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1 c. kilque

Abstract

In this paper we study Lie groups, Lie algebras and De Rham cohomology to
obtain an exterior algebra structure for the cohomology ring of a compact connected
Lie group.

We will use maximal tori theory, as well as invariant theory, and invariant differ-
ential forms in order to prove the statement about the structure.
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1. Introduction

Here is presented the report of my two-month summer internship made at the
Dipartimento di Matematica, Sapienza Università di Roma, under Dr. Paolo Papi.
This internship was about Lie theory. After a reading course of some chapters of [3],
as an introduction to Lie theory, and particularly root theory, the final subject was
about a proof of a computation of the De Rham cohomology ring of the compact
connected Lie group made by Mark Reeder in [9] "On the cohomology of compact
Lie groups" published in L’Enseignement Mathématiques in 1995. The following
theorem
Theorem 1.1. For a compact connected Lie group G, the De Rham cohomology ring
H(G) is an exterior graded algebra with generators of known degree.

is known since the first half of the 20th century. The paper studied give an
alternative proof of this statement.

Lie theory was introduced by the Norwegian mathematician Sophus Lie, with help
from Felix Klein and later Friedrich Engel. The theory was then developed mainly by
Whilhelm Killing, Élie Cartan, Hermann Weyl and Claude Chevalley. Lie groups are
an important part of mathematics, especially in geometry. They also play a major
role in physics, as geometry groups are often used. There is a strong link between a
Lie group and its Lie algebra, therefore the later is often used to study Lie groups.
The De Rham cohomology (after Georges De Rham) of a manifold is defined with
differential forms. It is an algebraic tool, topologically invariant (note that this is
not trivial, and not made in this report), which helps to study the topology of the
manifold.

The proof goes as follows : if T is a maximal tori and W its Weyl group acting
on G, the map Ψ : G/T × T → G, (gT, t) 7→ gtg−1 gives rise to an isomorphism
Ψ∗ : H(G) → [H(G/T ) ⊗ H(T )]W , but H(T ) is easily computable as the exterior
algebra of t∗ where t is the Lie algebra associated to T , and Borel’s theorem gives
an isomorphism between H(G/T ) and the graded algebra of harmonic polynomials
with degrees doubled. Then we use a corollary of Solomon’s theorem, which comes
from Chevalley’s theorem, which states that what we got is an exterior algebra, and
gives the degrees of its generators.

After discussing some generalities about algebras, groups and representation the-
ory that are needed for the report in the second part, we introduce Lie groups, their
Lie algebras along with fundamental concepts and some properties in the third one.
In the fourth part, we discuss about maximal tori, while in the fifth one we introduce
the De Rham cohomology on Rn and its subsets, and then on a manifold, and study
some properties of it. Finally, we proceed of the proof of the theorem 1.1 in the sixth
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part. We start by introducing notations, and some concepts about root theory, then
we discuss about invariant theory. We begin with Chevalley’s theorem, fundamental
for the proof, then introduce harmonic polynomials, gives results about it, and prove
Solomon’s theorem, whose corollary gives the basis of the exterior algebra H(G). We
continue by identify invariant differential forms with alternating linear forms on Lie
algebras, and conclude by proving Borel’s theorem and proceeding with the main
proof.

The report mainly relies on the paper from M. Reeder [9], and the references
given by the author. We give the reference used for each part, and every statement
unproven is also referenced. Unfortunately, by a lack of time, I have not been able
to study all the paper, and some proofs given in it are not made here. Thus, some
results made in the report may seem useless, but are used in those unmade proofs.
In the same way, some results needed are just stated as their proofs are too long to
understand and to make in the report.

August 2017.
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2. Generalities

2.1. Algebras, groups. The concepts of this part are taken from Lang’s book [7].

Definition 2.1. A Lie algebra g is a vector space, with a bilinear product [ , ],
verifying the following rules :

i. ∀X ∈ g, [X,X] = 0;
ii. ∀X, Y, Z ∈ g, [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi identity).

Definition 2.2. A Lie subalgebra h of a Lie algebra g is a subspace of g invariant
under product :

∀X, Y ∈ h, [X, Y ] ∈ h.

Definition 2.3 (Graded algebra). A graded algebra is an algebra A which can be
written A =

⊕
i∈NA

i where (Ai)i∈N is a collection of subspaces which verifies AiAj ⊂
Ai+j. We say that a ∈ A is an homogeneous element of degree i if a is in Ai, and we
denote deg(a) = i.

Definition 2.4 (Homogeneous ideal). An homogeneous ideal of a graded algebra
A =

⊕
i∈NA

i is an ideal I of A generated by homogeneous elements.

Proposition 2.5 ([1]). If I is an homogeneous ideal of A =
⊕

i∈NA
i, then the

algebra A/I is a graded algebra, with grading given by : A/I =
⊕

i∈N(Ai + I)/I.

Definition 2.6 (Graded tensor product). If A,B are two graded algebras, we define
the graded tensor product of A and B, denoted A ⊗G B to be the ordinary tensor
product as modules, with product given by :

(a⊗ b)(a′ ⊗ b′) := (−1)deg(b) deg(a′)aa′ ⊗ bb′, ∀a, a′ ∈ A, ∀b, b′ ∈ B.

Definition 2.7 (tensor algebra). The tensor algebra of a vector space V is the graded
algebra :

T (V ) =
⊕
n∈N

n⊗
r=1

V.

Definition 2.8 (symmetric algebra). The symmetric algebra of a vector space V is
the graded algebra :

S(V ) = T (V )/I, I =< x⊗ y − y ⊗ x|x, y ∈ V > .

Since I is homogeneous, S(V ) is graded, and we denote S(V ) :=
⊕

k∈N S
k(V ) the

grading.
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Definition 2.9 (exterior algebra). The exterior algebra of a vector space V is the
graded algebra :

Λ(V ) = T (V )/J, J =< x⊗ y + y ⊗ x|x, y ∈ V > .

Again, J is homogeneous and therefore Λ(V ) is graded. We denote ∧ the product in
Λ(V ) and Λ(V ) =

⊕n
k=0 Λk(V ) the grading, where dim(V ) = n. The exterior algebra

generated by {y1, . . . , yn} is the exterior algebra of the vector space generated by
{y1, . . . , yn}.

Definition 2.10 (group ring). Let G be a group, and R a ring. We define the group
ring of G over R as the set R[G] of all maps f : G → R with finite support. This
set has a natural linear structure, and for f, g two such maps, we define fg to be the
map given by fg(x) =

∑
uv=x f(u)g(v) for x in G. With this product, we obtain a

ring structure for R[G].

2.2. Representation theory. We refer to [4] for this section.

Definition 2.11. A representation of an algebra A is an algebra morphism ρ : A→
Aut(V ) where V is a vector space. Similarly, a representation of a Lie algebra L is
a Lie algebra morphism ρ : L → End(V ) where V is a vector space and End(V ) is
the Lie algebra associated to the algebra Aut(V ). A representation of a group G is
a group morphism ρ : G→ GL(V ) where V is a vector space. We also say that A, L
or G acts on V , the action being defined for example for a ∈ A by a · x := ρ(a)(x).
The dimension of a representation is the dimension of the vector space V .

Definition 2.12. A subspace U ⊂ V is said to be invariant if the action of the
algebra or the group A leaves U invariant : ∀a ∈ A, a · U ⊂ U . A representation V
is said to be irreducible if there is no nontrivial invariant subspace.

