

De Rham Cohomology of a Compact Connected Lie Group

August 29, 2017

Author:

Corentin Kilque

Supervisor:
Prof. Paolo Papi

Abstract

In this paper we study Lie groups, Lie algebras and De Rham cohomology to obtain an exterior algebra structure for the cohomology ring of a compact connected Lie group.

We will use maximal tori theory, as well as invariant theory, and invariant differential forms in order to prove the statement about the structure.

Acknowledgements

I would like to thank Dr. Paolo Papi for supervising me during this internship and for giving me this challenging subject. He has given his time during our meeting to guide me trough this experience.

I also have to acknowledge the director, Dr. Emanuele Caglioti and the rest of the department team for nicely receiving me in the laboratory.

Finally, thank to my family and my friends for their constant support of any kind which allows me to pursue my studies.

Contents

Abstract 1
Acknowledgements 1

1. Introduction 3
2. Generalities 5
2.1. Algebras, groups 5
2.2. Representation theory. 6
3. Lie groups, Lie algebras 6
3.1. Lie groups 7
3.2. Lie algebra associated to a Lie group. 8
4. Maximal tori. 11
4.1. Maximal torus of a Lie group 11
4.2. Lie algebra of a maximal torus 12
5. De Rham cohomology. 12
5.1. De Rham cohomology on \mathbb{R}^{n} 12
5.2. De Rham cohomology on a manifold 14
6. Proof of the theorem 14
6.1. Root theory 14
6.2. Invariant theory 15
6.3. Invariant differential forms 23
6.4. Main theorems 25
References 29

1. Introduction

Here is presented the report of my two-month summer internship made at the Dipartimento di Matematica, Sapienza Università di Roma, under Dr. Paolo Papi. This internship was about Lie theory. After a reading course of some chapters of [3, as an introduction to Lie theory, and particularly root theory, the final subject was about a proof of a computation of the De Rham cohomology ring of the compact connected Lie group made by Mark Reeder in [9] "On the cohomology of compact Lie groups" published in L'Enseignement Mathématiques in 1995. The following theorem

Theorem 1.1. For a compact connected Lie group G, the De Rham cohomology ring $H(G)$ is an exterior graded algebra with generators of known degree.
is known since the first half of the 20th century. The paper studied give an alternative proof of this statement.

Lie theory was introduced by the Norwegian mathematician Sophus Lie, with help from Felix Klein and later Friedrich Engel. The theory was then developed mainly by Whilhelm Killing, Élie Cartan, Hermann Weyl and Claude Chevalley. Lie groups are an important part of mathematics, especially in geometry. They also play a major role in physics, as geometry groups are often used. There is a strong link between a Lie group and its Lie algebra, therefore the later is often used to study Lie groups. The De Rham cohomology (after Georges De Rham) of a manifold is defined with differential forms. It is an algebraic tool, topologically invariant (note that this is not trivial, and not made in this report), which helps to study the topology of the manifold.

The proof goes as follows : if T is a maximal tori and W its Weyl group acting on G, the map $\Psi: G / T \times T \rightarrow G,(g T, t) \mapsto g t g^{-1}$ gives rise to an isomorphism $\Psi^{*}: H(G) \rightarrow[H(G / T) \otimes H(T)]^{W}$, but $H(T)$ is easily computable as the exterior algebra of \mathfrak{t}^{*} where \mathfrak{t} is the Lie algebra associated to T, and Borel's theorem gives an isomorphism between $H(G / T)$ and the graded algebra of harmonic polynomials with degrees doubled. Then we use a corollary of Solomon's theorem, which comes from Chevalley's theorem, which states that what we got is an exterior algebra, and gives the degrees of its generators.

After discussing some generalities about algebras, groups and representation theory that are needed for the report in the second part, we introduce Lie groups, their Lie algebras along with fundamental concepts and some properties in the third one. In the fourth part, we discuss about maximal tori, while in the fifth one we introduce the De Rham cohomology on \mathbb{R}^{n} and its subsets, and then on a manifold, and study some properties of it. Finally, we proceed of the proof of the theorem 1.1 in the sixth
part. We start by introducing notations, and some concepts about root theory, then we discuss about invariant theory. We begin with Chevalley's theorem, fundamental for the proof, then introduce harmonic polynomials, gives results about it, and prove Solomon's theorem, whose corollary gives the basis of the exterior algebra $H(G)$. We continue by identify invariant differential forms with alternating linear forms on Lie algebras, and conclude by proving Borel's theorem and proceeding with the main proof.

