◦ σ

Since :
ρ ◦ expa(u) = ‖u‖

for u in Ba(0, ε0), φ is smooth on a neighbourhood of φ−1(0, r] in S. Notice also that
[0, r] is contained in the image of φ because S is assumed to be connected. Let K be the
compact of S defined by :

K = {z ∈ φ−1(0, r] | Tzφ = 0} ∪ φ−1(0)

Then the set K0 defined by :
K0 = φ(K)

is a compact subset of [0, r] and has measure zero by Sard’s theorem. If t0 is an element
of (0, r) \K0, then there exists an open neighbourhood It0 of t0 in (0, r) which does not
contain any critical value of φ, since K0 is compact. Consequently, the sets φ−1(t) for t
in It0 are 1-dimensional submanifolds of S \ ∂S. The differential of any J-holomorphic
curve either has rank 0 or 2. Hence, there are no critical points of σ in φ−1(It0). Thus
σ∗µ is non-degenerate on the neighbourhood φ−1(It0) of φ−1(t0), so the gradient ∇φ of
φ with respect to σ∗µ is well defined on φ−1(It0) by the identity :

ι∇φ(σ∗µ) = Tφ

Note that :
0 < ‖∇φ‖ ≤ 1

since ‖Tρ‖ equals 1. For non-negative δ so small that [t0 − δ, t0 + δ] is contained in It0 ,
a diffeomorphism Φ is defined from φ−1(t0)× [t0− δ, t0 + δ] to φ−1([t0− δ, t0 + δ]) as the
solution of the ordinary differential equation :

Φ(., t0) = idφ−1(t0) and ∂Φ
∂t

(z, t) = ∇φ
‖∇φ‖2

◦ Φ(z, t)

Then Φ satisfies :
Φ(φ−1(t0)× {t}) = φ−1(t)
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for t in [t0 − δ, t0 + δ]. We can now prove that α is differentiable at t0 since :

α(t0 + t)− α(t0) =
∫
φ−1[t0,t0+t]

ασ∗µ =
∫
φ−1(t0)×[t0,t0+t]

Φ∗ασ∗µ

for t smaller than δ, and we can give the estimate :

α′(t0) = lim
t→0

1
|t|

∫
φ−1(t0)×[t0,t0+t]

Φ∗ασ∗µ

≥ lim
t→0

1
|t|

∫
φ−1(t0)×[t0,t0+t]

(‖∇φ‖ ◦ Φ)Φ∗ασ∗µ since ‖∇φ‖ ≤ 1

= lim
t→0

1
t

∫ t0+t

t0
l(σ φ−1(t′))dt′ = l(σ φ−1(t0))

By assuption, σ(∂S) is contained in the complement of B̄(a, t0) so that φ−1([0, t0]) is a
submanifold of S with smooth boundary φ−1(t0). Hence we have :

σ φ−1(t0) = ∂σt0

and this concludes the proof.

Lemma 2 stated an isoperimetric inequality fo compact J-holomorphic curves with
boundary in sufficiently small balls. The following lemma shows that the same isoperi-
metric inequality holds provided only the area of the J-holomorphic curve is sufficiently
small.

Lemma 4. There are non-negative constants ε1, C1 such that the following holds. Let
σ be a compact J-holomorphic curve in M with connected boundary. If the area of σ is
smaller than ε1, then :

4πA(σ) ≤ (1 + C1l(∂σ))l(∂σ)2

Proof. Let ε0 and CM be the constants of the monotocity lemma. Let σ be a compact J-
holomorphic curve in M with connected boundary. Assume that the area of σ is smaller
than

ε1 = CM ε
2
0

Then for any a in σ we have :

d(a, ∂σ) ≤
√
A(σ)
CM

< ε0

because of the monotocity lemma. Appliying Lemma 2 we get :

d(a, ∂σ) ≤ κl(∂σ)

for any a in σ and some constant κ depending only on (M,J, µ) and ε0. Since ∂σ is
connected, we can give the following estimate for the diameter δ(σ) of σ :

δ(σ) ≤ 2(1 + κ)l(∂σ)
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Together with Lemma 2 we get :

4πA(σ) ≤ (1 + C1l(∂σ))l(∂σ)2 with C1 = 2C(1 + κ)

Eventually, we prove a last lemma which gives area estimates for compact J-holomorphic
curves with boundary in some specific open subsets of M .

Lemma 5. Let U be an open subset of M on which there exists a 1-form λ whose norm
is bounded by some positive constant C(λ) and whose exterior derivative satisfies :

dλ(x, Jx) ≥ µ(x, x)

for any x in TU . Then :
A(σ) ≤ C(λ)l(∂σ)

for any compact J-holomorphic curves in U with boundary.

Proof. This lemma is an immediate consequence of Stoke’s theorem :

A(σ) =
∫
S
ασ∗µ ≤

∫
S
σ∗dβ ≤

∫
∂S
σ∗β ≤ C(λ)l(∂σ)

where S is the Riemann surface which parametrizes σ.

Now, the proof of the Gromov-Schwarz lemma can be concluded using the previous
lemmas.

Proof. Let ε0 be the constant of Lemma 2, and let a be a point of M fixed from now on.
We saw in the proof of Lemma 2 that there exists a basis on TaM so that (TaM,ωa, Ja, µa)
is isomorphic to (Rm, ω0, J0, µ0). This shows that ωa is an exact symplectic form on TaM
given by :

ωa = dλa

On Ba(0, ε0), the 1-form λa is bounded by a constant depending only on ε0. From
the proof of Lemma 2, especially the inequalities (3) and (6), we see that the 1-form
(exp−1

a )∗λa on B(a, ε0) is bounded by some constant depending only on (M,J, µ) and
ε0. Moreover, there is a constant κ, also depending only on (M,J, µ) and ε0, such that
the 1-form λ on B(a, ε0) defined by :

λ = κ(exp−1
a )∗λa

satisfies the assuptions of Lemma 5.
Now, let ε1, C1 be the constants of Lemma 4. Denote by ψ the strictly monotically

increasing function given for l in (0,∞) by :