Proposition 2.13 ([4, Proposition 1.8]). Consider a representation V of a finite
group W . We have a decomposition

(1) V =

a1⊕
j=1

V1 ⊕ · · · ⊕
ak⊕
j=1

Vk

where V1, . . . , Vk are non-isomorphic W -invariants subspaces and ai = dim(Vi). This
decomposition is unique up to order.

3. Lie groups, Lie algebras

For more details, see [10].
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3.1. Lie groups.
Definition 3.1 (smooth manifold). A (n-dimensional) (smooth) manifold is a second
countable (i.e. that has a countable base of open subsets) Hausdorff topological space
M which is locally homeomorphic to Rn : there is an atlas (Uα, φα)α∈A consisting
of on open cover (Uα)α∈A of M whose elements are called coordinate together with
a collection of homeomorphisms φα : Uα → Vα where Vα is an open subset of Rn,
called coordinate maps. The manifold is smooth if for every α, β in A, φβ ◦ φ−1

α :
φα(Uα ∩Uβ)→ Rn is smooth. The atlas is required to be maximal : one cannot add
more coordinate maps.

In all the report all the manifolds are supposed to be smooth, we will therefore
call a smooth manifold simply a manifold.
Definition 3.2 (smooth map). A map f between two manifold M and N with
atlases (Uα, φα)α∈A and (Vβ, ψβ)β∈B is called smooth if for every point m of M there
exists α, β in A× B, such that m is in Uα, f(m) is in Vβ, f−1(Vβ) ∩ Uα is open and
the map ψβ ◦ f ◦ φα|φα(f−1(Vβ)∩Uα) : φα(f−1(Vβ) ∩ Uα)→ ψβ(Vβ) is smooth.

Definition 3.3 (Lie group). A Lie group G is a manifold which is also a group such
that the group product and the inverse map are smooth. A homomorphism of Lie
groups is a group homomorphism between two Lie groups which is smooth.
Example 3.4. The torus T n := S1 × · · · × S1 is a Lie group.
Example 3.5. For K = R or C and n ∈ N∗, any closed subgroup of GL(n,K) is a Lie
group. Such a Lie group is called a matrix Lie group.
Remark 3.6. We recall that an immersion is a differentiable function whose differen-
tial is everywhere one-to-one.
Definition 3.7. A Lie subgroup H of a Lie group G is the image of a Lie group H ′
under an immersion φ : H ′ → G together with a Lie group structure on H which
makes φ : H ′ → H a Lie groups homomorphism.
Definition 3.8 (germ). Two smooth maps f, g : M → N between two manifolds
M,N are said to have the same germ at a point p ∈M if there exists a neighbourhood
U of p such that f |U = g|U . The relation of having the same germ at p is an
equivalence relation, and the equivalence classes are called germs. A representative
of a germ is a map f : U → N where U is a neighbourhood of p, the set of all the
germs has an obvious R−algebra structure. We denote δp the set of germs at p when
N = R.
Definition 3.9 (tangent vector, tangent space, differential map). A tangent vector
at p ∈M is a map X : δp → R satisfying :

∀f, g ∈ δp, X(fg) = X(f)g(p) + f(p)X(g).
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The set of tangent vectors at p forms a vector space TpM called the tangent space at
p. Any germ of a map φ : (M, p)→ (N, q) (here q = f(p)) induces a homomorphism
of R-algebras φ∗ : δp → δq given by

∀f ∈ δp, φ∗(f) = f ◦ φ.
Then we have the differential of the map induced by φ,

Tpφ :
TpM → TqN
X 7→ X ◦ φ∗.

We easily see that φ 7→ Tpφ is functorial.

Proposition 3.10 ([10, Ch. I Proposition 2.2]). If V is a finite-dimensional real
vector space, then for all p in V , TpV is canonically isomorphic to V .

Remark 3.11. We note that with the functoriality property, each coordinate map
φ : U → V induces an isomorphism Tpφ : TpM = TpU → Th(p)V = Th(p)Rn ∼= Rn.

Definition 3.12 (tangent bundle). The tangent bundle of a manifold M is the
disjoint union

TM :=
⋃
p∈M

TpM.

There is a projection π : TM → M given by v ∈ TpM ⊂ TM 7→ p. For any
open subset U ⊂ M , we have TU :=

⋃
p∈U TpU =

⋃
p∈U TpM . One can associate to

any coordinate map φ of M a coordinate map Tφ : TM ⊃ TU → TV = V × Rn,
called the bundle coordinate map given by Tφ|TpM = Tpφ. This makes TM into a
2n-dimensional manifold.

Definition 3.13 (vector field). A smooth vector field on a manifold M is a smooth
map X : M → TM which verifies X(p) ∈ TpM, ∀p ∈M , that is to say π ◦X = idM .
For a group G, we denote the left action of x ∈ G on G by lx : G → G, g 7→ xg.
A vector field on a Lie group G is said to be left-invariant if the following diagram
commutes :

TM
T lx // TM

M
lx

//

X

OO

M.

X

OO

3.2. Lie algebra associated to a Lie group.

Definition 3.14. For a Lie group G, the Lie algebra associated to G is LG := TeG
where e is the unit of G. Every Lie groups homomorphism f : G→ H rises to a map
Lf := Tef : LG→ LH.
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Remark 3.15. For v in LG, define the vector field Xv : G→ LG, x 7→ Telx(v), which
is left-invariant. The map v 7→ Xv gives a canonical isomorphism between LG and
the set of left-invariant vector fields, so we will identify LG with this space in the
following.

We now describe the Lie algebra structure of LG.

Definition 3.16 ([11, Definition 1.44]). The linear structure is clear, and for two
left-invariant vector fields X, Y ∈ LG, define [X, Y ] as the vector field defined on
each g ∈ G and φ ∈ δg by

[X, Y ](g)(φ) = X(g)(Y (.)(φ))− Y (g)(X(.)(φ))

where Y (.)(φ) : G → R, g 7→ Y (g)(φ) and X(.)(φ) : G → R, g 7→ X(g)(φ). This is
correct because we have Y (.)(φ) ∈ δg and X(.)(φ) ∈ δg. One can verify that [X, Y ]
is still left invariant and that the product [ , ] satisfy the hypothesis of a Lie algebra,
making LG into a Lie algebra.

Proposition 3.17 ([11]). Let H be a Lie subgroup of G as the image of H ′ under
φ. Then, Teφ : LH ′ → LG is a Lie algebras isomorphism onto its image, which is a
subalgebra of LG.

Remark 3.18. The previous proposition essentially asserts that the Lie algebra of a
Lie subgroup is a Lie subalgebra of the corresponding Lie algebra.

Definition 3.19 (adjoint representation). Let c(g) denotes the conjugation by g ∈ G
group morphism in G : c(g) : x 7→ gxg−1. For g ∈ G, we have Lc(g) ∈ Aut(LG)
the algebra of linear automorphisms of LG. We denote Ad : G → Aut(LG), g 7→
Lc(g), which is called the adjoint representation of G. Then we apply L and get
ad := LAd : LG→ LAut(LG) = End(LG) the adjoint representation of LG, where
End(LG) is the Lie algebra deduced from the algebra Aut(LG).

