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Introduction

�is internship report focuses on some geometrical aspects of partial di�erential equations
(PDEs). Speci�cally, we studied the stability of a travelling wave in a steady medium, de-
scribed as a solution of a reaction-di�usion equation. �is problem is of particular interest in
the case of initial condition uncertainty, brought by measurement errors for example. A broad
question tackled in geophysics – e.g., climate prediction – is can a li�le initial condition error
bring a huge error when propagating through an equation ? �is question motivates the work
presented in this report.

�e initial reaction-di�usion equation is

∂tU = ∂xxU + f(U) (1)

with f smooth but not linear, U ∈ Cn, x ∈ R and t ∈ R.
In this report, we will assume the existence of a travelling wave, solution of (1), and the goal
is to know how this solution is stable or unstable. Travelling waves appear naturally in many
various domains in physics such as �uid mechanics, electromagnetic theory…
Intuitively, a travelling wave is a recognizable shape (of energy for instance) which is trans-
ferred from one part of the medium to another part with a constant speed of propagation.
Mathematically, a travelling wave is a solution of a PDE of the form u(x, t) = f(x − ct). At
the time t = 0, the wave has the spatial form f(x) and then, at the time t > 0, f(x − ct) is a
translation of the initial shape, translated to the right (if c > 0) by ct spatial units. �us the
constant c represents the speed of the wave.
Firstly we will announce a clear de�nition of the problem, then we will present the geometric
tools and �nally we will show how this tools can be used to solve our problem. Some numer-
ical results will be also presented.
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Chapter 1

Introduction to the problem :

1.1 De�nitions and hypotheses :

We have an equation
∂tU = ∂xxU + f(U) (1.1)

where U(t, x) ∈ Cn; x, t ∈ R and f is a C2 function with derivative through order 2 bounded
on Cn.
From now, we assume that there is a travelling wave solution U∗(ξ).

De�nition 1.1. We call travelling wave a solution u of equation (1.1) which depends only on
one variable ξ = x− ct with c ∈ R and we further require it to decay exponentially to constant
states lim

ξ→±∞
u(ξ) = u± where f(u±) = 0 and lim

ξ→±∞
u′(ξ) = 0 exponentially.

�ese conditions are developed in the following hypotheses : our considered travelling
wave U∗ satis�es the following hypothesis :

Hypothesis 1. �ere exists C, a > 0 and u± ∈ Cn such that :

1. f(u±) = 0,

2. ∀ξ > 0, |U∗(ξ)− u+| ≤ Ce−aξ ,

3. ∀ξ < 0, |U∗(ξ)− u−| ≤ Ceaξ ,

4. ∀ξ ∈ R, |U ′∗(ξ)| ≤ Ce−a|ξ|.

Let us transform the equation (1.1) about the travelling wave : U∗(ξ) satis�es the equation
(called moving equation) :

U ′′ + cU ′ + f(U) = 0 (1.2)

Indeed, if we write U∗(ξ) = U∗(x− ct) = V (x, t) then

∂tV (x, t) = ∂xxV (x, t) + f (V (x, t))⇔ −cU ′∗(x− ct) = U ′′∗ (x− ct) + f (U∗(x− ct))
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1.2. THE EIGENVALUE PROBLEM :

And we can write it as

ϕ(U∗) = 0 where : ϕ(u) = u′′ + cu′ + f(u) (1.3)

As usual, to see how U∗ is stable, we will di�erentiate ϕ at the point U∗ and look at the di�er-
ential and more precisely look at the sign of its eigenvalues’ real part.
Let B(R,Cn) be the set of all bounded and uniformly continuous function from R to Cn, with
the L∞ norm. �en we will consider ϕ : B(R,Cn) −→ B(R,Cn). But before doing this, let us
de�ne clearly what a stable travelling wave does mean :

De�nition 1.2. A travelling wave U∗ is said to be asymptotically stable regarding (1.2) if there
is a neighborhood U ofU∗ in (B(R,Cn), ‖.‖∞) such that ifU0 ∈ U andU(ξ, t) satis�es (1.2) with
the condition U(ξ, 0) = U0(ξ), then asymptotically, U is a translation of the travelling wave, i.e.,
there exists r ∈ R for which :

lim
t→∞
‖U(ξ, t)− U∗(ξ + r)‖∞ = 0

1.2 �e eigenvalue problem :

Let us di�erentiate the operator ϕ, according to the Fréchet derivative :

De�nition 1.3. Let V and W be Banach spaces, and U ⊂ V be an open subset of V. A function
Φ : U −→ W is called Fréchet di�erentiable at x ∈ U if there exists a bounded linear operator
L : V −→ W such that

lim
‖h‖V→0

‖Φ(x+ h)− Φ(x)− L(h)‖W
‖h‖V

= 0

In our case, V = W = B(R,Cn) and Φ = ϕ. Let p ∈ B(R,Cn) be a function and ξ ∈ R.
�en, because f is di�erentiable with Jacobian denoted F :

(
ϕ (U∗ + p)

)
(ξ) = (U∗ + p)′′(ξ) + c(U∗ + p)′(ξ) + f

(
(U∗ + p)(ξ)

)

= U ′′∗ (ξ) + p′′(ξ) + cU ′∗(ξ) + cp′(ξ) + f
(
U∗(ξ) + p(ξ)

)

= U ′′∗ (ξ) + p′′(ξ) + cU ′∗(ξ) + cp′(ξ) + f
(
U∗(ξ)

)
+ F (U∗(ξ)) · p(ξ) + o(p(ξ))

=
(
ϕ(U∗)

)
(ξ) +

(
p′′ + cp′ + F (U∗) · p︸ ︷︷ ︸

L(p):=Dϕ(U∗)·p

)
(ξ) + o (‖p‖∞)

�is calculation de�nes the Fréchet derivative of ϕ at the point U∗ as the linear operator L :

L : B(R,Cn) −→ B(R,Cn)

p 7−→ p′′ + cp′ + F (U∗) · p
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1.2. THE EIGENVALUE PROBLEM :

To determine if our travelling wave is asymptotically stable, we will use this very useful propo-
sition, which make a link between the stability ofU∗ and its di�erentialL. For the proof, please
see Alexander, Gardner and Jones [1] and Bates and Jones [2]:

Proposition 1.1. If σ(L) satis�es the following properties :

1. 0 is a simple eigenvalue.

2. there is β < 0 such that σ(L)\{0} ⊂ {λ : Re(λ) < β}

�en U∗ is asymptotically stable.