ψ(l) = (1 + C1l)l2

4π
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Then define :

I(t) = ψ−1(t) if t < ε1
2

= χ(t) if ε12 ≤ t ≤ ε1

= t

C(λ) if t > ε1

for t in (0,∞), where χ is chosen so that :

χ(t) ≤ max{ t

C(λ) , ψ
−1(t)}

and I becomes continuous. It is not difficult to see that I satisfies the assumptions
of Lemma 1 for all J-holomorphic curves in B(a, ε0) parametrized by a closed disc.
Hence, we get an upper bound C0 for ‖T0σ‖ depending only on B(a, ε0), J , µ, and
C(λ). Moreover, with respect to the Poincaré metric on D, there is an orientation
preserving isometry mapping any given z in D to 0. Thus, the same estimate holds for
the differential at any point of D with respect to the Poincaré metric. Since the open
unit disc with the Poincaré metric is isometric to H, this concludes the proof of the
Gromov-Schwarz lemma.

3.1.2 Removal of singularities

The purpose of this paragraph is to prove the following theorem.

Theorem 6. Let S be a Riemann surface, z an interior point of S and σ a relatively
compact J-holomorphic curve in M parametrized by S \ {z}. If there exists a neighboor-
hood U of z such that σ U\{z} has finite area, then σ can be extended to a J-holomorphic
curve parametrized by S.

Observe that the statement is purely local, so it is sufficient to prove the theorem in
the case where S is the open unit disc D of C and where z equals 0. Then, the proof
has essentially two steps, which consist in the two following lemmas.

Lemma 6. Let σ be a relatively compact J-holomorphic curve in M parametrized by
D \ {0}. If there exists a neighboorhood U of 0 such that σ U\{0} has finite area, then σ
has a continuous extension to D.

Proof. Because the area of σ is finite, there exists a sequence (zn)n in D \ {0} such that
:

lim
n→∞

zn = 0 and lim
n→∞

l(∂σ D̄|zn|
) = 0

Otherwise, there would exists a non-negative constant ε and an element r0 of (0, 1) such
that :

l(∂σ D̄r
) ≥ ε
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for all r smaller than r0 and this would yield that :

A(σ Dr0\{0}) =
∫ ∫

Dr0\{0}
‖Tσ‖2ρdρdθ

≥
∫ r0

0

1
2πρ(

∫ 2π

0
‖Tσ‖ρdθ)2dρ

≥ 1
2π

∫ r0

0

l(∂σ D̄ρ
)2

ρ
dρ

≥ ε2

2π

∫ r0

0

dρ

ρ
=∞

Since σ(D\{0}) is relatively compact inM , we may suppose that (σ(zn))n converges
to some point a in M . Assume there is another sequence (z′n)n in D \ {0} such that :

lim
n→∞

z′n = 0 and lim
n→∞

σ(z′n) = a′ 6= a

Without loss of generality, we may suppose that :

|zn| > |z′n| > |zn+1|

for all n. Now, denote by ρ the distance between a and a′ and choose an integer N such
that d(σ(zn), a), d(σ(z′n), a′) and l(∂σ D̄|zn|

) are smaller than d(a, a′)/8 when n is greater
than N . Then for each n greater than N and each k in {n, n+ 1} we have :

B(σ(z′n), ρ2) ∩ ∂σ D̄|zk|
= ∅

Since σ(D \ {0}) is relatively compact in M , the monotocity lemma implies that there
exists a non-negative constant c such that :

A(σ D̄|zn|\D|zn+1|
) ≥ c

for each n greater than N . Hence, the area of σ is non-finite and this is in contradiction
with our assumption. Thus σ can be continuously extended to D by defining :

σ(0) = a

Before stating the second lemma, we need to talk a little bit about the jets of J-
holomorphic curves.

Definition (1-jets of J-holomorphic curves). Let (S, j) be a Riemann surface. We denote
by [S,M ] the total space of a complex vector bundle over S ×M defined by :

[S,M ] =
⋃

(z,a)∈S×M
HomC(TzS, TaM)
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Assume that σ is a J-holomorphic curve in M parametrized by an open subset V of S.
Then the map σ(1) defined from V to [S,M ] by :

σ(1)(z) = Tzσ

is called the 1-jet of σ.

The following proposition (which is proved in [Hum97] Proposition III.1.4) shows
that one can force the 1-jets of pseudo-holomorphic curves to be themselves pseudo-
holomorphic.

Proposition 6. There exists an almost complex structure J (1) on [S,M ] such that the
1-jet σ(1) of any J-holomorphic curve σ is itself J (1)-holomorphic.

Then, the same can be done for higher order derivatives.

Definition (n-jets of J-holomorphic curves). Let (S, j) be a Riemann surface. We
inductively define an almost complex manifold ([S,M ](n), J (n)) by :

([S,M ](0), J (0)) = (M,J) and ([S,M ](n+1), J (n+1)) = ([S, [S,M ](n)], (J (n))(1))

Assume that σ is a J-holomorphic curve in M parametrized by an open subset V of S.
We define inductively a J (n)-holomorphic curve σ(n) in [S,M ](n), called the n-jet of σ,
by :

σ(0) = σ and σ(n+1) = (σ(n))(1)

We can now state the second lemma that we need to prove the theorem on the
removal of singularities.

Lemma 7. Let σ be a relatively compact J-holomorphic curve in M parametrized by
D\{0}. If there exists a neighboorhood U of 0 such that σ U\{0} has finite area, then σ(1)

is relatively compact and there exists a neighboorhood U (1) of 0 such that σ(1)
U(1)\{0}

has finite area.