Proposition 3.20 ([10, Ch. I, Equation (2.11)]). We have, for all X, Y in LG,

ad(X)(Y ) = [X, Y ].

Definition 3.21 (integral curve). An integral curve α :]a, b[→ M of a vector field
X on a manifold M is a differentiable curve which verifies for all t ∈]a, b[,

α̇(t) = X(α(t)).

Proposition 3.22 (existence and uniqueness, [10]). For every vector field X, there
exists an open set A ⊂ R×M such that for every p ∈M , A ∩ (R× {p}) is an open
interval containing the origin, and a differentiable map Ψ : A → M, (t, p) 7→ αp(t),
the flow of the vector field verifying Ψ(0, t) = αp(0) = p for all p in M . The curve
t 7→ αp(t) is the unique maximal integral curve of X with the property αp(0) = p.
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Proposition 3.23 ([10]). If G is a Lie group, and X a left-invariant vector field,
then the flow is global, that is to say A ∩ (R× {g}) = R for all g in G. One should
denote αX the curve αe defined on all R.
Definition 3.24 (exponential map). The map

exp :
LG → G
X 7→ αX(1)

is called the exponential map.
Proposition 3.25 ([10, Ch. I, Proposition 3.1]). The exponential map is differ-
entiable and its differential at the origin is the identity. Furthermore, we have
αX(t) = exp(tX) for all t ∈ R.
Proposition 3.26 ([10, Ch. I, Proposition 3.2]). For a Lie group homomorphism
f : G→ H, the following diagram commutes :

LG
Lf //

exp
��

LH

exp
��

G
f
// H

Remark 3.27. In particular, Ad(exp) = exp(LAd) = exp(ad), with H = Aut(LG).
In this case exp is the classic exponential map, as with all the matrix cases.
Proposition 3.28 ([10, Ch. I, Theorem 5.12]). If G is a compact Lie group, there
exists a positive linear form

∫
G

: C0(G,R)→ R that verifies :

i. ∀f ∈ C0(G,R), ∀h ∈ G,
∫
G
f(g)dg =

∫
G
f(gh)dg =

∫
G
f(hg)dg

ii.
∫
G
dg = 1.

Proposition 3.29. If G is a compact Lie group, there exists a scalar product < . , . >
on g which is Ad(G)-invariant and ad(g)-skew-symmetric.

Proof. Let ( . , . ) be a scalar product on g. Set

< u, v >:=

∫
G

(Ad(g)u,Ad(g)v)dg.

This is easy to verify that it is a scalar product, and thanks to the previous propo-
sition, it is Ad(G)-invariant. Now because of this invariance, we have for all X ∈ g,

< Ad(exp(tX))u,Ad(exp(tX))v >=< u, v >,

differentiating this equation, we get
< ad(X)u, v > + < u, ad(X)v >= 0,

i.e., < . , . > is ad(G)-skew-symmetric. �
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4. Maximal tori

4.1. Maximal torus of a Lie group. All missing proofs of this section can be
found in [10]. In all this section, G is a compact connected Lie group.
Definition 4.1. A torus of G is a compact connected abelian subgroup. A maximal
torus T ⊂ G is a torus which is maximal in the sense of inclusion.
Remark 4.2. One can prove that a torus is simply a group isomorphic to T k =
S1 × · · · × S1. If two tori are such that T  T ′ then dimT < dimT ′ because of the
connectedness and the compactness of a torus. Maximal tori then always exist.
Definition 4.3 (Weyl group). If N := NG(T ) := {g ∈ G, gTg−1 ⊆ T} is the
normalizer of T in G, we define W = N/T the Weyl group of T .
Definition 4.4. We define the action of N on T as the action by conjugation :
n · t := ntn−1. This action is invariant modulo T since T is abelian, so we can define
the induced action of W on T : nT · t := ntn−1.
Proposition 4.5 ([10, Ch. IV, Theorem 1.5]). The Weyl group W is finite.
Theorem 4.6 (Conjugation theorem, [10, Ch. IV, Theorem 1.6]). In G, two max-
imal tori T and T ′ are conjugate. Moreover, any element g in G is contained in a
maximal torus.
Remark 4.7. With this result, we get that the Weyl groups associated to T and T ′
are isomorphic, we will then say the maximal torus and the Weyl group of a Lie
group.

For a subgroup H of G, the center Z(H) is the subgroup :
Z(H) = {g ∈ G, gh = hg ∀h ∈ H}.

Corollary 4.8 ([10, Ch. IV, Theorem 2.3]). If S is a connected abelian subgroup of
G, then Z(S) is contained in the union of all the tori containing S. Consequently,
for a torus T , we have Z(T ) = T.

Proposition 4.9 ([10, Ch. IV, Theorem 2.11]). For any torus T , there exists an
element t0, called generic which generates T , in the sense that {tn0 , n ∈ N} is dense
in T .
Remark 4.10. In fact, almost all elements of T are generic.
Proposition 4.11 ([10, Ch. II, Proposition 8.4]). The irreducible real representa-
tions of a torus T are the trivial representation and the two dimensional given by

[x1, . . . , xn] 7→
(

cos(2πα(x)) sin(2πα(x))
− sin(2πα(x)) cos(2πα(x))

)
, α ∈ (Rn)∗,

where we see T as Rn/Zn.
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4.2. Lie algebra of a maximal torus. Consider a maximal torus T of a Lie group
G, and t and g their respective Lie algebras.

Remark 4.12. The exponential map restricted to t, exp : t→ T is surjective since we
can see T as S1 × · · · × S1.

Proposition 4.13. The Lie algebra t is commutative ([X, Y ] = 0,∀X, Y ∈ t) and is
a maximal commutative subalgebra of g.

Proof. The commutativity comes from the commutativity of T : the morphism c(h)|T
is the identity for all h ∈ T , and therefore Ad |T is trivial and so is ad |t. The
maximality is due to the surjectivity of exp. �

Definition 4.14. A regular element of t is an element H0 whose Ad(G)-centralizer
{g ∈ G|Ad(g)H0 = H0} is T .

Proposition 4.15. Any element H0 such that exp(H0) is generic is a regular ele-
ment. Hence, by the surjectivity of exp, a regular element always exists.

5. De Rham cohomology

All this part comes from [8]. In this section, let x1, . . . , xn be the canonical coor-
dinates of Rn

5.1. De Rham cohomology on Rn.

Definition 5.1 (differential form). We define Ω∗ to be the exterior algebra generated
by the elements dx1, . . . , dxn. The differential forms on Rn are the elements of the
graded algebra

Ω∗(Rn) = C∞(Rn,R)⊗ Ω∗.

Then a differential form is a sum of elements of the form f dxi1 ∧ · · · ∧ dxik where
f is in C∞(Rn,R), that we may write f dxI , we will also forget the sign ∧ in the
following. We denote the grading by Ω∗(Rn) =

⊕n
k=0 Ωk(Rn).

Definition 5.2 (differential operator). We extend d to a linear map, the differential
operator d : Ω∗(Rn)→ Ω∗(Rn) by :

i. d(f) =
∑
k

∂f

∂xk
dxk

ii. d(fdxI) = df dxI .
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One can check that it does extend d and that d : Ωk(Rn)→ Ωk+1(Rn). Therefore we
have the De Rham complex :

{0} d=0 // Ω0(Rn)
d // Ω1(Rn)

d // · · · · · · d // Ωn−1(Rn)
d // Ωn(Rn)

d // {0}.