The report mainly relies on the paper from M. Reeder [9], and the references given by the author. We give the reference used for each part, and every statement unproven is also referenced. Unfortunately, by a lack of time, I have not been able to study all the paper, and some proofs given in it are not made here. Thus, some results made in the report may seem useless, but are used in those unmade proofs. In the same way, some results needed are just stated as their proofs are too long to understand and to make in the report.

August 2017.

2. Generalities

2.1. Algebras, groups. The concepts of this part are taken from Lang's book [7].

Definition 2.1. A Lie algebra \mathfrak{g} is a vector space, with a bilinear product [,], verifying the following rules:
i. $\forall X \in \mathfrak{g},[X, X]=0$;
ii. $\forall X, Y, Z \in \mathfrak{g},[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (Jacobi identity).

Definition 2.2. A Lie subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} is a subspace of \mathfrak{g} invariant under product :

$$
\forall X, Y \in \mathfrak{h},[X, Y] \in \mathfrak{h} .
$$

Definition 2.3 (Graded algebra). A graded algebra is an algebra \mathcal{A} which can be written $\mathcal{A}=\bigoplus_{i \in \mathbb{N}} A^{i}$ where $\left(A^{i}\right)_{i \in \mathbb{N}}$ is a collection of subspaces which verifies $A^{i} A^{j} \subset$ A^{i+j}. We say that $a \in A$ is an homogeneous element of degree i if a is in A^{i}, and we denote $\operatorname{deg}(a)=i$.

Definition 2.4 (Homogeneous ideal). An homogeneous ideal of a graded algebra $\mathcal{A}=\bigoplus_{i \in \mathbb{N}} A^{i}$ is an ideal I of \mathcal{A} generated by homogeneous elements.

Proposition 2.5 ([1]). If I is an homogeneous ideal of $\mathcal{A}=\bigoplus_{i \in \mathbb{N}} A^{i}$, then the algebra \mathcal{A} / I is a graded algebra, with grading given by : $\mathcal{A} / I=\bigoplus_{i \in \mathbb{N}}\left(A^{i}+I\right) / I$.

Definition 2.6 (Graded tensor product). If A, B are two graded algebras, we define the graded tensor product of A and B, denoted $A \otimes_{G} B$ to be the ordinary tensor product as modules, with product given by :

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right):=(-1)^{\operatorname{deg}(b) \operatorname{deg}\left(a^{\prime}\right)} a a^{\prime} \otimes b b^{\prime}, \forall a, a^{\prime} \in A, \forall b, b^{\prime} \in B
$$

Definition 2.7 (tensor algebra). The tensor algebra of a vector space V is the graded algebra :

$$
T(V)=\bigoplus_{n \in \mathbb{N}} \bigotimes_{r=1}^{n} V
$$

Definition 2.8 (symmetric algebra). The symmetric algebra of a vector space V is the graded algebra :

$$
S(V)=T(V) / I, I=<x \otimes y-y \otimes x \mid x, y \in V>
$$

Since I is homogeneous, $S(V)$ is graded, and we denote $S(V):=\bigoplus_{k \in \mathbb{N}} S^{k}(V)$ the grading.

Definition 2.9 (exterior algebra). The exterior algebra of a vector space V is the graded algebra :

$$
\Lambda(V)=T(V) / J, \quad J=<x \otimes y+y \otimes x \mid x, y \in V>
$$

Again, J is homogeneous and therefore $\Lambda(V)$ is graded. We denote \wedge the product in $\Lambda(V)$ and $\Lambda(V)=\bigoplus_{k=0}^{n} \Lambda^{k}(V)$ the grading, where $\operatorname{dim}(V)=n$. The exterior algebra generated by $\left\{y_{1}, \ldots, y_{n}\right\}$ is the exterior algebra of the vector space generated by $\left\{y_{1}, \ldots, y_{n}\right\}$.