Proof. We may assume without loss of generality that U is in fact D. Using the Gromov-
Schwarz lemma, we can then show that the differential Tσ of σ is bounded on D1/2 \{0}.
This implies the existence of a compact subset K in [D,M ](0,σ(0)) such that for any
neighbourhood W of K in [D,M ] there exists a neighbourhood V of 0 in D with :

σ(1)(V \ {0}) ⊂W

We choose a metric µ(1) on [D,M ] compatible whith J (1), and view [D,M ](0,σ(0)) as a
submanifold of [D,M ]. Additionaly, we require that the induced metric on [D,M ](0,σ(0))
comes from a scalar product on [D,M ](0,σ(0)). Denote by N the normal bundle of
[D,M ](0,σ(0)), and by expN the restriction of the exponential map of ([D,M ], J (1), µ(1))
to some neighbourood of the zero section of N in N . Together with T [D,M ](0,σ(0)), the
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vector bundle N is also a complex subbundle of T [D,M ] [D,M ](0,σ(0))
since µ(1) is com-

patible with J (1). Hence we can choose an orthonormal complex basis field X1, ..., Xm+1
of sections of N → [D,M ](0,σ(0)) since [D,M ](0,σ(0)) is contractible. Now, identify
([D,M ](0,σ(0)), J

(1)
[D,M ](0,σ(0)) , µ

(1)
[D,M ](0,σ(0))

) with Cm and its standard structures via
the coordinates :

zk = xk + iyk, k = 1, ...,m

We define coordinates ζ1, ..., ζ
2m, η1, ..., η

2m+2 on some neighbourhoodW of K in [D,M ]
in the following way :

ζk ◦ expN (
m+1∑
s=1

(csXs(τ) + esJ
(1)Xs(τ))) = xk(τ)

ζk+m ◦ expN (
m+1∑
s=1

(csXs(τ) + esJ
(1)Xs(τ))) = yk(τ)

ηl ◦ expN (
m+1∑
s=1

(csXs(τ) + esJ
(1)Xs(τ))) = cl

ηl+m+1 ◦ expN (
m+1∑
s=1

(csXs(τ) + esJ
(1)Xs(τ))) = el

for τ in [D,M ](0,σ(0)), k in {1, ...,m} and l in {1, ...,m+1}. Since expN , restricted to the
zero section, is injective, and K is compact, we get coordinates on some neighbourhood
W of K. With respect to these coordinates, we have for any τ in [D,M ](0,σ(0))∩W that
:

∂

∂ηl τ
= Xl(τ) and ∂

∂ηl+m+1
τ

= J (1)Xl(τ)

Let λ be the 1-form on W defined by :

λ =
m∑
k=1

ζkdζ
k+m +

m+1∑
l=1

ηldηl+m+1

Then we have :
dλ(x, J (1)x) = µ(1)(x, x)

for each x in T [D,M ] [D,M ](0,σ(0))
. Since K is compact, there exists a positive constant

C in (0, 1] and a sufficiently small neighbourhood W ′ of K in [D,M ] such that :

dλ(x, J (1)x) ≥ Cµ(1)(x, x)

for each x in TW ′. Moreover, λ is bounded by some constant C(λ) on W ′. Eventually,
Lemma 5 implies the claim.

It is now easy to write a proof of Theorem 6.
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Proof. Under the assumptions of the theorem, we get from the lemmas 6 and 7 that σ
is differentiable at 0 with :

T0σ = σ(1)(0)

Especially, T0σ is complex linear. Applying the lemmas 6 and 7 successively implies that
the n-jets σ(n) of σ are also continuously extensible to 0 and hence the extension σ is
smooth.

3.1.3 Generalized Weierstrass theorem

The purpose of this paragraph is to prove the following generalized Weierstrass the-
orem, and to give an important corollary of it.

Theorem 7 (Generalized Weierstrass theorem). Let (S, j) be a Riemann surface without
boundary. Assume that (σn)n is a sequence of J-holomorphic curves in M parametrized
by S converging in the C0-topology to a map σ from S to M . Then (σn)n converges even
in the C∞-topology and its limit σ is a J-holomorphic curve.

Proof. Let (σn)n and σ be as in the assumptions of the lemma. It is enough to show
that the corresponding sequence of 1-jets (σ(1)

n )n also converges in C0. Choose a metric
ν on S compatible with j. By the C0-convergence of (σn)n there is, for any z in S
and any neighbourhood U of σ(z) in M , a neighbourhood V of z in S such that U
contains σ(V ) for each sufficiently large n. We may assume, without loss of generality,
that V is conformaly equivalent to an open disc. With respect to the Poincaré metric
on V , Tσn is bounded on V independently of n by the Gromov-Schwarz lemma. Now,
choose a metric µ(1) on [S,M ] compatible with J (1). Arguing as in the proof of the last
paragraph, we see that there is a compact subset K of the fibre [S,M ](z,σ(z)) and some
open neighbourhood W of K in [S,M ] with the following properties :

1. There is a bounded 1-form λ on W such that :

dλ(x, J (1)x) ≥ µ(1)(x, x)

for each x in TW

2. For a sufficiently small neighbourhood V ′ of z in S, σ(1)
n (V ′) is contained in V for

each sufficiently large n

Again by Gromov-Schwarz lemma, Tσ(1)
n is bounded on V ′ independently of n. This

implies the claim.

We can now give a proof of the following corollary, which will be usefull in the proof
of Gromov’s compactness theorem.
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Corollary 1. Let D be an open disk in R2. Assume that (µn)n is a sequence of Rieman-
nian metrics on D such that each (D,µn) is isometric to an open subset of H. Suppose
that (µn)n converges in the C∞-topology to a Riemannian metric µ. Denote by jn and j
the complex structures on D induced by µn and µ respectively. Then any C0-convergent
sequence (σn)n of J-holomorphic curves in M , where σn is parametrized by (D, jn),
converges in fact in C∞ to a J-holomorphic curve in M parametrized by (D, j).