Proposition 5.3 ([8, Proposition 1.4]). We have d2 = 0.

Definition 5.4 (De Rham cohomology). By the former proposition, we have Im(d :
Ωk−1(Rn)→ Ωk(Rn)) ⊂ Ker(d : Ωk(Rn)→ Ωk+1(Rn)) as vector subspaces in Ωk(Rn),
so we may consider the vector space

Hk(Rn) = Ker(d : Ωk(Rn)→ Ωk+1(Rn))/ Im(d : Ωk−1(Rn)→ Ωk(Rn)),

called the k-th De Rham cohomology of Rn. The De Rham cohomology of Rn is
the graded algebra H(Rn) :=

⊕n
k=0H

k(Rn). For ω ∈ Ker(d), we denote [ω] ∈
Ker(d)/ Im(d) the cohomology class of ω.

Definition 5.5. For an open subset U ⊂ Rn, defining Ω∗(U) = C∞(U,R) ⊗ Ω∗, we
have in the same way Hk(U), the k-th De Rham cohomology of U and the De Rham
cohomology of U , the graded algebra H(U) :=

⊕n
k=0H

k(U).

Definition 5.6 (pullback map). A smooth map f : Rm → Rn induces a pullback
map

f ∗ :
C∞(Rn,R) → C∞(Rm,R)

g 7→ g ◦ f.

The following proposition extends it to Ω∗(Rn) :

Proposition 5.7 ([8, Proposition 2.1]). For any f in C(Rm,Rn), there exists a
unique map f ∗ : Ω∗(Rn) → Ω∗(Rm) which extends f ∗ and commutes with d. This
map is called the pullback map and is defined by :

f ∗(g dxi1 . . . dxik) = (g ◦ f) d(xi1 ◦ f) . . . d(xik ◦ f) = (g ◦ f) dfi1 . . . dfik

where fj is the j-th component of f . The following diagram commutes :

{0} d //

f∗

��

Ω0(Rn)
d //

f∗

��

Ω1(Rn)
d //

f∗

��

· · · · · · d // Ωn−1(Rn)
d //

f∗

��

Ωn(Rn)
d //

f∗

��

{0}

f∗

��
{0}

d
// Ω0(Rn)

d
// Ω1(Rn)

d
// · · · · · ·

d
// Ωn−1(Rn)

d
// Ωn(Rn)

d
// {0}.

Proposition 5.8 ([8, Corollary 2.1]). The De Rham complex is independent of the co-
ordinate system, i.e. if u1, . . . , un is a new coordinate system, then d(g dui1 . . . duik) =
dg dui1 . . . duik .
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5.2. De Rham cohomology on a manifold.

Definition 5.9 (differential form). LetM be a n-dimensional manifold with an atlas
(Uα, φα)α∈A. A differential form ω on M is a collection of differential forms (ωα)α
(where Uα is seen as an open subset of Rn, and we may choose a coordinate system
u1 = x1 ◦ φα, . . . , un = xn ◦ φα) which agree on Uα ∩ Uβ for all α, β ∈ A in the
sense that if iα : Uα ∩ Uβ → Uα and iβ : Uα ∩ Uβ → Uβ are the canonical inclusions,
then i∗αωα = i∗βωβ in Ω∗(Uα ∩ Uβ). The graded algebra of differential forms on M is
denoted Ω∗(M) =

⊕n
k=0 Ωk(M).

Remark 5.10. Given ω ∈ Ω ∗ (M) and x ∈ M , we can consider ωx the differential
form at point x since all differential forms ωα defined on a neighbourhood of x have
to agree on a smaller neighbourhood of x.

Definition 5.11. We can define in the same way than beforeH(M) =
⊕n

k=0 H
k(M),

the De Rham cohomology of M , and a pullback map f ∗ : Ω∗(N) → Ω∗(M) from a
map f : M → N .

Proposition 5.12 ([8, Example 2.6]). The De Rham cohomology of the circle is

Hk(S1) =

{
R k = 0
R k = 1

Theorem 5.13 (Künneth Formula, [8, Equation (5.9)]). For any pair of manifolds
M,N , we have

H(M ×N) = H(M)⊗G H(N)

.

Corollary 5.14. Let T = S1×· · ·×S1 be the n-torus. Then H(T ) = R[X1, . . . , Xn]/I
where I is the ideal generated by X2

i and XiXj +XjXi for 1 ≤ i, j ≤ n.

Proof. According to 5.12, H(S1) can be seen as R[X]/ < X2 >. Therefore, the
previous theorem and the definition 2.6 gives us the result. �

6. Proof of the theorem

We now give the proof of theorem 1.1 following the ideas of [9].

6.1. Root theory. Let G be a compact connected Lie group, g its Lie algebra, T a
maximal torus of G and t its Lie algebra. With respect to the scalar product of 3.29
let m be the orthogonal complement of t : g = t ⊕⊥ m. We denote l := dim(t) and
2v := dim(m) since we will see that m is even dimensional.
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Proposition 6.1. There exists an orthogonal decomposition m = m1 ⊕ · · · ⊕ mv of
m into irreducible under the action of Ad(T ) two dimensional subspaces.

Proof. Since the scalar product is Ad(G)-invariant, Ad(G) and therefore Ad(T ) acts
on m, then m is a representation of the torus T . Since t is a maximal commutative
subalgebra of g, there is no nonzero vector in m that verifies [H,X] = 0, ∀X ∈ t.
Hence, Ad(T ) has no nonzero invariant vectors in m, and there cannot be an irre-
ducible trivial representation of T in m. Therefore, by 4.11, all irreducible subspaces
of m are two dimensional. By induction, we get the decomposition. �

According to 4.11, for each 1 ≤ j ≤ v, there exists αj in t∗ such that for H ∈ t,
the eigenvalues of Ad exp(H) on mj are exp(±i αj(H)). We choose the sign of the
αj as follows : take H0 a regular element, as a consequence of the definition, no αj
is zero valued on H0. Then the positive root is the one such that αj(H0) > 0.

Definition 6.2 (positive roots). The linear forms defined in the preceding discussion
are called positive roots and their set is denoted ∆+. We also denote ∆ the set
{±α, α ∈ ∆+}, whose elements are called roots.

Proposition 6.3 ([9, (2.3)]). The action of W on t is generated by orthogonal re-
flections about the kernels of the positive roots, denoted sα, α ∈ ∆+.

Remark 6.4. All mj are also preserved by ad(t), then we can choose an orthogonal
basis {Xj, Xj+v} for mj such that the matrix of ad(H)|mj in this basis is(

0 α(H)
−α(H) 0

)
.

We have, by skew-symmetricity, for all 1 ≤ i ≤ v, all 1 ≤ j ≤ 2v, all H ∈ t,
< H, [Xi, Xj] >=< [H,Xi], Xj >= −αi(H) < Xi+v, Xj > .

The last term is nonzero if and only if j = i + v so if j 6= i + v, [Xi, Xj] ∈ m. We
have the same result if i > v and j 6= i− v.