Definition 2.10 (group ring). Let G be a group, and R a ring. We define the group ring of G over R as the set $R[G]$ of all maps $f: G \rightarrow R$ with finite support. This set has a natural linear structure, and for f, g two such maps, we define $f g$ to be the map given by $f g(x)=\sum_{u v=x} f(u) g(v)$ for x in G. With this product, we obtain a ring structure for $R[G]$.
2.2. Representation theory. We refer to 4 for this section.

Definition 2.11. A representation of an algebra A is an algebra morphism $\rho: A \rightarrow$ $\operatorname{Aut}(V)$ where V is a vector space. Similarly, a representation of a Lie algebra L is a Lie algebra morphism $\rho: L \rightarrow \operatorname{End}(V)$ where V is a vector space and $\operatorname{End}(V)$ is the Lie algebra associated to the algebra $\operatorname{Aut}(V)$. A representation of a group G is a group morphism $\rho: G \rightarrow \mathrm{GL}(V)$ where V is a vector space. We also say that A, L or G acts on V, the action being defined for example for $a \in A$ by $a \cdot x:=\rho(a)(x)$. The dimension of a representation is the dimension of the vector space V.

Definition 2.12. A subspace $U \subset V$ is said to be invariant if the action of the algebra or the group A leaves U invariant : $\forall a \in A, a \cdot U \subset U$. A representation V is said to be irreducible if there is no nontrivial invariant subspace.

Proposition 2.13 ([4, Proposition 1.8]). Consider a representation V of a finite group W. We have a decomposition

$$
\begin{equation*}
V=\bigoplus_{j=1}^{a_{1}} V_{1} \oplus \cdots \oplus \bigoplus_{j=1}^{a_{k}} V_{k} \tag{1}
\end{equation*}
$$

where V_{1}, \ldots, V_{k} are non-isomorphic W-invariants subspaces and $a_{i}=\operatorname{dim}\left(V_{i}\right)$. This decomposition is unique up to order.

3. Lie groups, Lie algebras

For more details, see [10].

3.1. Lie groups.

Definition 3.1 (smooth manifold). A (n-dimensional) (smooth) manifold is a second countable (i.e. that has a countable base of open subsets) Hausdorff topological space M which is locally homeomorphic to \mathbb{R}^{n} : there is an atlas $\left(U_{\alpha}, \phi_{\alpha}\right)_{\alpha \in A}$ consisting of on open cover $\left(U_{\alpha}\right)_{\alpha \in A}$ of M whose elements are called coordinate together with a collection of homeomorphisms $\phi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}$ where V_{α} is an open subset of \mathbb{R}^{n}, called coordinate maps. The manifold is smooth if for every α, β in $A, \phi_{\beta} \circ \phi_{\alpha}^{-1}$: $\phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \mathbb{R}^{n}$ is smooth. The atlas is required to be maximal : one cannot add more coordinate maps.

In all the report all the manifolds are supposed to be smooth, we will therefore call a smooth manifold simply a manifold.
Definition 3.2 (smooth map). A map f between two manifold M and N with atlases $\left(U_{\alpha}, \phi_{\alpha}\right)_{\alpha \in A}$ and $\left(V_{\beta}, \psi_{\beta}\right)_{\beta \in B}$ is called smooth if for every point m of M there exists α, β in $A \times B$, such that m is in $U_{\alpha}, f(m)$ is in $V_{\beta}, f^{-1}\left(V_{\beta}\right) \cap U_{\alpha}$ is open and the map $\left.\psi_{\beta} \circ f \circ \phi_{\alpha}\right|_{\phi_{\alpha}\left(f^{-1}\left(V_{\beta}\right) \cap U_{\alpha}\right)}: \phi_{\alpha}\left(f^{-1}\left(V_{\beta}\right) \cap U_{\alpha}\right) \rightarrow \psi_{\beta}\left(V_{\beta}\right)$ is smooth.
Definition 3.3 (Lie group). A Lie group G is a manifold which is also a group such that the group product and the inverse map are smooth. A homomorphism of Lie groups is a group homomorphism between two Lie groups which is smooth.
Example 3.4. The torus $T^{n}:=S^{1} \times \cdots \times S^{1}$ is a Lie group.
Example 3.5. For $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and $n \in \mathbb{N}^{*}$, any closed subgroup of $G L(n, \mathbb{K})$ is a Lie group. Such a Lie group is called a matrix Lie group.
Remark 3.6. We recall that an immersion is a differentiable function whose differential is everywhere one-to-one.
Definition 3.7. A Lie subgroup H of a Lie group G is the image of a Lie group H^{\prime} under an immersion $\phi: H^{\prime} \rightarrow G$ together with a Lie group structure on H which makes $\phi: H^{\prime} \rightarrow H$ a Lie groups homomorphism.
Definition 3.8 (germ). Two smooth maps $f, g: M \rightarrow N$ between two manifolds M, N are said to have the same germ at a point $p \in M$ if there exists a neighbourhood U of p such that $\left.f\right|_{U}=\left.g\right|_{U}$. The relation of having the same germ at p is an equivalence relation, and the equivalence classes are called germs. A representative of a germ is a map $f: U \rightarrow N$ where U is a neighbourhood of p, the set of all the germs has an obvious \mathbb{R}-algebra structure. We denote δ_{p} the set of germs at p when $N=\mathbb{R}$.
Definition 3.9 (tangent vector, tangent space, differential map). A tangent vector at $p \in M$ is a map $X: \delta_{p} \rightarrow \mathbb{R}$ satisfying :