Proof. Under the assumptions of the corollary, (D,µ) is also isometric to an open subset
ofH. The statement to be proved is purely local. Fix an arbitrary point z inD and choose
a non-negative constant r such that the exponential map expz od (D,µ) is well defined on
the 3r-ball in (TzD,µz) with center 0. Let (In)n be a sequence of transformations of TzD,
where In is an orientation preserving orthogonal map from (TzD,µz) to (TzD, (µn)z),
converging to the identity and denote by expnz the exponenetial map of (D,µn) at z.
Then, for each sufficiently large n, the map fn defined by :

fn = expnz ◦In ◦ exp−1
z B(z,2r)

is a well defined isometry of the 2r-ball in (D,µ) around z onto the 2r-ball in (D,µn)
around z. This implies that for each sufficiently large n, fn is a jn-biholomorphic curve in
D parametrized by (D, j). Since (µn)n converges in C∞ to µ, (fn)n converges in C∞ to
the inclusion of B(z, 2r) in D. One can show (see [Hum97] Lemma B.2) that (f−1

n B(z,r))
also converges in C∞ to the inclusion of B(z, r) in D. Then the generalized Weierstrass
theorem implies that the sequence (σn ◦ fn)n converges in C∞ to a J-holomorphic curve
σ in M parametrized by (D, j). Hence, (σn B(z,r)) converges in C∞ to σ B(z,r).

3.2 Gromov’s compactness theorem

The purpose of this paragraph is to state and prove the Gromov’s compactness
theorem about pseudo-holomorphic curves. Roughly speaking, this theorem explains
that, given a sequence of pseudo-holomorphic curves of bounded area, some subsequences
of it will certainly converge, but not toward a true pseudo-holomorphic curve. Before
precisely stating this theorem, we give in the first paragraph of this section a compactness
result about hyperbolic Riemann surfaces which will be important in the proof of the
Gromov’s compactness theorem.

3.2.1 Hyperbolic Riemann surfaces

As observed before, J-holomorphic curves can be viewed as parametrized surfaces on
which J induces a complex structure. In this paragraph, we give some results (without
proof) about the geometry of the "non-exceptional" Riemann surfaces which will be
usefull in the proof of the Gromov’s compactness theorem.

According to the uniformization theorem, every simply connected Riemann surface
without boundary is conformally equivalent either to C, to the Poincaré half-plane H or
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to the Riemann sphere S2. Hence, the universal cover of a connected Riemann surface
without boundary is conformally equivalent either to C, H or S2. One can show that the
connected Riemann surfaces without boundary not covered by H are, up to conformal
equivalences, S2, C, C/Z and C/Z ⊕ τZ with non-negative Im(τ). These Riemann
surfaces are said to be of exceptional type. For the rest of the Riemann surfaces, we
have the following result (see [Hum97], Corollary I.4.2 for a proof), which is the raison
d’etre of this paragraph.

Proposition 7. If (S, j) is a Riemann surface without boundary and with all its con-
nected components of non-exceptional type, then there exists a unique complete metric ν
on S, called the Poincaré metric of S, compatible with j and such that (S, ν) is a hyper-
bolic surface, i.e such that (S, ν) and H are locally isometric. Such Riemann surfaces
will be called hyberbolic Riemann surfaces.

Consider a connected and closed Riemann surface (S, j) of genus g. By removing d
open disks and p points from S, we obtain a connected Riemann surface (S∗, j) which is
certainly not of exceptional type (except when 2g + d+ p is smaller than 2). According
to the previous theorem, there exists a (unique) complete hyperbolic structure ν on S∗
compatible with j. Thus, we are lead to study a hyperbolic Riemann surface (S∗, j, ν)
where S∗ is obtained from a surface S of genus g by removing p points and d open disks :
such surfaces are called hyperbolic Riemann surfaces of signature (g, d, p). We first give
an important result (see [Hum97] Lemma IV.4.1 for a proof) about the simple closed
geodesics of length smaller than 2 arcsinh(1) in hyperbolic Riemann surfaces of signature
(g, 0, p).

Proposition 8. Let (S∗, j, ν) be a hyperbolic Riemann surface of signature (g, 0, p)
and of finite area. Then the simple closed geodesics in (S∗, ν) of length smaller than
2 arcsinh(1) are pairwise disjoint, and their number is bounded by a constant depending
only on g and p.

Now, we state a compactness property of the hyperbolic Riemann surfaces of given
signature. In order to do that, we define a notion of convergence for Riemann surfaces
provided with compatible metrics.

Definition. Let S1 and S be two smooth surfaces. A deformation of S1 onto S is a
continuous surjective map from the closure of S1 to the closure of S with the following
properties :

1. φ induces a bijective map between the boundary components of S1 and those of S

2. The restriction of φ to S1 \ ∂S1 is a diffeomorphism onto S \ ∂S ; we denote by
φ−1
n its inverse map

Now we say that a sequence (Sn, jn, νn)n of Riemann surfaces with compatible metrics
converges to (S, j, ν) via a sequence (φn)n if the following hold :
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1. For each n, φn is a deformation of Sn onto S

2. ((φ−1
n )∗jn)n converges in the C∞-topology to j

3. ((φ−1
n )∗νn)n converges in the C∞-topology to ν

We can now state the theorem (of which a proof can be found in [Hum97] Proposition
IV.5.1) about the compactness of the hyperbolic Riemann surfaces of given signature.

Theorem 8. Let (S∗n, jn, νn)n be a sequence of Riemann hyperbolic surfaces of signature
(g, d, p) and of finite area. Then some subsequence of (S∗n, jn, νn)n converges to a hyper-
bolic Riemann surface of signature (g, p+p0, d−p0) (via some sequence (φn)n, where p0
is an integer smaller than d.

3.2.2 Statement and proof

In order to state Gromov’s compactness theorem, we have to give some more defini-
tions. Let S be a closed surface, and let (γi)i∈I be a possibly empty family of finetely
many smooth simple closed and pairwise disjoint loops in S. Let Ŝ be the surface ob-
tained from S \ ∪i∈Iγi by the one-point compactification at each end. For each k in I,
we denote by z′k and z′′k the two points of Ŝ added to S \ ∪iγi at the two ends which
arise from removing γk ; identifying z′k and z′′k , we obtain a compact topological space
S̃. We denote by π the canonical projection of Ŝ in S̃, and by si(S̃) the set of singular
points of S̃ defined by :

si(S̃) = {π(z′k) | k ∈ I}

In the following, we may identify Ŝ \ {z′k, z′′k | k ∈ I} and S̃ \ si(S̃). Besides, we will say
that (S̃, j̃) is a singular Riemann surface if j̃ is a complex structure on Ŝ ; this allows
us to define the curves toward which some sequences of pseudo-holomorphic curves are
going to converge.