For each 1 ≤ i ≤ l, define Hi := [Xi, Xi+v]. This is Ad(T )-invariant, indeed,
we want to prove that Ad(t)Hi = Hi for t in T , this is equivalent to prove that
ad(Y )Hi = 0 for Y in t, and the later holds because [Y,Hi] = [Y, [Xi, Xi+v]] =
[Xi+v, [Xi, Y ]] + [[Xi+v, Y ], Xi] = −α(Y )[Xi+v, Xi+v] + α(Y )[Xi, Xi] = 0. Then we
have that Hi belongs in t, hence ad(Hi)mi ⊆ mi. Therefore, the span of Xi, Xi+v

and Hi is a Lie subalgebra gi of g.

6.2. Invariant theory. See [5].

Notation. We denote S =
⊕

k≥0 S k := S(t∗) the symmetric algebra of t∗ and
Λ =

⊕l
k=0 Λk := Λ(t∗) the exterior algebra of t∗.
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Remark 6.5. If x1, . . . , xl is a basis of t, S can be seen as the polynomial ring
R[x1, . . . , xl], and Λ as the set of differential forms ω =

∑
i1≤···≤ik ai1,...,ikdxi1∧· · ·∧dxik

where dxi is the canonical form associated to xi.

Definition 6.6 (action of W ). W acts on t∗ by w · α : x 7→ α(w−1 · x). It naturally
induces an action of W on S and Λ.

Notation. If W acts on a space A , then we denote A W the space of all elements
of A that are invariant under the action of W .

We now proceed the proof of Chevalley’s theorem 6.14 as made in [6].

Notation. We denote (SW )+ the ideal of SW consisting of elements of constant
term (whose in zero degree) equals to zero.

Proposition 6.7 ([6, Proposition (3.1)]). The field of fractions of SW has tran-
scendence degree l over R.

Definition 6.8. For any polynomial f in S , we define f̂ with :

f̂ =
1

|W |
∑
w∈W

w · f.

Remark 6.9. We note that the map f 7→ f̂ is a linear map from S to SW , which
is the identity on SW , and that preserves degrees. We also see that if p ∈ S and
q ∈ SW ,

(2) p̂q = p̂q.

Proposition 6.10. Let K be the ideal in S generated by (SW )+. If F1, . . . , Fn are
homogeneous elements of (SW )+ which generate the ideal K , then SW is generated
as an algebra by 1, F1, . . . , Fn.

Proof. We have to show that every element f of SW is a polynomial in F1, . . . , Fn.
It suffices to prove it for homogeneous elements, and we proceed by induction on
deg(f). The case deg(f) = 0 is trivial, so we take f ∈ SW with deg(f) > 0. We
have since f is homogeneous that f ∈ K so there exists gi ∈ S such that

(3) f = g1F1 + · · ·+ gnFn.

We may assume (after simplifications) that all gi are homogeneous of degree deg(f)−
deg(Fi). Now we apply ̂ and use (2) to get

(4) f = ĝ1F1 + · · ·+ ĝnFn.

But ĝi is an homogeneous element of SW of degree lower than f , so we may conclude
by induction. �
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Lemma 6.11. Let g be a homogeneous polynomial of R[x1, . . . , xn] of degree one. If
the polynomial f vanishes at all zeros of g, then g divides f in R[x1, . . . , xn].

Proof. We can assume, without loss of generality, that g is of degree one in xn. Now,
with euclidean division in R[x1, . . . , xn−1][xn], we get r ∈ R[x1, . . . , xn−1] such that

f = gq + r.

But if r is nonzero, take (a1, . . . , an−1) such that r(a1, . . . , an−1) 6= 0. Resolving
a linear equation, we can find an such that g(a1, . . . , an−1, an) = 0, therefore, by
hypothesis, we get f(a1, . . . , an) = 0, and a contradiction. �

Lemma 6.12. Suppose that f1, . . . , fr are elements of SW and that f1 is not in the
ideal of SW generated by f2, . . . , fr. If g1, . . . , gr are homogeneous elements of S
verifying

(5) g1f1 + · · ·+ grfr = 0

then g1 ∈ K .

Proof. We first note that f1 is not in the ideal of S generated by f2, . . . , fr. Indeed,
otherwise we would have

f1 = q2f2 + · · ·+ qrfr
for qi in S and we would apply ̂ to obtain

f1 = q̂2f2 + · · ·+ q̂rfr

which would contradict the hypothesis that f1 is not in the ideal of SW generated
by f2, . . . , fr.

We now proceed by induction on deg(g1). If g1 is of degree zero, it must be zero,
because otherwise f1 would be in the ideal of S generated by f2, . . . , fr.

Now, if deg(g1) > 0, take s := sα ∈ W a simple reflection, and denote H := Hα

the corresponding hyperplane. We consider g a linear polynomial whose zero set is
exactly H. Now s · gi − gi is zero on all H since s is the identity on H, hence, by
6.11, we get hi such that

(6) s · gi − gi = ghi.

Since g, gi and therefore s · gi are homogeneous, hi is also homogeneous, of degree
deg(hi) = deg(gi)−1. Now we apply s to equation (5), subtract it to (5), and finally
use (6) to obtain :

(7) g · (f1h1 + · · ·+ frhr) = 0

and then, since g is nonzero,

(8) f1h1 + · · ·+ frhr = 0.
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By induction, we hence have h1 ∈ K , so s · g1 − g1 ∈ K , that is to say, s · g1 = g1

mod K . By its action on S and because W stabilizes (SW )+ and so K , W acts
naturally on S /K . Now, since we have just shown that s · g1 = g1 mod K for
every simple reflection s in W , we get that for all elements w of W , w · g1 = g1

mod K , and therefore, ĝ1 = g1 mod K . But ĝ1 is in (SW )+ because deg(g1) > 0,
ĝ1 ∈ SW and ̂ preserves degrees. Therefore ĝ1 belongs in K , and so does g1,
concluding the proof. �

Proposition 6.13 (Euler formula, [6, Chap. 3, Equation (10)]). Given a homoge-
neous polynomial f(x1, . . . , xn), we have the formula

(9)
n∑
i=1

xi
∂f

∂xi
= deg(f)f

Theorem 6.14 (Chevalley). The algebra SW is generated as an algebra by l homo-
geneous algebraically independent elements F1, . . . , Fl of positive degree :

SW = R[F1, . . . , Fl].

The degrees d1, . . . , dl, unique up to order, are supposed to be numbered so that d1 ≤
· · · ≤ dl.

Proof. Hilbert’s basis theorem gives n homogeneous invariants of positive degree
F1, . . . , Fn which generate K . It follows from 6.10 that 1, F1, . . . , Fn generate SW

as an algebra. It remains to show that they are algebraically independent, and we
will deduce from 6.7 that n = l.

Suppose that the elements are dependent, thus there exists a nonzero polynomial
h(x1, . . . , xn) such that

(10) h(F1, . . . , Fn) = 0.

We want to analyse the expression of h and simplify it : take a xe11 · · ·xenn a monomial
in h. Then, if di := deg(Fi), a F e1

1 · · ·F en
n has degree d :=

∑
i diei. It is clear that

all monomials of degree d after being evaluate in F1, . . . , Fn sum up to zero. We will
then keep only this monomials in h.

We now differentiate (10) with respect to xk for each k :

(11)
n∑
i=1

∂h

∂xi
(F1, . . . , Fn)

∂Fi
∂xk

= 0.