Because of this proposition, we will be interested in the spectrum of L and consider the
eigenvalue problem for L :

(L − λ Id)p = 0 i� p′′ + cp′ + F (U∗) · p = λp (1.4)

Which is a linear ODE : write Y =

(
p

p′

)
and the equation becomes :

Y ′(ξ) =

(
0n In

λIn − F (U∗(ξ)) −cIn

)

︸ ︷︷ ︸
:=A(λ,ξ)

Y (ξ) (1.5)

Moreover, as ξ −→ ±∞, the matrix A(λ, ξ) tends to A±(λ) :=

(
0n In

λIn − F (u±) −cIn

)
(well

de�ned thanks to hypotheses 1).
We want to consider the asymptotic, autonomous system Y ′ = A±(λ)Y , from which we will
have a straightforward solution : let us compactify the system : let τ be, for 0 < κ < a

2
(where

a is de�ned in hypothesis 1):

τ(ξ) :=
e2κξ − 1

e2κξ + 1
∈ (−1, 1)

�us, problem (1.5) becomes :



Y ′ = A(λ, τ)Y

τ ′ = κ(1− τ 2)
where A(λ, τ) =




A(λ, ξ(τ)) for τ 6= ±1

A±(λ) for τ = ± 1
(1.6)

From this expression of the equation, we have a solution for the asymptotic, autonomous
systems : (

Y = exp
(
A±(λ)ξ

)
Y0, τ = ±1

)

So we have now two �xed points of the systems, with which we will construct the stable and
unstable manifolds.
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1.3. THE UNSTABLE MANIFOLDS AND THE BUNDLE STRUCTURE :

�e main goal is to know if λ is an eigenvalue of L. And we will search some eigenvalue in a
domain Ω which satis�es this property :

De�nition 1.4. �e system is said to split into a domain Ω ⊂ C if there exists a k ∈ N with
0 < k < n such as for every λ ∈ Ω, the spectrum of A±(λ) does not contain 0 but contains
exactly n−k eigenvalues with negative real part and k eigenvalues with positive real part (count
with multiplicities).

Tanks to this property and with geometric tools, we will draw a contour λ(s) ⊂ Ω and be
able to count the total multiplicity of the eigenvalues encircled by λ(s).

1.3 �e unstable manifolds and the bundle structure :

Let K ⊂ Ω be a contour, a simple closed curve, describing a path for the spectral parameter
λ. Assume K does not intersect the spectrum of L and is parametrized by a smooth map
λ : [0, 1] −→ K . �enK×{τ ∈ [−1, 1]} is homeomorphic to a cylinder. LetK◦ be the region
enclosed by K , homeomorphic to the disk.
Finally, let M := K × {τ ∈ [−1, 1]} ∪K◦ × {τ ∈ {−1, 1}} be homeomorphic to the sphere
S2 (see �gure 1.3).

K
K

K◦

K◦

τ ∈ [−1, 1]

Figure 1.1: �e set M, homeomorphic to the sphere S2.

Now we will de�ne a bundle structure aboveM . For the de�nition of a �bre bundle, please
see John M.Lee [3] or the chapter 2.

De�nition 1.5. For each point (λ0, τ0) ∈M , the unstable manifold of the critical point (0,−1) ∈
Cn× [−1, 1] at the point (λ0, τ0) is de�ned by the set of initial data which are transported by the
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1.3. THE UNSTABLE MANIFOLDS AND THE BUNDLE STRUCTURE :

�ow to 0 exponentially in backward time. Formally, it is this set :

W u(λ0, τ0) :=

{
Y ∈ Cn such that lim

ξ→−∞
Φλ0

(Y,τ0)(ξ) = 0

}

where Φ de�ned the �ow of the equation (1.6), i.e. Φλ0
(Y,τ0)(ξ) ∈ Cn is the solution of Z ′ =

A(λ0, τ(ξ))Z at the point ξ with initial data Z(ξ(τ0)) = Y .
We can also de�ne an stable manifold of the critical point (0,+1) as the set of initial data which
are transported by the �ow at 0 exponentially in forward time.

Remark 1.6. O�en, for a vector Y ∈ W u(λ, τ(ξ)), we will no make notation di�erentiation
between the vector Y and the �ow : we will keep (abusively) the notation Y to design the function,
solution of (1.6) with initial condition Z(ξ(τ)) = Y .

Proposition 1.2. For each (λ0, τ0) ∈ M , the unstable manifold W u(λ0, τ0) is a vector space
over C.

Proof. Let Y1, Y2 be vectors in W u(λ0, τ0) and α, β ∈ C be scalar. �en let de�ne Z1, Z2, Z as



Z ′1 = A(λ0, τ0)Z1

Z1(ξ(τ0)) = Y1

,




Z ′2 = A(λ0, τ0)Z2

Z2(ξ(τ0)) = Y2

and Z = αZ1 + βZ2

Because of the linearity of the equation, we have

Z ′ = αZ ′1 + βZ ′2

= αA(λ0, τ0)Z1 + βA(λ0, τ0)Z2

Z ′ = A(λ0, τ0)Z

and the initial data
Z(ξ(τ0)) = αY1 + βY2.

Furthermore, Z decreases to 0 as ξ −→ −∞. In conclusion, αY1 + βY2 ∈ W u(λ0, τ0) and the
unstable manifold is a vector space.

With these constructions, we have a natural bundle structure (see de�nition 2.3 and chapter
3) with total space

E := {(λ, τ, Y ) for (λ, τ) ∈M and Y ∈ W u(λ, τ)}

above M with �bres W u(λ, τ). Please see �gure 1.3 but keep in mind that only one direction
is represented on the �gure : the unstable manifold can in the general case be of complex
dimension k with 0 < k < n.

�e analysis to �nd the eigenvalues will be based on this proposition, proved by Alexander,
Gardner and Jones in [1], in Lemma 3.6.
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1.4. CENTRE-UNSTABLE MANIFOLD :

K
K

K◦

K◦(
λ0, τ0

)

(
λ1, τ1

)

(
λ2, τ2

)

(
λ3, τ3

)

−→
Y0

−→
Y1

−→
Y2

−→
Y3

−→
Yi ∈ Wu

(
λi, τi

)
for all i = 0, 1, 2, 3

Figure 1.2: �e vector bundle : for each
(
λi, τi

)
∈M , we associate a space W u

(
λi, τi

)
.

Proposition 1.3. Under the hypotheses made on the initial traveling wave solution and the set
Ω, a solution to the system (1.6) is an eigenfunction for L corresponding to λ ∈ Ω if and only if
it is in the unstable manifold for A−(λ) and the stable manifold of A+(λ).

�e idea to prove this proposition is not di�cult : due to the spli�ing of the spectrum of
A±, all solutions to the dynamical system (1.6) can be decomposed into a basis with vectors
in the unstable manifolds of the �xed points at ±∞. We know that solutions in the stable
manifold at −∞ must explode in backward time, while solutions in the unstable manifold at
+∞ must explode in forward time. �erefore, a solution is bounded (remind we are looking
for solutions in B(R,Cn)) if and only if it is in the unstable manifold at −∞ and the stable
manifold at +∞. Such solutions are precisely the eigenfunctions of L.

Because of this proposition, we will track the solution of (1.6) which are on the unstable
manifold for A−(λ) and then see if there are on the stable manifold of A+(λ). But because a
solution in the unstable manifold reaches 0 as ξ −→ −∞ and we will project these solution
from Cn to S2n−1, let us introduce the B-system (1.7) and the centre-unstable manifold.