Definition (Cusp curve). A cusp curve in (M,J) is a continuous map σ̃ from a singular
Riemann surface (S̃, j̃) to (M,J) such that σ̃ ◦ π is J-holomorphic, where π denotes the
canonical projection of Ŝ in S̃.

Now, we need to define what it means for a sequence of pseudo-holomorphic curves
to converge to a cusp curve.

Definition. Let S be a closed surface, and assume that (σn)n is a sequence of J-
holomorphic curves in M parametrized by (S, jn), where jn is a complex structure on S.
Then (σn)n is said to converge weakly to a cusp curve σ̃ parametrized by (S̃, j̃) if there
exists a sequence (φn)n with the following properties :

1. For each n, φn is a deformation of S onto S̃

2. (σn ◦ φ−1
n )n converges uniformly and in C∞ to σ̃ S̃\si(S̃)
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If the weak limit of a sequence of closed J-holomorphic curves is not unique, we still
have the important following result (see [Hum97] Proposition V.1.1 for a proof).

Proposition 9. If σ̃1 and σ̃2 are two weak limits of one sequence (σn)n of closed J-
holomorphic curves, then the images of σ̃1 and σ̃2 coincide.

We are now able to state the Gromov’s compactness theorem.

Theorem 9 (Gromov’s compactness theorem). Let S be a closed surface and (jn)n a
sequence of complex structures on S. Assume that (σn)n is a sequence of J-holomorphic
curves in M of bounded area, where σn is parametrized by (S, jn). Then there exists a
subsequence of (σn)n which converges weakly to some cusp curve σ̃ in M parametrized
by a singular Riemann surface (S̃, j̃).

The proof that we are going to give uses almost all the previous results of this part,
together with the properties of the hyperbolic surfaces assumed in the first paragraph of
this section. Nethertheless, in order this proof to be complete, we need to state one more
(important) lemma (see [Hum97] Corollary V.2.4 for a proof). In the following, we will
only consider J-holomorphic curves in M whose areas are bounded by some constant C
fixed from now on.

Lemma 8. There exists an integer K and a constant D such that the following holds.
For any closed J-holomorphic curve σ in M parametrized by a Riemann surface (S, j)
and of area bounded by C, there exists a finite subset F of S whose cardinality is bounded
by K and such that Tσ is bounded by D on the space S∗ defined by :

S∗ = S \ F

with respect to its Poincaré metric (see Proposition 7).

We are now able to write a correct proof of the Gromov’s compactness theorem.

Proof. Let S be a closed surface and (jn)n a sequence of almost complex structures on
S. Assume that (σn)n is a sequence of J-holomorphic curves in M of bounded area,
where σn is parametrized by (S, jn).

Using Lemma 8, choose for each n a finite subset Fn of S such that σn S∗n
has a

Lipschitz constant independent of n with respect to the Poincaré metric νn on S∗n, where
S∗n stands for S \Fn, and such that the cardinality of Fn is bounded independently of n.
After passing to some subsequence of (σn)n, again denoted by (σn)n, we may assume that
the cardinality of Fn is independent of n, and we will denote it by p. Thus, (S∗n, jn, νn)n
is a sequence of hyperbolic Riemann surfaces of finite area and of same signature (g, 0, p),
where g is the genus of S. By Proposition 8, the simple closed geodesics (γin)i in (S∗n, νn)
of length smaller than 2 arcsinh(1) are pairwise disjoint and their number is bounded
by some constant depending only on g and p. After passing to a further subsequence,
we can suppose that their number is independent of n, and that for each n there exists
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an orientation preserving diffeomorphism χn from S∗1 to S∗n mapping each γi1 onto γin.
Moreover, it can be assumed that the sequences (l(γin))n converge. Let I denote the
subset of indices i such that (l(γin))n converges to 0. As above, a singular surface S̃ is
obtained by collapsing the loops (γi1)i∈I in S. Using Theorem 8, we can show that there
exists a subsequence of (Sn)n again denoted by (Sn)n, a complex structure j̃ on Ŝ, a
finite subset F of S̃ \ si(S̃), and a sequence (φn)n such that the following hold :

1. (S∗n \ ∪i∈Iγi1, jn S∗n\∪i∈Iγi1
, νn S∗n\∪i∈Iγi1

)n converges to (S̃∗ \ si(S̃), j̃ S̃∗\si(S̃), ν̃) via
(φn)n, where S̃∗ stands for S̃ \ F , and ν̃ is the Poincaré metric on S̃∗ \ si(S̃)

2. For each n, φn maps bijectively Fn onto F

Namely, the subsequence of (Sn)n, j̃, F and (φn)n are obtained in the following way.
For each n, denote by S1

n,...,S
|I|+1
n the closures of the components of S∗n \ ∪i∈Iγin in S∗n.

We may assume that, for each n and k, χn maps Sk1 onto Skn. Then for each k, (Skn)n is
a sequence of Riemann hyperbolic surfaces of finite area and of same signature, so that
we can apply Theorem 8 for each k to the original sequence (Skn)n, passing successively
to subsequences.