We denote hi := ∂h
∂xi

(F1, . . . , Fn). We have that hi is an homogeneous element of SW

and ∂Fi
∂xk

is an homogeneous element of S , so we would like to apply 6.12, but hi may
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not verify the hypothesis. We renumbered hi so that hi, 1 ≤ i ≤ m is a minimal set
of generators for the ideal of SW generated by hi, 1 ≤ i ≤ n, so we may write

(12) hi =
m∑
j=1

gijhj

for i > m, with gij ∈ SW . Since hi is of degree d−di, if we discard redundant terms,
we can assume that gij is of degree deg(hi)− deg(hj) = dj − di. Now, for each k, we
put (12) into (11) to obtain

(13)
m∑
i=1

hi

(
∂Fi
∂xk

+
n∑

j=m+1

gij
∂Fj
∂xk

)
= 0.

We write pi for the term in parenthesis, which is an homogeneous polynomial of
degree di − 1, and get by lemma 6.12 that p1 ∈ K . Therefore, we have,

(14)
∂F1

∂xk
+

n∑
j=m+1

g1
j

∂Fj
∂xk

=
n∑
i=1

qiFi

with qi ∈ S . Now, we multiply (13) by xk and sum over k :
n∑
k=1

xk
∂F1

∂xk
+

n∑
k=1

xk

n∑
j=m+1

g1
j

∂Fj
∂xk

=
n∑
k=1

xk

n∑
i=1

qiFi

thus,
n∑
k=1

xk
∂F1

∂xk
+

n∑
j=m+1

g1
j

n∑
k=1

xk
∂Fj
∂xk

=
n∑
i=1

(
n∑
k=1

xkqi

)
Fi

therefore we have, using (9) :

(15) d1F1 +
n∑

j=m+1

djg
1
jFj =

n∑
i=1

riFi.

But now deg(ri) > 0, and we see that the left side of (15) is of degree d1, so the term
r1F1 on the right side must simplify with the other terms of degree different from d1.
With this simplification, we see that (15) expresses F1 as an element of the ideal in
S generated by F2, . . . , Fn, contrary to the hypothesis made about F1, . . . , Fn. �

Definition 6.15 (exponents). The exponents of W acting on S are defined as
mi = di − 1 for 1 ≤ i ≤ l.

Proposition 6.16 ([6, Theorem 3.9]). We have m1 + · · · + ml = v and (m1 +
1) · · · (ml + 1) = d1 · · · dl = |W |.
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Definition 6.17. We set D to be the set of constant coefficient differential operators

on S. Such an operator is a functional on S of the form
∑
I

sI
∂j1

∂xj11
· · · ∂

jl

∂xjll
where

sI ∈ S 0 and
∂j1

∂xjii
is the classical partial derivative on a polynomial.

Definition 6.18. For each H ∈ t, define a functional DH : S → S as the derivation
extending the evaluation map H : t∗ → R. With this identification, we consider S(t)
to be the symmetric algebra of the vector space of maps DH , H ∈ t. We should
denote Da the map S → S corresponding to a ∈ S(t).

Remark 6.19. We should explicit the map DH1···Hk = DH1 · · ·DHk : for k = 1,
we have for example DH(α1α2) = α1(H)α2 + α1α2(H), and DH1 · · ·DHk(α1α2) =
DH1 · · ·DHk−1(DHk(α1α2)). Then we easily get :

(16) DH1 · · ·DHk(α1 · · ·αk) =
∑
σ∈Sk

α1(Hσ(1)) · · ·αk(Hσ(k)).

Remark 6.20. We can identify D to be S(t) as defined, and we shall use the most
appropriate definition when needed.

Definition 6.21. The action of W on D = S(t) is natural, and we define the
harmonic polynomials, the polynomials f in S that are annihilated by all the func-
tionals in D that are invariant under the action of W . The algebra of all harmonic
polynomials is denoted H so we have

H = {f ∈ S |DWf = 0}.

Proposition 6.22. We have H =
⊕

k H k where H k := H ∩S k. Furthermore,
H is invariant under the action of W on S .

Proof. To prove that H =
⊕

k H k it remains to show that H ⊂
∑

k H k. Take
f =

∑
i fi in H . We want to show that fi ∈ H , so choose p ∈ DW . An element

in D = S(t) is W -invariant if and only if each of its homogeneous components is
W -invariant (since the degree is invariant under the action of W ), so we can suppose
that p is homogeneous. Then p reduce the degree of each homogeneous component
of f by the same integer, so if p(f) = 0, then p(fi) = 0 for all i.

To see the second statement, take w ∈ W , f ∈ H , p ∈ DW , and note that
p(w · f) = (w · p)(f) = p(f) = 0 since p ∈ DW . �

Proposition 6.23 ([5, Ch. III, Theorem 3.4]). We denote I the ideal of S gener-
ated by the homogeneous elements of SW of positive degree. Then we have

(17) S = H ⊕I .
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Hence,

(18) S /I ∼= H .

Theorem 6.24 ([5, Ch. III, Theorem 3.4]). Let φ : H ⊗SW → S be the linear
map extending the map φ : f ⊗ g 7→ fg. Then φ is a linear isomorphism :

(19) S ∼= H ⊗SW .

That is to say, every element s in S can be written uniquely as s =
∑

i higi where
hi is harmonic and gi is W -invariant.

Corollary 6.25. We have the identity

(20)
∑
k≥0

(dim H k)tk =
l∏

j=1

(1 + t+ t2 + · · ·+ tmj).

Therefore, dim H v = 1, H k = 0 for k > v and dim H = |W |.

Proof. We shall prove the very last statement dim H = |W |, since it is not made
in the reference and it is not obvious. The dimension of H is the sum of all the
coefficient of the polynomial given by (20). But by the presentation of it, this sum
is exactly (1 +m1) · · · (1 +ml) = |W |. �

Definition 6.26. We set the primordial harmonic polynomial Π ∈ S v to be :

(21) Π :=
∏
α∈∆+

α.

Proposition 6.27 ([6, p.69]). Any polynomial f ∈ S verifying w · f = det(w)f is
divisible by Π.

Remark 6.28. We have for example, and it is used in the proof, w ·Π = det(w)Π for
all w ∈ W . Indeed, since W is generated by simple reflections, we have to prove that
sαj · Π = −Π for 1 ≤ j ≤ l. This statement holds because sαj is a permutation of
∆+\{αj} and sαj(αj) = −αj.

Corollary 6.29. The polynomial Π is harmonic, therefore Π spans H v because of
6.25.

Proof. Take Da ∈ DW , a ∈ S(t)W . We want to show that Da(Π) = 0. We have, for
w ∈ W :

w ·Da(Π) = Dw·a(w · Π) = det(w)D(a)(Π).

Therefore, by the preceding proposition, Da(Π) is divisible by Π. But Da(Π) has
smaller degree than Π, hence is zero. �
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Definition 6.30. For a polynomial F ∈ S , define dF ∈ S ⊗ Λ1 to be the classical
differential :

dF =
∑
i

∂F

∂xi
dxi.

Theorem 6.31 (Solomon). The space (S ⊗ Λ)W is a free SW -module with basis

{dFi1 ∧ · · · ∧ dFiq , 1 ≤ i1 < · · · < iq ≤ l}.

Where the Fi are the homogeneous generators defined in 6.14.

Lemma 6.32. We have,

dF1 ∧ · · · ∧ dFl = c Π dx1 ∧ · · · ∧ dxl
for a nonzero real number c.