1.4 Centre-unstable manifold :

From now, we will focus on the (easier) case where the system splits into Ω with k = 1

unstable direction for every λ ∈ Ω (see de�nition 1.4) and where the system is asymptotically
symmetric, i.e.A−(λ) = A+(λ) for every λ ∈ Ω. �is formulation of the problem gives a good
idea of the general method. With these hypotheses on the system, let us consider µ(λ) the
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1.4. CENTRE-UNSTABLE MANIFOLD :

only eigenvalue ofA−(λ), such that Re(µ(λ)) > 0 (the other eigenvalues have all non positive
real parts).
Now, take (λ, τ) ∈ M and Y ∈ W u(λ, τ) (remind the remark 1.6 for the abusive notation :
here Y design the unique solution to the A-system (3.1) with initial data Z(ξ(τ)) = Y which
decrease exponentially to 0 as ξ −→ −∞). �en, because it is a vector space (see proposition
1.2), the function de�ned by

X(ξ) := e−µ(λ)ξY (ξ)

is in the unstable manifold X ∈ W u(λ, τ). �en

X ′(ξ) = −µ(λ)e−µ(λ)ξY (ξ) + e−µ(λ)ξY ′(ξ)

X ′(ξ) =
(
A
(
λ, τ(ξ)

)
− µ(λ) Id

)
X(ξ)

�is motivates the following system on Cn :



X ′ = B(λ, τ)Y

τ ′ = κ(1− τ 2)
where B(λ, τ) = A(λ, τ)− µ(λ) Id (1.7)

�e transformation from the A-system (1.6) to the B-system (1.7) is made because it will be
more convenient to work with trajectories in the unstable manifold produced by theB-system.
I will explain later why.

De�nition 1.7 (Notation). Solutions to the A-system (1.6) will be denoted with a ], whereas
solutions to the B-system (1.7) without. �at is, if Z] denote the solution to the A-system (3.1)
where Z](ξ0) ∈ W u(λ, τ(ξ0)), then Z(ξ) := e−µ(λ)(ξ−ξ0)Z] is the unique solution to the B-
system (1.7) that agrees with Z] at (λ, ξ0).
Similarly, if Z is a solution to the B-system, then Z](ξ) := eµ(λ)(ξ−ξ0)Z(ξ) is the unique solution
to the A-system that agrees with Z at ξ0.

Let X−(λ) be an unstable eigenvector for A−(λ), i.e. A−(λ)X−(λ) = µ(λ)X−(λ). �en
for every vector Z ∈ SpanC (X−(λ)), then (Z,−1) is a �xed point in the B-system.

De�nition 1.8. For a non-zero path of eigenvectors X−(λ) for A−(λ), in τ = −1, there is
exactly n − 1 complex stable direction, one complex centre direction corresponding to the line of
�xed points, and the real unstable τ direction. �is is called the centre-unstable manifold.

�e next section is made for introduce the geometrical tools we will use at the chapter 3.
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Chapter 2

Paths on a principal �bre bundle :
example of the Hopf bundle.

In this chapter, we will introduce some tools which will be useful later.

2.1 Generalities :

�is �rst section follow the de�nitions given by John M. Lee in his book on smooth manifolds
[3] and the thesis of Rupert Way [4].

2.1.1 Principal �bre bundle :

De�nition 2.1. A n-dimensional complex manifold P is a topological space which satis�es :

• P is a separated space,

• �ere exists a countable basis for the topology of P ,

• Each point p ∈ P has a neighborhood U that is homeomorphic to an open subset of Cn :
there exists V an open subset of Cn and a homeomorphism φp : U −→ V .

Remark 2.2. A manifold is said to be of class Ck, with k ∈ N∪{∞} if all the homeomorphisms
φp of the de�nition above are Ck-di�eomorphisms.

De�nition 2.3. Let P, M be a complex smooth manifold and π : P −→M . (P, π,M) is said to
be an n-dimensional complex vector bundle over M if π is smooth and for every x ∈M ,

• π−1 ({x}) (called the �bre above x) is isomorphic to Cn,

• there is a neighborhood U of x, and a di�eomorphism φU : π−1(U) −→ U × Cn.

If a topological group G acts (on the right or on the le�) on a manifold P , there exists a
natural �bre bundle, called principal �bre bundle.

11



2.1. GENERALITIES :

De�nition 2.4. �e manifold M above the complex vector bundle lives is M := P/G. To be
a principal �bre bundle, G has to preserve the �bres and act freely (g · x = x ⇒ g = e) and
transitively (∀x, y, ∃g ∈ G, x = g · y) on them.

�is implies that, for a principal �bre bundle, each �bres is homeomorphic to the group G
itself.
If, for a p ∈ P , we denote its conjugate class by p̄ = {g · p, g ∈ G}, then the projection for a
principal �bre bundle is given by π : p ∈ P 7−→ p̄ ∈ M . Henceforth, we will only consider
principal �bre bundles.

2.1.2 Decomposition of the tangent space :

In a C1-manifold P , let de�ne the tangent space on a point p ∈ P : for a coordinate chart
φp : U −→ V ⊂ Cn. Consider also two curves γ1, γ2 : [−1, 1] −→ P with γ1(0) = γ2(0) = p

and such that φp ◦γi : [−1, 1] −→ R are di�erentiable at 0 for i = 1, 2. �en γ1 and γ2 are said
to be equivalent at 0 if and only if

(
φp ◦ γ1

)′
(0) =

(
φp ◦ γ2

)′
(0). �is de�nes a equivalence

relation '.

De�nition 2.5. For a point p ∈ P , the tangent space is de�ned by :

TpP := {[γ] for γ : [−1, 1] −→ P smooth such that γ(0) = p}

where [γ] is the equivalent class of γ for the equivalent relation '. When the manifold P is a
sub-manifold, included in Cn, we have the relation (and the tangent vector space may be imagine
as this expression, more intuitive) :

TpP := {γ′(0) for γ : [−1, 1] −→ P smooth such that γ(0) = p}

It is easy to prove that it is a vector space of dimension the same dimension of P .

�ere are many ways to de�ne the tangent vector space and John M. Lee [3] explain some.
�is one has a simple geometric interpretation as the set of all “velocities” at the point p for a
path which pass through p.

At each point p ∈ P , we would like to separate the tangent vector space into a vertical and
a horizontal subspace, according to the �bration, as in the �gure 2.1.

�e vertical subspace is easy to de�ne :

De�nition 2.6. �e vertical subspace at a point p ∈ P is de�ned by

VpP = π−1
∗ ({0})
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2.1. GENERALITIES :

M

G

b

b

p

q = g · p

π(p) = π(q)b

b

b

Total space P

Tangent space of
dimension 3

Vertical subspace
of dimension 1

Horizontal subspace
of dimension 2

G G

Figure 2.1: �e separation of the tangent space into two subspaces

where π∗ : TpP −→ Tπ(p)M is the push-forward of π, i.e. if v = γ′(0) ∈ TpP where γ(0) = p,
then

π∗(v) =
d
dt

∣∣∣∣
t=0

(π ◦ γ)(t)

Remark 2.7. �e geometric intuition comes from the local cross product decomposition, where
if a path moves only along the �bre in the cross product, then under the projection map the path
is trivial; therefore, such a path has a tangent vector which vanishes under the projection map
derivative.
�us, the vertical subspace is homeomorphic to the tangent space at p according to G.