So let (σn)n be the corresponding subsequence. By Lemma 8, and since (φ−1
n )∗νn

converges in C∞ to the Poincaré metric ν̃ on S̃∗ \ si(S̃), the maps σn ◦ φ−1
n S̃∗\si(S̃) are

uniformly (with respect to n) Lipschitz on each compact subset in the domain. Since M
is compact, some subsequence of (σn ◦ φ−1

n S̃∗\si(S̃))n, again denoted (σn ◦ φ−1
n S̃∗\si(S̃))n,

converges in C0 to a continuous map σ̃ by Ascoli’s theorem. Since (φ−1
n )∗jn converges in

C∞ on S̃∗\si(S̃), Corollary 1 implies that (σn ◦ φ−1
n S̃∗\si(S̃))n converges in C∞ to σ̃, and

thus σ̃ is a J-holomorphic curve in M parametrized by (S̃∗ \ si(S̃), j̃ S̃∗\si(S̃)). Observe
that, for each n, σn S∗n\∪i∈Iγi1

∗µ is a Riemannian structure on S∗n \ ∪i∈Iγi1 compatible
with jn S∗n\∪i∈Iγi1

and that σ̃ S̃∗\si(S̃)
∗µ is a ν̃-compatible metric on S̃∗ \ si(S̃). Hence, by

Proposition 7, we have that :

σn S∗n\∪i∈Iγi1
∗µ = νn S∗n\∪i∈Iγi1

and σ̃ S̃∗\si(S̃)
∗µ = ν̃

Using this together with the convergence of ((φ−1
n )∗νn S∗n\∪i∈Iγi1

)n to ν̃, one can show
that the sequence (A(σn ◦ φ−1

n ))n converges to the area of σ̃. Since (σn)n is a sequence
of curves of bounded area, this implies that the area of σ̃ is finite. By Theorem 6, σ̃ can
be extended to a J-holomorphic curve in M parametrized by Ŝ. To conclude the proof
of the theorem, we have to show that :

1. σ̃ is compatible with the projection π of Ŝ in S̃, so that it can be viewed as a cusp
curve in M parametrized by (S̃, j̃)

2. (σn ◦ φ−1
n )n converges uniformly and in C∞ to σ̃ S̃\si(S̃)

To prove 1 we argue indirectly. Assume that there exists a singular point z in S̃ such
that σ̃(z′) and σ̃(z′′) are different for the preimages z′ and z′′ of z under π. Let ε0 and
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CM be some constants as in the monotocity lemma. Denote by ρ the constant defined
by :

ρ = min(ε0,
1
4d(σ̃(z′), ˜σ(z′′)))

Then choose compact and connected neighbourhoods V ′ and V ′′ of z′ and z′′ respectively
such that :

σ̃(V ′) ⊂ B(σ̃(z′), ρ) and σ̃(V ′′) ⊂ B(σ̃(z′′), ρ)

Denote by V the open subset of S̃ \ si(S̃) defined by :

V = π(V ′ ∪ V ′′) \ {z}

After possibly making V ′ and V ′′ smaller, we may assume that :

A(σn φ−1
n (V )) < CMρ

2

for each n. Since (σn ◦ φ−1
n S̃∗\si(S̃))n converges in C0, we have that :

∂σn φ−1
n (V ) ⊂ B(σ̃(z′), ρ) ∪B(σ̃(z′′), ρ)

for each sufficiently large n. Hence the previous inequality contradicts the monotocity
lemma, and 1 is proved.

To prove 2, we also argue indirectly. Assume that (σn ◦ φ−1
n )n does not converge

uniformly to σ̃ S̃\si(S̃). Since we already know that (σn ◦ φ−1
n )n converges in C0 on

S̃∗ \ si(S̃), there exists some z0 in F ∪ si(S̃), some sequence (zk)k in S̃ \ si(S̃) converging
to z0, and some subsequence (σnk ◦ φ−1

nk
)k of (σn ◦ φ−1

n )n such that :

d(σnk ◦ φ
−1
nk

(zk), σ̃(zk) > ε

for some ε in (0, ε0) and all k. Now pick some compact neighbourhood V of z0 in S̃ such
that :

∂V ∩ (F ∪ si(S̃)) = ∅

σ̃(V ) ⊂ B(σ̃(z0), ε4)

A(σ̃ V ) < CM ( ε4)2

On the other hand, by the C0-convergence of (σn ◦ φ−1
n )n to σ̃ on S̃∗ \ si(S̃), and the

non-uniform convergence, we have that :

σnk ◦ φ
−1
nk

(zk) /∈ B(σ̃(z0), ε2)

σnk ◦ φ
−1
nk

(∂V ) ⊂ B(σ̃(z0), ε4)

for all sufficiently large k. It follows from the monotocity lemma that :

A(σnk φ−1
nk

(V )) > CM ( ε4)2
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and this leads to a contradiction since (A(σnk φ−1
nk

(V )))k converges to A(σ̃ V ). Hence,
(σn ◦φ−1

n )n converges uniformly to σ̃ S̃\si(S̃). Finally, the convergence in C∞ is obtained
by applying the generalized Weierstrass theorem.

Before ending this paragraph, we make the following remark.

Remark. Assume (Jn)n is a sequence of almost complex structures on M converging
in C∞ to J . Then the compactness theorem generalizes to sequences (σn)n of pseudo-
holomorphic curves in M of bounded area, where σn is a Jn-holomorphic curve. Any
limit cusp curve is J-holomorphic where the definition of weak convergence generalizes
in the obvious way.
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4 Pseudo-holomorphic curves in symplectic geometry

The aim of this part is to study the universal moduli spaces of pseudo-holomorphic
curves, and especially to show that a symplectic context gives to some of these spaces
compactness properties. Moreover, we will show in the last section of this work how the
pseudo-holomorphic curves can be used to get important results in symplectic geometry.

In the following, we shall only consider pseudo-holomorphic curves parametrized by
the 2-sphere S2.

4.1 Universal moduli spaces

The purpose of this section is to study a universal moduli space of pseudo-holomorphic
curves through the properties of an evaluation map defined on the product of this uni-
versal moduli space by S2. To that purpose, we fix a compact manifold M without
boundary, a homology class A in M and a Banach manifold J of almost complex struc-
tures on M .