Proof. Because of the homogeneousness of the Fi and the sum formula about their
degrees, we have :

dF1 ∧ · · · ∧ dFl = J dx1 ∧ · · · ∧ dxl
for a polynomial J of degree m1 + · · · + ml = v. The left-hand side is W -invariant
and dx1 ∧ · · · ∧ dxl verifies w · f = det(w)f , therefore so does J . Hence, because J
and Π are the same degree and with 6.27 :

dF1 ∧ · · · ∧ dFl = c Π dx1 ∧ · · · ∧ dxl
for a real number c.

We now show that c is nonzero. For 1 ≤ i ≤ l, because of the independence of the
Fi and the dimension of R[x1, . . . , xn], the polynomials xi, F1, . . . , Fl are algebraically
dependent. Let Qi(xi, z1, . . . , zl) be a polynomial of minimal degree in xi such that

Qi(xi, F1, . . . , Fl) = 0.

We now take the partial derivative over xj of this expression, for 1 ≤ j ≤ l to obtain
:

l∑
k=1

∂Qi

∂zk
(xi, F1, . . . , Fl)

∂Fk
∂xj

+ δji
∂Qi

∂xj
(xi, F1, . . . , Fl) = 0.

We write this set of equalities with matrices : AB = −C whereA = (∂Qi
∂zj

(xi, F1, . . . , Fl))i,j,
B = (∂Fi

∂xj
)i,j and C is the diagonal matrix C = (∂Qi

∂xi
(xi, F1, . . . , Fl))i. Now, since

degxi(
∂Qi
∂xi

) < degxi(Qi), by minimality ∂Qi
∂xi

(xi, F1, . . . , Fl) is nonzero, hence det(C) 6=
0 and then det(B) 6= 0. This proves that the form dF1 ∧ · · · ∧ dFl is nonzero and
therefore c 6= 0. �
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Proof. (theorem 6.31) Let k be the quotient field of S . For a sequence I = i1 <
· · · < iq, we denote dFI = dFi1 ∧ · · · ∧ dFiq and I ′ the increasing sequence of
{1, . . . , l}\{i1, . . . , iq}. We now show that the elements of {dFi1 ∧ · · · ∧ dFiq , 1 ≤
i1 < · · · < iq ≤ l} form a k-basis of k ⊗ Λ, hence they are linearly independent over
SW , and we will also deduce that they are generators of (S ⊗ Λ)W .

Suppose that there exists a collection fI ∈ k such that
∑

I fIdFI = 0. For any
sequence I, we multiply by dFI′ , which kills all the terms but the one in I because
of the alternating product. We now have

±c fI Π dx1 ∧ · · · ∧ dxl = 0

and then fI = 0. We have the independence of the dFI , but because there are the
same number as the dimension over k of k ⊗ Λ, they form a k-basis of k ⊗ Λ.

Now, take ω ∈ (S ⊗ Λ)W ⊂ k ⊗ Λ. There exists some gI ∈ k such that ω =∑
I gIdFI . Again, we multiply by dFI′ to obtain for each I,

ω ∧ dFI′ = ±c gI Π dx1 ∧ · · · ∧ dxl.
But since both ω∧dFI′ and Π dx1∧ · · ·∧dxl are in (S ⊗Λ)W , they are W -invariant
and polynomial, and gI has to be W -invariant and polynomial. This conclude the
proof. �

Definition 6.33. For ω ∈ S ⊗ Λ, we define ω′ ∈ S /I ⊗ Λ obtained by reducing
the coefficients of ω modulo I .
Corollary 6.34. (S /T ⊗ Λ)W is an exterior algebra generated by

dF ′i ∈ [(S /T )mi ⊗ Λ1]W

for 1 ≤ i ≤ l.
Definition 6.35. The q-th elementary symmetric polynomial in l variables is the
polynomial

sq(x1, . . . , xl) =
∑

1≤i1<···<iq≤l

xi1 · · ·xiq .

Corollary 6.36. We have :
v∑
k=1

dim HomW (Λq,H k)uk = sq(u
m1 , . . . , uml).

6.3. Invariant differential forms. The elements presented in this section can be
found in [2].

In this part, we consider a transitive action of a compact Lie group G on a manifold
M , and we denote τg the diffeomorphism of M corresponding to g ∈ G. It will be
used later in the cases M = G and M = G/T .
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Definition 6.37. A differential form ω ∈ Ωp(M) is said to be G-invariant if for all
g ∈ G, τ ∗gω = ω.

Remark 6.38. An invariant differential form is then determined by its value at any
one point of M .

Proposition 6.39 ([9, (4.1)]). Any De Rham cohomology class is represented by a
G-invariant differential form and the subcomplex of invariant differential forms is
preserved by the differential operator.

Remark 6.40. Taking x ∈ M , and considering K := Kx := {g ∈ G| g · x = x}
the stabilizer of x, we have the identification M = G/K via the map g 7→ g · x,
surjective by transitivity and with kernel K. We define r := LK and n its orthogonal
complement in g. Note that this decomposition g = n⊕ r is preserved by Ad(K).

Differentiating at x the map introduced before, we identify n and Tx(M). The two
particular cases given before give K = 1, n = g and K = T , n = m.

Proposition 6.41. We may identify the G-invariant p-forms on M with the space
(Λpn∗)K.

Proof. With the identification between n and Tx(M) and the fact that an invariant
differential form is determined by its value at x, any form ω̃ ∈ Ωp(M) is determined
by the skew-symmetric multilinear map

ω = ω̃x : n× · · · × n→ R ∈ Λpn∗.

ω is K-invariant because ω̃ is G-invariant, hence K-invariant.

On the other hand, given ω ∈ (Λpn∗)K , we can define a G-invariant differential
form ω̃ on M with

ω̃g·x(Txτg(X1), . . . , Txτg(Xp)) = ω(X1, . . . , Xp).

�

Proposition 6.42 ([2, p. 97]). In the identification of the previous proposition, the
differential operator becomes the map δ : (Λpn∗)K → (Λp+1n∗)K given by

δω(X0, . . . , Xp) :=
1

p+ 1

∑
i<j

(−1)i+jω([Xi, Xj]n, X0, . . . , X̂i, . . . , X̂j, . . . , Xp)

where ˆ means that the term is omitted and [Xi, Xj]n denote the projection of [Xi, Xj]
into n along r.

Corollary 6.43. The propositions 6.39, 6.41 and 6.42 show that the De Rham co-
homology of M is computed by the complex {(Λpn∗)K , δ}.



25 c. kilque

In the following, we consider the case M = G. In this case, there is also the action
of right multiplication in G, so we may consider bi-invariant differential forms, differ-
ential forms that are invariant under the action of both left and right multiplication.

Proposition 6.44 ([9, (4.1)]). Any De Rham cohomology class is represented by a
G-bi-invariant differential form.

Proposition 6.45. We have
H(G) ∼= (Λg∗)G.

Proof. The value at the identity of a bi-invariant differential form is Ad(G)-invariant,
i.e. for such a differential form ω, for all g in G, for all X1, . . . , Xp in g,

ω(Ad(g)X1, . . . ,Ad(g)Xp) = ω(X1, . . . , Xp).

In particular, for all X in g,

ω(Ad(exp(tX))X1, . . . ,Ad(exp(tX))Xp) = ω(X1, . . . , Xp).