Now, we would like to de�ne the horizontal subspace HpP such that TpP = VpP ⊕HpP .
But it has to respect the bundle :

De�nition 2.8. At each point p ∈ P , we smoothly associate a horizontal subspace HpP ⊂ TpP

such that :

• ∀p ∈ P, TpP = VpP ⊕HpP ,

• ∀g ∈ G, ∀p ∈ P,
(
Φp
g

)
∗ (HpP ) = HΦg(p)P where Φg : P −→ P denote the action of

13



2.1. GENERALITIES :

g ∈ G on P and (Φp
g)∗ the push-forward of the action :

(
Φp
g

)
∗ : TpP −→ TΦg(p)P

γ′(0) 7−→ d
dt

∣∣
t=0

(Φg ◦ γ)(t)

Figure 2.1 illustrates the �rst condition : HpP must be transverse to the �bre (in order to
span the rest of the tangent space). �e second condition says that if we use (Φp

g)∗ to push
HpP along the �bre, then the result is the same as if we �rst push p along the �bre using Φg

and then form the horizontal subspace at the point Φg(p), as described in the �gure 2.2.

fibre G

b

b

p

Φg(p)

TpP

HpP

VpP

TΦg(p)P

VΦg(p)P

HΦg(p)P =
(
Φp

g

)
∗ (HpP )

(
Φp

g

)
∗

Φg

Figure 2.2: �e mechanics of the Horizontal subspace.

2.1.3 Paths on a principal �bre bundle :

�e goal of the decomposition of the tangent space above is to project a tangent vector in
the vertical subspace according with the chosen decomposition TpP = VpP ⊕ HpP . Take a
di�erentiable path v on the bundle, we would like to know how the path is with reference to
the �bres.

De�nition 2.9. �e choice of a set of horizontal subspaces de�nes a projecting map, for each
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2.2. AN EXAMPLE : THE HOPF BUNDLE :

p ∈ P :

ωp : TpP = VpP ⊕HpP −→ VpP

x = v + h 7−→ h

where x = v + h is the unique decomposition of x.
�e map ω de�ne a connection and is entirely determine by the choice of the horizontal subspaces.

De�nition 2.10. A path v : I −→ P (where I is a interval of R and (P, π,M,G) a principal
�bre bundle) is said to be horizontal if ∀s ∈ I, v′(s) ∈ HpP, i.e. ∀s ∈ I, ωv(s)(v

′(s)) = 0.

De�nition 2.11. At each point v(s) of a path v : [0, 1] −→ P in the principal bundle, we can
consider w(s) = g(s) · v(s) where g(s) ∈ G and w(s) ∈ P . �e path w(s) is on the same �bre
as v(s) at each time s. w is said to be a li� for v.
If w is furthermore horizontal and w(0) = v(0), then w is said to be a horizontal li� (see �gure
2.6 for the horizontal li� on the Hopf bundle). Indeed, it satis�es :

• w(0) = v(0),

• ∀s, π(w(s)) = π(v(s)) i.e. ∃g : [0, 1] −→ G, ∀s ∈ [0, 1], w(s) = g(s) · v(s)

• ∀s, ωw(s)(w
′(s)) = 0.

Remark 2.12. We can think of g(s) as an expression describing how much v deviates from being
horizontal. �is is the information we would like to collect later.

2.2 An example : �e Hopf bundle :

�e Hopf bundle is the bundle we will use later. �e Hopf bundle is the local decomposition
of the (2n − 1)-sphere onto the S1 sphere times CP n−1. �is structure will appear naturally
in the computation of the eigenvalues of L (see [5] and [1]).

2.2.1 De�nition :

Here we have P = S2n−1 := {z ∈ Cn, |z1|2 + · · · + |zn|2 = 1} the (2n − 1)-sphere and M is
the (n− 1)-dimensional projective space CP n−1.
For an element eiθ ∈ S1 and z ∈ S2n−1, then, eiθz ∈ S2n−1 and, using the projective coordi-
nates, [eiθz] = [z]. So S1 acts on S2n−1 and the �bre bundle is given by the projection map
π : z ∈ S2n−1 7−→ [z] ∈ CP n−1. (See �gure 2.3).

In the case of n = 2 and with the identi�cation via the Riemann sphere of CP 1 with S2,
we can write explicitly the projection π :

π : S3 ⊂ C2 −→ S2 ⊂ R3

(z1, z2) 7−→ (z1z2 + z1z2 , i(z1z2 − z1z2) , |z1|2 − |z2|2)
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2.2. AN EXAMPLE : THE HOPF BUNDLE :

S1

S1

S1

S2n−1

CPn−1

Figure 2.3: �e Hopf bundle

And we can easily verify that if z ∈ S3 and eiθ ∈ S1 then π
(
eiθz

)
= π(z).

So, S3 is viewed as follow : for each point in S2, we associate a circle S1 (see �gure 2.4, taken
from Wikipdia).

2.2.2 Natural connection :

For the Hopf bundle, there is a natural way to construct all the objects we have construct in
general in the previous section. We will calculate them step by step.

�e tangent vector space : For the Hopf bundle case, the tangent vector space can be
calculated explicitly. For p ∈ P = S2n−1, TpS

2n−1 is a R vector space with dimension 2n− 1

and we can prove that :

TpS
2n−1 = {z ∈ Cn, Re (〈z, p〉) = 0} (2.1)

where 〈z, p〉 = p∗z =
n∑
j=1

= zjpj is the canonical hermitian product on Cn.
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2.2. AN EXAMPLE : THE HOPF BUNDLE :

Figure 2.4: �e Hopf bundle for n = 2

�evertical subspace : For a point p ∈ S2n−1, let’s calculate the vertical subspaceVpS2n−1 ⊂
TpS

2n−1 as the kernel of the derivative of the projection map π∗p : TpS
2n−1 −→ Tπ(p)CP n−1 :

VpS
2n−1 = Ker (π∗p)

Let’s remind (remark 2.7) that we can see the vertical subspace as the tangent space with
reference to the �bre, here S1. With this point of view, it is easy to calculate the vertical
subspace at a point p ∈ S2n−1 :
If γ′(0) ∈ VpP , then there exists a neighborhood [−ε, ε] of 0 such that γ(t) = peiθ(t) with
θ(t) ∈ R (because the projection of γ is trivial, in a neighborhood of 0) and then γ′(0) =

θ′(0)ip.
Reciprocally, let be α ∈ R, then the path

γ : [−1, 1] −→ S2n−1

t 7−→ peαit

satis�es γ(0) = p, π(γ(t)) = π(p) for every t and γ′(0) = αip. To conclude :

VpS
2n−1 = SpanR(ip) := {αip, α ∈ R} ⊂ TpP

�e horizontal subspace : As seen in the previous section, there is an in�nity choices
for the horizontal subspace. But there is a “natural” one. Natural for at least two reasons :
�rstly because we will consider the orthogonal subspace of the vertical subspace in TpP with
reference to the natural inner product. And secondly because in the case of n = 2, Rupert
Way proves that this choice is unique.
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2.3. PATHS IN THE HOPF BUNDLE AND GEOMETRIC PHASE :

�is natural horizontal subspace (see �gure 2.5) is given by

Hp(S
2n−1) := Vp(S

2n−1)⊥R = {z ∈ Cn, 〈p, z〉 = 0}

We will verify this choice is actually a horizontal subspace : let’s verify it satis�es the assertions
enumerate in the de�nition 2.8 :

• By de�nition we have Tp(S2n−1) = Vp(S
2n−1)⊕Hp(S

2n−1).