4.1.1 First results

Roughly speaking, the universal moduli space that we are going to study is the space
M(A,J ) defined by :

M(A,J ) = {(J, σ) ∈ J × Σ | σ is J-holomorphic}

where Σ is the space of all smooth maps from S2 toM representing the homology class A.
However, for the following results to be true, we have to slightly modify this universal
moduli space so that it becomes a Banach manifold. Here, we briefly describe what
should be done, and refer to [SM95] for details. We may assume that M is embedeed
into RN for a sufficiently large integer N . For p strictly greater than 2, the Sobolev space
W 1,p(S2,RN) is the completion of C∞(S2,RN ) with respect to the norm ‖.‖1,p defined
for σ in C∞(S2,RN ) by :

‖σ‖1,p = (
∫
S2

(|σ|p + |Tσ|p)α)
1
p

where α is an area form on S2 induced by some given Riemannian metric on S2. One
can show that the normed vector space (W 1,p(S2,RN), ‖.‖1,p) is a Banach space which
embeds naturally into C0(S2,RN ). We denote by Σp the subspace of W 1,p(S2,RN)
defined by :

Σp = {σ ∈W 1,p(S2,RN) | σ(S2) ⊂M and [σ] = A}

where [σ] denotes the element of H2(M) represented by σ. It can be shown that Σp is
a Banach manifold for p strictly greater than 2, and that the corresponding universal
moduli space, again denoted byM(A,J ), is a Banach manifold (this result is also stated
in [Hum97] Proposition VI.3.7).
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The evaluation map about which we are going to state (and sometimes prove) im-
portant results is the map ev defined by :

ev((J, σ), z) = (J, σ(z))

for (J, σ) in M(A,J ) and z in S2. Its first remarkable properties are sum up in the
following theorem (see [Hum97] Lemma IV.4.3 and more generally [SM95] for a proof).

Theorem 10. The set of regular values of ev is dense in J × S2, and all its elements
are attained by ev.

4.1.2 Symplectic context

In this paragraph, we assume that M is provided with a symplectic structure ω.
Unfortunately, the space Jc of almost complex structures onM compatible with ω is not
a Banach manifold, but there exists a subset J of Jc which is dense in the C∞ topology
and which can be given the structure of a Banach manifold such that the inclusion of J
in Jc is continuous (see the discussion below Proposition VI.3.5 in [Hum97]).

Denote by G the group of the conformal transformations of S2, and observe that
there is an action of G onM(A,J )× S2 given by :

g ∗ ((J, σ), z) = ((J, σ ◦ g−1), g(z))

If ((J, σ), z) is an element ofM(A,J )×S2, we will denote by [((J, σ), z)] the correspond-
ing element in the quotient spaceM(A,J )×G S2. Now observe that ev factors through
the previous action, and denote by ēv the corresponding map defined onM(A,J )×GS2.
The purpose of this paragraph is to state and prove a compactness property of ēv, but
in order to do that we shall give one more definition.

Definition (Spherical homology class). An element B of H2(M) is said to be a spherical
homology class in M if there exists a family (ni)i of integers and a family (σi)i of smooth
maps from S2 to M such that :

B =
∑
i

ni[σi]

We can now state and prove the following theorem, which can be viewed as a corollary
of Gromov’s compactness theorem.

Theorem 11. If 〈[ω], A〉 is the smallest positive value of 〈[ω], .〉 on spherical homological
classes inM , then the following holds. If ([(Jn, σn), zn])n is a sequence inM(A,J )×GS2

whose image by ēv has a convergent subsequence in J ×S2, then it admits a convergent
subsequence itself.

Proof. Assume that 〈[ω], A〉 is the smallest positive value of 〈[ω], .〉 on spherical homo-
logical classes in M , and let ([(Jn, σn), zn])n be as in the assumption of the theorem.
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After passing to a subsequence, we may assume that (Jn)n converges to some J̃ in J
and (zn)n to some z in S2. The claim is that there is a sequence (gn)n in G such that
(σn ◦ gn)n has a uniformly convergent subsequence. Since each σn represents A and Jn
is ω-compatible, the area of σn equals 〈[ω], A〉. Thus, the sequence (σn)n has bounded
area. Gromov’s compactness theorem implies that, after passing to a subsequence, (σn)n
converges weakly to a J̃-cusp curve σ̃ in M parametrized by a singular Riemann surface
(S̃2, j̃) (see the remark at the end of the paragraph 3.2.2). Denote by S1,..., Sk the
different components of S̃2 on which σ̃ is not constant. Clearly, each Si is a sphere. If k
is strictly greater than 1 then we have :

0 < 〈[ω], [σ̃ Si ]〉 = A(σ̃ Si) < A(σ̃) = 〈[ω], A〉

in contradiction to the fact that 〈[ω], A〉 is the smallest positive value of 〈[ω], .〉 on spher-
ical homological classes in M . Hence k equals 1 and we may assume that (S̃, j̃) equals
(S, j). By the definition of weak convergence, there is a sequence of diffeomorphisms
(φn)n of S2 such that ((φ−1

n )∗j)n converges in C∞ to j and (σn ◦ φ−1
n )n converges uni-

formly to σ̃. Choose now three points z1, z2 and z3 in S2 and let, for each n, ψn be
the unique biholomorphic transformation from (S2, j) to (S2, (φ−1

n )∗j) such that ψn(zi)
equals zi for each i. For each n, denote by gn the transformation of S2 defined by :

gn = φ−1
n ◦ ψn

and observe that gn is in G. Applying the compactness theorem, it is readily seen that
(ψn)n converges uniformly to the identity and thus (σn ◦ gn)n converges uniformly to
σ̃.

This theorem allows us to prove the following result, which will be crucial to get a
non-trivial symplectic invariant.

Corollary 2. If 〈[ω], A〉 is the smallest positive value of 〈[ω], .〉 on spherical homological
classes in M , then ēv is a surjective map.

Proof. Assume that 〈[ω], A〉 is the smallest positive value of 〈[ω], .〉 on spherical homo-
logical classes in M , and let (J, z) be an element of J × S2. By Theorem 10, there
exists a sequence ((Jn, σn), zn)n inM(A,J )×S2 whose image by ev converges to (J, z).
Thus, the image by ēv of the sequence ([(Jn, σn), zn])n is convergent. By Theorem 11,
([(Jn, σn), zn])n has a convergent subsequence, and by continuity of ēv the image by ēv
of the limit of this subsequence is precisely (J, z).