$$
\forall f, g \in \delta_{p}, \quad X(f g)=X(f) g(p)+f(p) X(g)
$$

The set of tangent vectors at p forms a vector space $T_{p} M$ called the tangent space at p. Any germ of a map $\phi:(M, p) \rightarrow(N, q)$ (here $q=f(p)$) induces a homomorphism of \mathbb{R}-algebras $\phi^{*}: \delta_{p} \rightarrow \delta_{q}$ given by

$$
\forall f \in \delta_{p}, \phi^{*}(f)=f \circ \phi
$$

Then we have the differential of the map induced by ϕ,

$$
T_{p} \phi: \begin{array}{ccc}
T_{p} M & \rightarrow & T_{q} N \\
X & \mapsto & X \circ \phi^{*} .
\end{array}
$$

We easily see that $\phi \mapsto T_{p} \phi$ is functorial.
Proposition 3.10 ([10, Ch. I Proposition 2.2]). If V is a finite-dimensional real vector space, then for all p in $V, T_{p} V$ is canonically isomorphic to V.

Remark 3.11. We note that with the functoriality property, each coordinate map $\phi: U \rightarrow V$ induces an isomorphism $T_{p} \phi: T_{p} M=T_{p} U \rightarrow T_{h(p)} V=T_{h(p)} \mathbb{R}^{n} \cong \mathbb{R}^{n}$.

Definition 3.12 (tangent bundle). The tangent bundle of a manifold M is the disjoint union

$$
T M:=\bigcup_{p \in M} T_{p} M
$$

There is a projection $\pi: T M \rightarrow M$ given by $v \in T_{p} M \subset T M \mapsto p$. For any open subset $U \subset M$, we have $T U:=\bigcup_{p \in U} T_{p} U=\bigcup_{p \in U} T_{p} M$. One can associate to any coordinate map ϕ of M a coordinate map $T \phi: T M \supset T U \rightarrow T V=V \times R^{n}$, called the bundle coordinate map given by $T \phi \mid T_{p} M=T_{p} \phi$. This makes $T M$ into a $2 n$-dimensional manifold.

Definition 3.13 (vector field). A smooth vector field on a manifold M is a smooth $\operatorname{map} X: M \rightarrow T M$ which verifies $X(p) \in T_{p} M, \forall p \in M$, that is to say $\pi \circ X=i d_{M}$. For a group G, we denote the left action of $x \in G$ on G by $l_{x}: G \rightarrow G, g \mapsto x g$. A vector field on a Lie group G is said to be left-invariant if the following diagram commutes :

3.2. Lie algebra associated to a Lie group.

Definition 3.14. For a Lie group G, the Lie algebra associated to G is $L G:=T_{e} G$ where e is the unit of G. Every Lie groups homomorphism $f: G \rightarrow H$ rises to a map $L f:=T_{e} f: L G \rightarrow L H$.