• Let be g = eiθ ∈ S1 and p ∈ S2n−1, then for every z = γ′(0) ∈ Hp(S
2n−1), we have

(
Φp
g

)
∗ (z) =

d
dt

∣∣∣∣
t=0

(eiθγ(t)) = eiθz

�en
〈
eiθz, eiθp

〉
= 〈z, p〉 = 0 and

(
Φp
g

)
∗ (Hp (S2n−1)) ⊂ HΦg(p) (S2n−1). By a dimen-

sion argument, we have the equality

(
Φp
g

)
∗

(
Hp

(
S2n−1

))
= HΦg(p)

(
S2n−1

)

and the “natural” choice is coherent with our de�nition of horizontal subspace.

�e connection 1-form : �is “natural” choice of a horizontal subspace de�nes a linear
projection : ωp : TpS

2n−1 −→ VpS
2n−1, parallel to HpS

2n−1. In the natural case for the Hopf
bundle, the natural connection 1-form is given by the hermitian product on Cn :

ωp(z) = 〈z, p〉 =
n∑

j=1

zjpj

2.3 Paths in the Hopf bundle and geometric phase :

In this section we will describe the paths on the Hopf bundle, with reference to the natural
connection seen above.

2.3.1 Horizontal li� :

De�nition 2.13. A di�erentiable path v : [0, 1] −→ S2n−1 is a horizontal path if for each
s ∈ [0, 1], v′(s) ∈ Hv(s)S

2n−1, i.e. ωv(s)v
′(s) = 〈v′(s), v(s)〉 = 0

For a path in a bundle, we can consider other paths which have the same projection about
π. Some of these path are particularly interesting : the horizontal ones.

De�nition 2.14. For a di�erentiable path v : [0, 1] −→ S2n−1 in the Hopf bundle. �e hor-
izontal li� of v is a path w : [0, 1] −→ S2n−1 for which the following holds (see �gure 2.6)
:
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2.3. PATHS IN THE HOPF BUNDLE AND GEOMETRIC PHASE :

S2n−1

b

S1

p
eiθp

Tp

Vp

Hp

Teiθp

Veiθp

Heiθp

CPn−1

Tπ(p)CPn−1 ∼= Hp

b

π

π

π(p) = π(eiθp)

eiθ

Figure 2.5: �e natural decomposition on the Hopf bundle

• w(0) = v(0)

• ∀s ∈ [0, 1], π
(
w(s)

)
= π

(
v(s)

)

• ∀s ∈ [0, 1], w′(s) ∈ Hw(s)S
2n−1

Proposition 2.1. For a di�erentiable path v(s) on the Hopf bundle, there exists a unique hori-
zontal li� w(s).

Remark 2.15. �is result is true for every principal �bre bundle (see Way [4], page 16) but require
the di�erential point of view for the connection, and we have not develop this notion.

Proof. w is a li� for v so we have a path eiθ(s) ∈ S1 such that for every s, v(s) = eiθ(s)w(s).
Let’s derivate the expression w(s) = e−iθ(s)v(s) :

w′(s) = −iθ′(s)e−iθ(s)v(s) + e−iθ(s)v′(s)
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2.3. PATHS IN THE HOPF BUNDLE AND GEOMETRIC PHASE :

S2n−1

v(s)

w(s)

S1

CPn−1

π

π

π

π π

π(v(s)) = π(w(s))

w′(s) ∈ Hw(s)S
2n−1

S1

S1

S1

Figure 2.6: �e natural horizontal li� for a path v(s) in the Hopf bundle.

And take the connection at the point w(s) (equal zero because of the horizontality of w) :

ωw(s)(w
′(s)) = 〈w′(s), w(s)〉

=
〈
−iθ′(s)e−iθ(s)v(s) + e−iθ(s)v′(s), e−iθ(s)v(s)

〉

= −iθ′(s)e−iθ(s)eiθ(s) 〈v(s), v(s)〉+ e−iθ(s)eiθ(s) 〈v′(s), v(s)〉
0 = −iθ′(s) ‖v(s)‖︸ ︷︷ ︸

=1

+ 〈v′(s), v(s)〉

And so θ is the unique solution of the Cauchy’s problem



θ′(s) = −i 〈v′(s), v(s)〉
θ(0) = 0

(2.2)
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2.3. PATHS IN THE HOPF BUNDLE AND GEOMETRIC PHASE :

2.3.2 �e geometric phase : de�nition :

De�nition 2.16. Let v : [0, 1] −→ S2n−1 be a path and let w be its horizontal li�. �e phase
curve θ : [0, 1] −→ R is de�ned by the equation

v(s) = eiθ(s)w(s)

And the geometric phase is the change in the phase curve, i.e. :

GP
(
v
(
[0, 1]

))
:=

θ(1)− θ(0)

2π
(2.3)

θ must be understood as a path in the �bre describing the displacement along v between v
and its horizontal li� w. �e geometric phase represents the lack of horizontality of the path
v (see �gure 2.7)

Remark 2.17. Even if the phase curve is not unique (chosen modulo 2π, usually θ(0) = 0), the
geometric phase is unique, because of the renormalisation about θ(0).

S2n−1

v(s)

w(s)

CPn−1

π

π π π

π

π(v(s)) = π(w(s))

θ(s)
θ(s)

θ(s)

θ(0)

θ(1)

CPn−1

Figure 2.7: �e phase curve along a path v with horizontal li� w and the geometric phase.
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2.4. GEOMETRIC PHASE FOR A PATH IN CN\{0} :

2.3.3 �e geometric phase : calculation :

In the proof of proposition 2.1, we have found a Cauchy problem (2.2) for the phase curve θ(s).
We can integrate this equation and it gives us this formula :

Proposition 2.2. �e geometric phase of a di�erentiable path v : [0, 1] −→ S2n−1 is equal to :

GP
(
v
(
[0, 1]

))
=

1

2iπ

∫ 1

0

〈v′(s), v(s)〉 ds (2.4)

Because for every s ∈ [0, 1], v′(s) ∈ Tv(s)S
2n−1 =

(2.1)
{z ∈ Cn, Re (〈z, v(s)〉) = 0}, we have

〈v′(s), v(s)〉 = i Im (〈v′(s), v(s)〉) and the following proposition holds :

Proposition 2.3. �e geometric phase of a di�erentiable path v : [0, 1] −→ S2n−1 is equal to :

GP
(
v
(
[0, 1]

))
=

1

2π

∫ 1

0

Im (〈v′(s), v(s)〉) ds (2.5)

2.4 Geometric phase for a path in Cn\{0} :
In fact, given a path v : [0, 1] −→ Cn\{0}, we will �rstly project it in a path on the sphere
v̂(s) := v(s)

‖v(s)‖ ∈ S2n−1 and then calculate the geometric phase of v̂([0, 1]). But the following
proposition gives formulas for calculate it, without calculate explicitly v̂(s).