4.2 Symplectic consequences

The aim of this section is to show how the results given in the previous paragraph
about the universal moduli spaces in a symplectic context can be used to prove a funda-
mental theorem of symplectic geometry, and then to get a global non-trivial symplectic
invariant.
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4.2.1 Non-squeezing theorem

The purpose of this paragraph is to prove the following generalized version of the
non-squeezing theorem stated in 2.2.1.

Theorem 12 (Generalized non-squeezing theorem). Let (M1, ω1) be a symplectic man-
ifold without boundary of dimension (m − 2) and assume that its second fundamental
group is trivial. If there exists a symplectic embedding of Bm(r) into the symplectic
product M1 ×B2(R), then :

r ≤ R

Proof. Let (M1, ω1) be as in the assumption of the theorem and assume that there exists
a symplectic embedding of Bm(r) intoM1×B2(R) We choose ε in (0, r) and a symplectic
structure ω2 on S2 such that the area of S2 with respect to ω2 equals (πR2 + ε). Since
the area of B2(R) equals πR2, we can view B2(R) as a subset of S2 via a symplectic (i.e
area preserving) embedding. Hence, there is a symplectic embedding φ of Bm(r) into
the symplectic manifold (M,ω) defined by :

(M,ω) = (M1 × S2, ω1 ⊕ ω2)

In the following we denote by A the homology class in M represented by a standard
inclusion of S2 in M .

To continue the proof, we have to show that there exists an ω-compatible almost
complex structure J on M such that :

φ∗J φ(Bm(r−ε)) = J0 Bm(r−ε)

where J0 is the standard complex structure on Rm. To that end, use a partition of unity
argument in order to construct a Riemannian metric µ on M such that :

φ∗µ φ(Bm(r−ε)) = µ0 Bm(r−ε)

and use the construction from Proposition 3 to get an almost complex structure J on
M from the data of ω and µ.

Now observe that the triviality of the second fundamental group of M1 implies that
〈[ω], A〉 is the smallest positive value of 〈[ω], .〉 on spherical homological classes in M .
By Corollary 2, we can thus choose a J-holomorphic curve σ in M parametrized by S2,
representing A and containing φ(0) in its image ((J, φ(0)) is attained by ev). We claim
that :

π(r − ε)2 ≤ A(σ ∩ φ(Bm(r − ε)))

To that end, note that the subspace φ(Bm(r − ε)) of (M,ω, J, µ) is holomorphically
isometric to the Euclidean ball Bm(r − ε) of (Rm, J0, µ0) by the choice of J and with
µ the Riemannian metric on M induced by J and ω. In particular, for each compact
surface S in S2 with boundary and wose image by σ is contained in Bm(r − ε), the
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J-holomorphic curve σ S is absolutely area minimizing among all smooth maps τ from
S to Bm(r− ε) with same boundary than σ S (see Proposition 5). Observe also that the
image of σ is not contained in φ(Bm(r−ε)) for otherwise σ would be constant. Then the
inequality claimed is the classical monotocity lemma for minimal surfaces in Euclidean
space and its proof can be easily recovered from the arguments given in 3.1.1. Indeed,
in order to show that the statement of the monotocity lemma holds when CM equals π
and when ε0 equals∞, just copy the proof of the monotocity lemma but use the classical
isoperimetric inequality instead of Lemma 2.

In order to prove now that r is smaller than R, continue the inequality claimed as
follow :

π(r − ε)2 ≤ A(σ ∩ φ(Bm(r − ε))) < A(σ) = 〈[ω], [σ]〉 = 〈[ω], A〉 =
∫
S2
ω2 = πR2 + ε

where the first and second equality follow from the fact that σ is J-holomorphic with
ω-compatible J and that σ represents A respectively. Since this inequality is true for
each ε in (0, r), it follows easily that :

r ≤ R

and this concludes the proof.

4.2.2 Gromov width

The purpose of this paragraph is to show how the non-squeezing theorem proved
in the previous paragraph allows us to give a non trivial symplectic invariant. More
precisely, we are going to build what we call a symplectic capacity.

Definition (Symplectic capacity). A symplectic capacity is a functor c which assigns
to every symplectic manifold (M,ω) a non-negative number (possibly infinite) c(M,ω)
such that :

1. If there is a symplectic embeeding from (M1, ω1) to (M2, ω2) with M1 and M2 of
same dimension, then :

c(M1, ω1) ≤ c(M2, ω2)

2. For any symplectic manifold (M,ω) and any λ in R :

c(M,λω) = λc(M,ω)

3. c is a non-trivial 2-dimensional invariant :

c(B2n(1), ω0) > 0 and c(Z2n(1), ω0) < 0

A priori, it is not at all clear that such invariants exist. The one that we are going
to build is closely linked to the non-squeezing theorem, and is usually called Gromov
width.
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Definition (Gromov width). The Gromov width of a symplectic manifold (M,ω) is the
number wG(M,ω) defined by :

wG(M,ω) = sup({πr2 | B2n(r) embeds symplectically in M})

Then, the aim of this section is to prove the following theorem.

Theorem 13. The Gromov width wG is a symplectic capacity such that :

wG(B2n(1), ω0) = wG(Z2n(1), ω0) = π

Proof. The Gromov width clearly satisfies the first and second axioms of a symplectic
capacity, and satisfies the third one by the non-squeezing theorem.

37



References

[Gro85] Mikhail Gromov. Pseudo holomorphic curves in symplectic manifolds. Inven-
tiones Mathematicae, 1985.

[Hum97] Christoph Hummel. Gromov’s Compactness Theorem for Pseudo-Holomorphic
Curves. Birkhäuser Verlag, 1997.

[SM95] Dietmar Salamon and Dusa McDuff. J-holomorphic Curves and Quantum
Cohomology. AMS, 1995.

[SM98] Dietmar Salamon and Dusa McDuff. Introduction to Symplectic Topology.
Clarendon Press Oxford, 1998.

38