Remark 3.15. For v in $L G$, define the vector field $X_{v}: G \rightarrow L G, x \mapsto T_{e} l_{x}(v)$, which is left-invariant. The map $v \mapsto X_{v}$ gives a canonical isomorphism between $L G$ and the set of left-invariant vector fields, so we will identify $L G$ with this space in the following.

We now describe the Lie algebra structure of $L G$.
Definition 3.16 ([11, Definition 1.44]). The linear structure is clear, and for two left-invariant vector fields $X, Y \in L G$, define $[X, Y]$ as the vector field defined on each $g \in G$ and $\phi \in \delta_{g}$ by

$$
[X, Y](g)(\phi)=X(g)(Y(.)(\phi))-Y(g)(X(.)(\phi))
$$

where $Y().(\phi): G \rightarrow \mathbb{R}, g \mapsto Y(g)(\phi)$ and $X().(\phi): G \rightarrow \mathbb{R}, g \mapsto X(g)(\phi)$. This is correct because we have $Y().(\phi) \in \delta_{g}$ and $X().(\phi) \in \delta_{g}$. One can verify that $[X, Y]$ is still left invariant and that the product [,] satisfy the hypothesis of a Lie algebra, making $L G$ into a Lie algebra.

Proposition 3.17 ([11). Let H be a Lie subgroup of G as the image of H^{\prime} under ϕ. Then, $T_{e} \phi: L H^{\prime} \rightarrow L G$ is a Lie algebras isomorphism onto its image, which is a subalgebra of $L G$.

Remark 3.18. The previous proposition essentially asserts that the Lie algebra of a Lie subgroup is a Lie subalgebra of the corresponding Lie algebra.

Definition 3.19 (adjoint representation). Let $c(g)$ denotes the conjugation by $g \in G$ group morphism in $G: c(g): x \mapsto g x g^{-1}$. For $g \in G$, we have $L c(g) \in \operatorname{Aut}(L G)$ the algebra of linear automorphisms of $L G$. We denote Ad : $G \rightarrow \operatorname{Aut}(L G), g \mapsto$ $L c(g)$, which is called the adjoint representation of G. Then we apply L and get ad $:=L \operatorname{Ad}: L G \rightarrow L \operatorname{Aut}(L G)=\operatorname{End}(L G)$ the adjoint representation of $L G$, where $\operatorname{End}(L G)$ is the Lie algebra deduced from the algebra $\operatorname{Aut}(L G)$.
Proposition 3.20 ([10, Ch. I, Equation (2.11)]). We have, for all X, Y in $L G$,

$$
\operatorname{ad}(X)(Y)=[X, Y]
$$

Definition 3.21 (integral curve). An integral curve $\alpha:] a, b[\rightarrow M$ of a vector field X on a manifold M is a differentiable curve which verifies for all $t \in] a, b[$,

$$
\dot{\alpha}(t)=X(\alpha(t))
$$

Proposition 3.22 (existence and uniqueness, [10]). For every vector field X, there exists an open set $A \subset \mathbb{R} \times M$ such that for every $p \in M, A \cap(\mathbb{R} \times\{p\})$ is an open interval containing the origin, and a differentiable map $\Psi: A \rightarrow M,(t, p) \mapsto \alpha_{p}(t)$, the flow of the vector field verifying $\Psi(0, t)=\alpha_{p}(0)=p$ for all p in M. The curve $t \mapsto \alpha_{p}(t)$ is the unique maximal integral curve of X with the property $\alpha_{p}(0)=p$.

Proposition 3.23 ([10]). If G is a Lie group, and X a left-invariant vector field, then the flow is global, that is to say $A \cap(\mathbb{R} \times\{g\})=\mathbb{R}$ for all g in G. One should denote α^{X} the curve α_{e} defined on all \mathbb{R}.
Definition 3.24 (exponential map). The map

$$
\exp : \begin{array}{ccc}
L G & \rightarrow & G \\
X & \mapsto & \alpha^{X}(1)
\end{array}
$$

is called the exponential map.
Proposition 3.25 ([10, Ch. I, Proposition 3.1]). The exponential map is differentiable and its differential at the origin is the identity. Furthermore, we have $\alpha^{X}(t)=\exp (t X)$ for all $t \in \mathbb{R}$.
Proposition 3.26 ([10, Ch. I, Proposition 3.2]). For a Lie group homomorphism $f: G \rightarrow H$, the following diagram commutes :