Proposition 2.4. For a di�erentiable non-zero path v(s) ∈ Cn\{0} and its spherical projection
v̂(s) ∈ S2n−1, we have the following relations :

• �e natural connection of v̂′(s) is

ωv̂(s) (v̂′(s)) = i
Im
(
〈v′(s), v(s)〉

)

‖v(s)‖2 (2.6)

• �e geometric phase along v̂(s) can be computed as :

GP
(
v̂
(
[0, 1]

))
=

1

2π

∫
1

0

Im
(
〈v′(s), v(s)〉

)

‖v(s)‖2 ds (2.7)

• If v is also a closed curve (it will be the case later), then the real part of the integral above
is zero and the geometric phase can be computed as :

GP
(
v̂
(
[0, 1]

))
=

1

2iπ

∫
1

0

〈v′(s), v(s)〉
〈v(s), v(s)〉 ds (2.8)

�is is the formula we will use in computation.
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2.4. GEOMETRIC PHASE FOR A PATH IN CN\{0} :

Proof. Because v̂(s) is the spherical projection of v(s), we have the relation

v̂(s) =
v(s)

‖v(s)‖ =
v(s)

〈v(s), v(s)〉 12

so

v̂′(s) =
〈v(s), v(s)〉 12 v′(s)− 〈v′(s),v(s)〉+〈v(s),v′(s)〉

2〈v(s),v(s)〉
1
2

v(s)

〈v(s), v(s)〉 (2.9)

(2.10)

=
v′(s)

〈v(s), v(s)〉 12
− Re (〈v′(s), v(s)〉)
〈v(s), v(s)〉 32

v(s) (2.11)

(2.12)

v̂′(s) =
v′(s)

‖v(s)‖ −
Re (〈v′(s), v(s)〉)
‖v(s)‖3 v(s) (2.13)

With the relation (2.13), we are able to prove the above proposition :

• �e natural connection for v̂′(s) is :

ωv̂(s) (v̂′(s)) = 〈v̂′(s), v̂(s)〉

=
〈v′(s), v(s)〉
‖v(s)‖2 − Re (〈v′(s), v(s)〉)

‖v(s)‖4 〈v(s), v(s)〉

=
〈v′(s), v(s)〉 − Re (〈v′(s), v(s)〉)

‖v(s)‖2

ωv̂(s) (v̂′(s)) = i
Im
(
〈v′(s), v(s)〉

)

‖v(s)‖2
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2.4. GEOMETRIC PHASE FOR A PATH IN CN\{0} :

• �e geometric phase :

GP
(
v̂
(
[0, 1]

))
=

1

2π

∫ 1

0

Im
(
ωv̂(s) (v̂′(s))

)
ds

=
1

2π

∫
1

0

Im

(
i

Im
(
〈v′(s), v(s)〉

)

‖v(s)‖2

)
ds

GP
(
v̂
(
[0, 1]

))
=

1

2π

∫
1

0

Im
(
〈v′(s), v(s)〉

)

‖v(s)‖2 ds

• If v is a closed curve, then v(1) = v(0), or ln
(
‖v(1)‖

)
− ln

(
‖v(0)‖

)
= 0 and

ln
(
‖v(1)‖

)
− ln

(
‖v(0)‖

)
=

∫ 1

0

d
ds

(
ln
(
‖v(s)‖

))
ds

=

∫
1

0

d
ds

(
‖v(s)‖

)

‖v(s)‖ ds

0 =

∫
1

0

2 Re
(
〈v′(s), v(s)〉

)

‖v(s)‖ ds

And, considering also the second point, we can conclude :

GP
(
v̂
(
[0, 1]

))
=

1

2iπ

∫
1

0

〈v′(s), v(s)〉
〈v(s), v(s)〉 ds
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Chapter 3

�e method in the Hopf bundle for the
symmetric case and k = 1 :

�is chapter is largely inspired from the PhD thesis of Colin Grudzien [5].
Go back to our eigenvalue problem (1.6). Reminder the proposition 1.3 : we would like to track
the solution of (1.6) which are on the unstable manifold for A−(λ). Remember we will focus
on the case where the system splits into Ω with k = 1 unstable direction for every λ ∈ Ω and
where the system is asymptotically symmetric. �is formulation of the problem gives a good
idea of the general method : in fact, for k > 1, we will transpose the problem in the wedge
product

∧k (Cn) ∼= C(n
k) where, seen in this space, the unstable direction is 1-dimensional.

But for k ' n
2

and n� 1, the main di�culty is a computational di�culty because

(
n

k

)
∼

n→∞

√
2

π

2n√
n

for k ∼ n
2
. So one of the aims of this internship was to understand an other way to compute

the problem. But on this chapter, we will follow this plan :

Step 1 : Choose a contourK ⊂ Ω that does not intersect the spectrum ofL. K is parametrized
by λ : [0, 1] −→ K (usually a circle).

Step 2 : For every λ ∈ K , de�ne X+(λ) an analytic loop of eigenvectors for A+(λ) corre-
sponding to the eigenvalue of positive real part.

Step 3 : For each λ ∈ K , resolve the A-system : d
dξY (λ, τ(ξ)) = A(λ, τ(ξ))Y (λ, τ(ξ)) such

that Y is in the unstable manifold.

Step 4 : For each ξ ∈ R, calculate the geometric phase of Y (λ(s), τ(ξ)) with respect to
X+(λ(s)) i.e. GP

(
Y
(
λ([0, 1]), τ(ξ)

))
−GP

(
X+
(
λ([0, 1])

))
.
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3.1. THE INDUCED PHASE ON THE HOPF BUNDLE :

3.1 �e induced phase on the Hopf bundle :

Let remind the eigenvalue problem : L is the linearization of a reaction-di�usion equation
about a steady state. From the equation (L − λ)p = 0 for λ ∈ Ω, Ω simply open and simply
connected, one can derive the system :




Y ′ = A(λ, τ)Y

τ ′ = κ(1− τ 2)
where A(λ, τ) =




A(λ, ξ(τ)) for τ 6= ±1

A±(λ) for τ = ± 1
(3.1)

As seen before, it will be more convenient to work with the following B-system :



X ′ = B(λ, τ)Y

τ ′ = κ(1− τ 2)
where B(λ, τ) = A(λ, τ)− µ(λ) Id (3.2)

More convenient because we would like to calculate the geometric phase of a path which
spans the unstable manifold. Indeed we will project vectors from Cn into S2n−1. For a well
de�nition, the vectors must be non-zero. In �nite time τ ∈ (−1, 1), it is not an issue. But for
τ = −1, a solution in the unstable manifold must go to 0 in the A-system. But thanks to the
translation, in the B-system, the solution is non-zero for every time.

Lemma 3.1. �ere exists an analytic choice of eigenvectors associated with the leader eigenvalue
: ∃X±(λ) analytic for λ ∈ K such that A±(λ)X±(λ) = µ(λ)X±(λ).

Proof. Humpherys, Sandstede and Zumbrun [6] proved that for a analytic dependent matrix
M(z) ∈ Cn×p, z ∈ Ω ⊂ C where the dimension of the kernel of M(z) is the same for every
z ∈ Ω, then there exists a uniformly analytic frame for the kernel of M(z) : there exists(
e1(z), . . . , er(z)

)
such that :

• ∀i ∈ J1, rK, ei : Ω −→ Cp is analytic,

• ∀z ∈ Ω, ker
(
M(z)

)
= Span

{
e1(z), . . . , er(z)

}
.

For our lemma, we apply this result to A±−µ which is analytic and because the system splits
into Ω, the dimension of the kernel is constant (in our case k = 1).

Consider such a eigenvector’s path.

Remark 3.1. Note that we will project the vectors X±(λ) into the sphere S2n−1 and by this
projection, we will loose the C-di�erentiability. But it will conserve the di�erentiability with
reference to s ∈ [0, 1] where λ(s) will parametrize the contour K .