Differentiating at the identity we get,

ω([X,X1], . . . , Xp) + · · ·+ ω(X1, . . . , [X,Xp]) = 0.

The previous equation shows that if ω is bi-invariant, δ(ω) = 0, and it gives the
result. �

6.4. Main theorems.

Proposition 6.46. There is an isomorphism of graded ring

(22) H(T ) ∼= Λ.

Proof. The presentation of H(T ) given by 5.14 is exactly the presentation of Λ, hence
there exists an isomorphism between the two graded rings. �

Proposition 6.47 ([9, (5.3)]). We have, as modules,

(23) H(G/T ) ∼= R[W ]

where R[W ] is the group ring ofW . We say that H(G/T ) is the regular representation
of W .

Theorem 6.48 (Borel). There exists a degree doubling W -equivariant rings isomor-
phism

c : S /T → H(G/T ).

Therefore, recalling that S /T ∼= H , if H(2) is H with the degrees doubled then
H(2)

∼= H(G/T ).
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Proof. To define the morphism c, we start by setting its image on λ ∈ t∗. For λ ∈ t∗,
we extend it on all g by making it zero on m, and we define ωλ a Ad(T )-invariant
two-form on m given by

(24) ∀X, Y ∈ m, ωλ(X, Y ) := λ([X, Y ]).

The Jacobi identity gives δωλ = 0. Then we use 6.43 in the case K = T and
M = G/T to identify ωλ ∈ (Λm∗)T with ω̃λ ∈ Ω(G/T ). Hence we can define
c(λ) := [ω̃λ] ∈ H2(G/T ) the cohomology class of ω̃λ. We extend this to a degree
doubling rings homomorphism c : S → H(G/T ).

The group W acts on t∗ naturally, and on Ω(G/T ) by its action on G/T . Then
one can note that we have for all w in W , w∗ωλ = ωw·λ. Therefore, we have for
λ ∈ t∗, w∗c(λ) = c(w ·λ), and it still holds in S : c preserves the action of W . Since,
(23), H(G/T ) is the regular representation of W , the W -invariants are copies of the
trivial representation. Yet, we know by 2.13 that the regular representation contains
each irreducible representation with multiplicity equals to its dimension. But there is
already a copy of the trivial representation in H0(G/T ), hence allW -invariants lie in
H0(G/T ). Now, take λ in I the ideal of S generated by W -invariant polynomials
of positive degree. As told before, we have for w in W , w∗c(λ) = c(w · λ) = c(λ)
so c(λ) is W -invariant, and generates a W -invariant, therefore lie in H0(G/T ). But
on the other hand, by degree preserving, c(λ) is of positive degree, and therefore
c(λ) = 0. We have I ⊆ Ker(c). In the following, we show that they are equal.
Recalling (17) : S = H ⊕ I , we prove that c is injective on H . We use the
grading structure on H , we first prove that c is injective on H v and then proceed
by decreasing induction.

We start by showing that c(Π) 6= 0, where we recall that Π is the primordial
harmonic polynomials given by (21) which spans H v. We use part 6.1 : consider
∆+ = {α1, . . . , αv} the set of positive roots, the decomposition m = m1 ⊕ · · · ⊕ mv

with basis {Xi, Xi+v} for mi and relations given in 6.4. We denote ωi := ωαi , so
c(Π) = [ω̃1 ∧ · · · ∧ ω̃v]. We want to evaluate c(Π) on the given basis of m, we have :

ω1 ∧ · · · ∧ ωv(X1, X1+v, . . . , Xv, X2v)

=
1

(2v)!

∑
σ∈S2v

sgn(σ)ω1(Xσ(1), Xσ(1+v)) · · ·ωv(Xσ(v), Xσ(2v))

=
1

(2v)!

∑
σ∈S2v

sgn(σ)α1([Xσ(1), Xσ(1+v)]) · · ·αv([Xσ(v), Xσ(2v)])

where S2v is the symmetric group and sgn(σ) is the sign of the permutation σ.
Recall that αi is zero on m, so the term corresponding to α is nonzero only if σ
permutes the pairs πi = {i, i + v} and switches members of each pair. Taking σ0
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that only permutes pairs, and σ that permutes pairs the same way than σ0 but also
switches some members of each pair, we have that the terms corresponding to σ0

and σ are equal, because of the skew-symmetricity of the bracket and the fact that
sgn corresponds to the number of switches minus one. Since permutations that only
permutes pairs are even we have, according to (16) :

ω1 ∧ · · · ∧ ωv(X1, X1+v, . . . , Xv, X2v)

=
2v

(2v)!

∑
σ∈Sv

α1([Xσ(1), Xσ(1)+v]) · · ·αv([Xσ(v), Xσ(v)+v])

=
2v

(2v)!

∑
σ∈Sv

α1(Hσ(1)) · · ·αv(Hσ(v))

=
2v

(2v)!
D1 · · ·DvΠ

where Di := DHi ∈ D is the functional on S as defined in 6.18. We now use the
following lemma too conclude.

Lemma 6.49 ([9, (5.4)]). We have D1 · · ·DvΠ 6= 0.

The form ω1 ∧ · · · ∧ ωv is nonzero, and thus neither is c(Π).

We know proceed by induction : suppose that c : H k → H2k(G/T ) is injective for
a given k ≤ v, and let V := H k−1∩Ker(c). By W -equivariance (c(wf) = wc(f)), V
is preserved by W . There exists a positive root α such that sα does not act by −I
on V . Indeed, if this was not the case, then the action of W on V would be given
by the determinant action : w · f = det(w)f , but this is impossible because of 6.27
and the degree of polynomials in V . Then we decompose V = V+ ⊕ V− according
to the eigenspaces of sα. If V 6= 0, then V+ 6= 0, so take f in V+ nonzero. We
have c(αf) = c(α)c(f) = 0 and therefore αf ∈ I by induction and because of its
degree. Now, take h1, . . . , h|W | to be a basis of H , where h1, dots, hr are sα-skew
and the rest is invariant. By Chevalley’s theorem 6.14 and theorem 6.24, we write
αf =

∑
i hiσi where σi are W -invariant of positive degree. The polynomial α is skew

and f is invariant, so αf is skew, and then the sum ends at r. By hypothesis, for
i ≤ r, hi must vanish on Ker(α), hence be written hi = αh′i for h′i ∈ S . We then
have f =

∑
i h
′
iσi ∈ I . Therefore, f ∈ H ∩ I = 0 and c : H k → H2k(G/T ) is

injective. By induction, we have proved that c is injective on H.

The surjectivity is then clear by dimension : we have proven in 6.25 that dim H =
|W |, and by (23) H(G/T ) is of the same dimension. �
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Theorem 6.50 ([9, Proposition (6.1)]). The pullback map Ψ∗ associated to Ψ is an
isomorphism of graded rings

(25) Ψ∗ : H(G)
∼= // [H(G/T )⊗H(T )]W .

Theorem 6.51. The cohomology ring H(G) is an exterior graded algebra with gen-
erators of degree (2mi, 1), for 1 ≤ i ≤ l.

Proof. We know from (25) that

H(G) ∼= [H(G/T )⊗H(T )]W .

Therefore, using (22) and 6.48 we obtain

H(G) ∼= [H(2) ⊗ Λ]W .

We conclude with 6.34 : H(G) is an exterior algebra with generators of degree
(2mi, 1), for 1 ≤ i ≤ l. �
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