At the and of the �rst chapter, we have mentioned the idea of the unstable bundle (see
section 1.3). Let us de�ne it properly.
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3.1. THE INDUCED PHASE ON THE HOPF BUNDLE :

De�nition 3.2. Remind the de�nition of M (see �gure 1.3) :

M = K × [−1, 1] ∪K◦ × {−1, 1}

�en
E := {(λ, τ, Y ) for (λ, τ) ∈M and Y ∈ W u(λ, τ)}

de�ne a natural bundle structure (dimension k) above M with �bres W u(λ, τ), called unstable
bundle.
More precisely, the projection map π is given by :

π : E −→ M(
λ, τ, Y

)
7−→

(
λ, τ
)

Proof. Let us verify that (E, π,M) is a bundle : it satis�es the points given in de�nition 2.3 :
let be (λ, τ) ∈M . �en

• π−1
({

(λ, τ)
})

=
{(
λ, τ
)}
×W u

(
λ, τ) is isomorphic to Ck (k = 1 in this chapter but

it is true in the general case k ∈ N).

• �e second point is longer and the reader is referred to the construction os Alexander,
Gardner and Jones in [1].

De�nition 3.3. Let the contour K ⊂ Ω be given. A reference path for λ ∈ K is an analytical
loop X±(λ) of eigenvectors for A±(λ) that corresponds to the eigenvalue of largest, positive, real
part for A±(λ).
�e reference path X±(λ) is said to be non-degenerate if X± can be extended smoothly over K◦

without zeros and if X±(λ) de�nes �bres compatible with the unstable bundle construction.

For the proof of the following lemma, the reader is referred to Colin Grudzien [5] and
to Alexander, Gardner and Jones [1]. �is lemma assure the the smoothness of the centre-
unstable manifold, transported by the �ow.

Lemma 3.2. Let X−(λ) be a non-degenerate path for A−(λ). Let the centre-unstable manifold
of this line of critical points, in the B-system (3.2), be parametrized by (λ, τ) as Z(λ, τ). �en
Z(λ, τ) is non-singular and continuous in its limit ξ −→ +∞, and furthermore

∀(λ, τ) ∈ K × [−1, 1], SpanC
(
Z(λ, τ)

)
= W u(λ, τ)

Remark 3.4. �e above lemma is also valid for non asymptotically symmetric system. For a
development of this case, please see the Grudzien’s thesis [5].
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3.1. THE INDUCED PHASE ON THE HOPF BUNDLE :

Let Z and X±(λ) de�ned as in lemma (3.2) and consider their spherical projection X̂±(λ)

and Ẑ (as in proposition 2.4). �en we have de�ned a map

Ẑ : K × [−1, 1] −→ S2n−1

(λ, τ) 7−→ Z(λ,τ)
‖Z(λ,τ)‖

for which the following hold :

Remark 3.5. We are in the symmetric case so we should consider X+ = X−. But for a good
comprehension, it is good to imagine it is two di�erent loops, equal.

• ∀λ ∈ K, Ẑ(λ, τ) −→
ξ→−∞

X̂−(λ)

• ∀λ ∈ K, ∃ζ(λ) ∈ S1, Ẑ(λ, τ) −→
ξ→+∞

ζ(λ)X̂+(λ)

• ∀(λ, τ) ∈ K × [−1, 1], SpanC
(
Ẑ(λ, τ)

)
= W u(λ, τ)

All these points are direct conclusion from the lemma 3.2.

De�nition 3.6. �e path ζ : [0, 1] −→ S1 is called the induced phase, with respect to the
reference paths X±(λ).

Let us admit the following proposition :

Proposition 3.3. �e induced phase ζ ◦ λ where λ : [0, 1] −→ K is a smooth parametrization
of K (o�en a circle) is a di�erentiable function.

Lemma 3.4. �e relative phase de�ned by

GP
(
Ẑ
(
K, τ

))
−GP

(
X̂+
(
K
))

(3.3)

tends to
1

2iπ

∫
1

0

ζ ′
(
λ(s)

)

ζ
(
λ(s)

) λ′(s)ds

as τ −→ 1.

Proof. We have the following relation, for every s ∈ [0, 1],

Ẑ
(
λ(s),+1

)
= ζ
(
λ(s)

)
X̂+
(
λ(s)

)

so :
d
ds
Ẑ
(
λ(s),+1

)
= ζ ′

(
λ(s)

)
λ′(s)X̂+

(
λ(s)

)
+ ζ
(
λ(s)

) d
ds
X̂+
(
λ(s)

)
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3.1. THE INDUCED PHASE ON THE HOPF BUNDLE :

and the natural connection :

ω
Ẑ
(
λ(s),+1

)
(

d
ds
Ẑ
(
λ(s),+1

))
=

〈
d
ds
Ẑ
(
λ(s),+1

)
, Ẑ
(
λ(s),+1

)〉

=
〈
ζ ′
(
λ(s)

)
λ′(s)X̂+

(
λ(s)

)
, ζ
(
λ(s)

)
X̂+
(
λ(s)

)〉

+

〈
ζ
(
λ(s)

) d
ds
X̂+
(
λ(s)

)
, ζ
(
λ(s)

)
X̂+
(
λ(s)

)〉

= ζ
(
λ(s)

)
ζ ′
(
λ(s)

)
λ′(s)

∥∥∥X̂+
(
λ(s)

)∥∥∥

+
∣∣ζ
(
λ(s)

)∣∣
〈

d
ds
X̂+
(
λ(s)

)
, X̂+

(
λ(s)

)〉

ω
Ẑ
(
λ(s),+1

)
(

d
ds
Ẑ
(
λ(s),+1

))
= ζ
(
λ(s)

)
ζ ′
(
λ(s)

)
λ′(s) + ω

X̂+
(
λ(s)
)
(

d
ds
X̂+
(
λ(s)

))

From this expression of the connection, we are able to calculate the geometric phase. Remem-
ber ζ(s) ∈ S1 so ζ(s) = 1

ζ(s)
and :

GP
(
Z
(
K,+1

))
=

1

2iπ

∫
1

0

ω
Ẑ
(
λ(s),+1

)
(

d
ds
Ẑ
(
λ(s),+1

))
ds

=
1

2iπ

∫
1

0

ζ
(
λ(s)

)
ζ ′
(
λ(s)

)
λ′(s)ds

+
1

2iπ

∫
1

0

ω
X̂+
(
λ(s)
)
(

d
ds
X̂+
(
λ(s)

))
ds

=
1

2iπ

∫
1

0

ζ ′
(
λ(s)

)

ζ
(
λ(s)

) λ′(s)ds + GP
(
X+(K)

)

Remind the Cauchy argument principle :

�eorem 3.5. Let C be a contour in C and C◦ the region encircled by C . Let f : C◦ −→ C
be a meromorphic function such that C contains no zeros or poles of f . �en, if we denote Z the
number of zeros of f included in C◦ and P the number of poles of f included in C◦ (counting the
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3.1. THE INDUCED PHASE ON THE HOPF BUNDLE :

multiplicities), ∫

C

f ′(z)

f(z)
dz = 2iπ(Z − P )

�e two following lemmas elaborate the dependence between the relative phase and the
reference paths chosen. �e two lemmas’ proofs are similar so we will only prove the second
one (see Grudzien’s thesis [5] for more details).

Lemma 3.6. Given the contour K and its parametrization λ : [0, 1] −→ K , let V1(λ) be a
non-degenerate reference path and V2(λ) be a meromorphic reference path for A+(λ). �en

GP
(
V1(K)

)
= GP

(
V2(K)

)
+ Ind(V2) (3.4)

where Ind(V2) is plus or minus multiplicity of any zero or pole for V2 in K◦.

Lemma 3.7. Let V (λ) and X−(λ) be two reference paths for A−(λ) such that X− is non-
degenerate and V (λ) has a pole or zero in K◦. Let V (λ, τ) be a solution which correspond to
V , . �en :

GP
(
V
(
K,+1

))
= GP

(
X−
(
K
))

+ Ind(V )

Proof. By de�nition V (λ) and X−(λ) are eigenvectors of A−(λ). Because the eigenspace is
1-dimensional, there is a smooth scaling α : K −→ C∗ such that

V (λ) = α(λ)X−(λ)

Let V and X− design the solutions in the centre unstable manifolds for these reference paths.
�en by linearity of the �ow, we have : (remind you that v̂ := v

‖v‖ )

V̂ (λ,+1) = α̂(λ) Ẑ(λ,+1)

And

d
ds
V̂
(
λ(s),+1

)
=

d

ds

(
α̂
(
λ(s)

))
Ẑ
(
λ(s),+1

)
+ α̂

(
λ(s)

) d
ds

(
Ẑ
(
λ(s),+1

))

And this implies the connection :

ωV̂ (λ(s),+1)

(
d
ds
V̂
(
λ(s),+1

))
=

〈
d
ds
V̂
(
λ(s),+1

)
, V̂ (λ(s),+1)

〉

=
d

ds

(
α̂
(
λ(s)

))
α̂
(
λ(s)

) 〈
Ẑ
(
λ(s),+1

)
, Ẑ
(
λ(s),+1

)〉

+ α̂
(
λ(s)

)
α̂
(
λ(s)

)
ω
Ẑ
(
λ(s),+1

)
(

d
ds

(
Ẑ
(
λ(s),+1

)))

=

d
ds

(
α̂
(
λ(s)

))

α̂
(
λ(s)

) + ω
Ẑ
(
λ(s),+1

)
(

d
ds

(
Ẑ
(
λ(s),+1

)))
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3.2. THE METHOD IN THE SYMMETRIC CASE FOR K > 1

And then by integration, we have the result, thanks to the Cauchy argument principle.

�e main theorem is the following one, proved by Colin Grudzien in [5]. �e proof of this
theorem is really complicated because it uses some algebraic topology notions which I am not
familiar with : Chern classes and Chern numbers are some invariants between spaces which
characterize the wind of this space.

�eorem 3.8. �e geometric phase for a non-degenerate reference path tends to the number of
eigenvalues included in the contour K as ξ →∞.

3.2 �e method in the symmetric case for k > 1

�is idea is to change the space studied space from Cn to the wedge product
∧k Cn ∼= C(n

k).
�anks to this transformation, we will be sure that there is only one leading eigenvalue and
with the transformation into the B-system, the centre-unstable manifold will already be 1-
dimensional. For more details, please see Grudzien thesis [5], where he explains the equiva-
lence between the system in Cn and the system in

∧k Cn.
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Chapter 4

�e method in the Stiefel bundle

�e Stiefel bundle is an extension of the Hopf bundle : in the Hopf bundle, we consider only
one normal vector (in S2n−1) we can decompose into two coordinates (one in S1 and one in
the projective space CP n−1). In the Stiefel bundle, we will consider a set of k orthonormal
vectors at the same time. So the coordinates will be in the unitary group and the Grassmann
space. Let us de�ne all these objects.

4.1 De�nition and paths in the Stiefel bundle

4.1.1 De�nition

�e Grassmannian Gr(n, k) : �e Grassmannian spaces are extension of the projective
space. When for the projective space we consider as a point a vectorial line in Cn, for the
Grassmannian Gr(n, k) we consider as a point a vectorial space of dimension k in Cn.

�eunitary group U(k) : �e unitary group is de�ne as the set of matricesM in Ck×k such
that MHM = Ik.

�e space V (n, k) : It should be seen as the set of all k-orthonormal collection of vectors
(viewed as columns of matrices) :

V (n, k) :=
{
W ∈ Cn×k, WHW = Ik

}

�e unitary group acts on V (n, k) : by the right multiplication : for W ∈ and U ∈ U(k),

(WU)HWU = UHWHWU = UHIkU = Ik

and WU ∈ V (n, k).
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4.2. THE INDUCED PHASE IN THE STIEFEL BUNDLE.

De�nition 4.1. �e Stiefel bundle is the principal �bre bundle, as de�ned below the de�nition
2.3. �e total space is V (n, k), the �bers are U(k) and the base Gr(n, k). �e projection

π : V (n, k) −→ Gr(n, k)

W 7−→ Im(W )

can be viewed as the k-dimensional vector subspace the vectors (the columns ok W ) span.

4.1.2 Paths in the Stiefel bundle.

As in the Hopf bundle, we can de�ne the tangent space and vertical and horizontal subspaces
at a point W ∈ V (n, k) and as in the Hopf bundle, there is a natural choice for the horizontal
subspace and so, a “universal” connection (for more details, see [7]). For a pointW ∈ V (n, k),
we will consider the “universal” connection :

ωW : TWV (n, k) −→ Skew(k)

V 7−→ WHV

where Skew(k) is the Lie algebra of U(k) : the set of the skew-hermitian k × k matrices.
Considering a path W (s) ∈ V (n, k), we can – with reference to the choice of the “universal”
connection ω – calculate the horizontal li� V (s) of W (s) and then, calculate the equivalence
of the geometric phase :
For every s ∈ [0, 1], there exists a unitary matrix U(s) such that W (s) = V (s)U(s). �e
geometric phase in the Stiefel bundle is de�ned as :

GP(W ([0, 1])) = U(1)U(0)−1

4.2 �e induced phase in the Stiefel bundle.

�e idea is to work with the Stiefel bundle and to consider the unstable space in one way.
Remind that the Stiefel manifold can be viewed as the set of k-orthonormal vectors.
Instead of changing global space to have only one main unstable direction – as in the Hopf bun-
dle method – we consider an orthonormal frame of the unstable space for −∞ which, along
the time ξ, will be moved by the �ow. �e numerical di�culties of this method is keeping the
orthonormal property of the frame along the time ξ. Usually, a Gramm-Shmidt orthonormal-
ization is computed at each step of the algorithm to preserve this orthonormalization. In the
Colin Grudzien’s thesis [5], it is developed how we can connect the “universal” connection
in the Stiefel bundle to the “natural” connection in the C(n

k)-Hopf bundle and the reader is
referred to this paper to know precisely how does it work.
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Conclusion

To conclude, I would like to emphasize on the link between the geometrical phase on the Hopf
bundle – from which we know the number of eigenvalues included in K – and the geometric
phase in the Stiefel bundle which, until now, is not used in its own nature. So far, we are just
using the “universal” connection in the Stiefel bundle to compute the “natural” connection in
the Hopf bundle, but we do not use the geometric phase in the unitary group.
With my supervisor Colin Grudzien, we think that all the information we need is coded on
this geometric phase in the unitary group but it is still an open question.
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