Remark 3.27. In particular, $\operatorname{Ad}(\exp)=\exp (L \mathrm{Ad})=\exp (\operatorname{ad})$, with $H=\operatorname{Aut}(L G)$. In this case exp is the classic exponential map, as with all the matrix cases.
Proposition 3.28 ([10, Ch. I, Theorem 5.12]). If G is a compact Lie group, there exists a positive linear form $\int_{G}: \mathcal{C}^{0}(G, \mathbb{R}) \rightarrow \mathbb{R}$ that verifies :
i. $\forall f \in \mathcal{C}^{0}(G, \mathbb{R}), \forall h \in G, \int_{G} f(g) d g=\int_{G} f(g h) d g=\int_{G} f(h g) d g$
ii. $\int_{G} d g=1$.

Proposition 3.29. If G is a compact Lie group, there exists a scalar product $<.$, . $>$ on \mathfrak{g} which is $\operatorname{Ad}(G)$-invariant and $\operatorname{ad}(\mathfrak{g})$-skew-symmetric.

Proof. Let (., .) be a scalar product on \mathfrak{g}. Set

$$
<u, v>:=\int_{G}(\operatorname{Ad}(g) u, \operatorname{Ad}(g) v) d g
$$

This is easy to verify that it is a scalar product, and thanks to the previous proposition, it is $\operatorname{Ad}(G)$-invariant. Now because of this invariance, we have for all $X \in \mathfrak{g}$,

$$
<\operatorname{Ad}(\exp (t X)) u, \operatorname{Ad}(\exp (t X)) v>=<u, v>
$$

differentiating this equation, we get

$$
<\operatorname{ad}(X) u, v>+<u, \operatorname{ad}(X) v>=0
$$

i.e., $<., .>$ is $\operatorname{ad}(G)$-skew-symmetric.

4. Maximal tori

4.1. Maximal torus of a Lie group. All missing proofs of this section can be found in [10]. In all this section, G is a compact connected Lie group.
Definition 4.1. A torus of G is a compact connected abelian subgroup. A maximal torus $T \subset G$ is a torus which is maximal in the sense of inclusion.
Remark 4.2. One can prove that a torus is simply a group isomorphic to $T^{k}=$ $\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$. If two tori are such that $T \varsubsetneqq T^{\prime}$ then $\operatorname{dim} T<\operatorname{dim} T^{\prime}$ because of the connectedness and the compactness of a torus. Maximal tori then always exist.
Definition 4.3 (Weyl group). If $N:=N_{G}(T):=\left\{g \in G, g T g^{-1} \subseteq T\right\}$ is the normalizer of T in G, we define $W=N / T$ the Weyl group of T.
Definition 4.4. We define the action of N on T as the action by conjugation : $n \cdot t:=n t n^{-1}$. This action is invariant modulo T since T is abelian, so we can define the induced action of W on $T: n T \cdot t:=n t n^{-1}$.
Proposition 4.5 ([10, Ch. IV, Theorem 1.5]). The Weyl group W is finite.
Theorem 4.6 (Conjugation theorem, [10, Ch. IV, Theorem 1.6]). In G, two maximal tori T and T^{\prime} are conjugate. Moreover, any element g in G is contained in a maximal torus.

Remark 4.7. With this result, we get that the Weyl groups associated to T and T^{\prime} are isomorphic, we will then say the maximal torus and the Weyl group of a Lie group.

For a subgroup H of G, the center $Z(H)$ is the subgroup :

$$
Z(H)=\{g \in G, g h=h g \forall h \in H\}
$$

Corollary 4.8 ([10, Ch. IV, Theorem 2.3]). If S is a connected abelian subgroup of G, then $Z(S)$ is contained in the union of all the tori containing S. Consequently, for a torus T, we have $Z(T)=T$.
Proposition 4.9 ([10, Ch. IV, Theorem 2.11]). For any torus T, there exists an element t_{0}, called generic which generates T, in the sense that $\left\{t_{0}^{n}, n \in \mathbb{N}\right\}$ is dense in T.

Remark 4.10. In fact, almost all elements of T are generic.
Proposition 4.11 ([10, Ch. II, Proposition 8.4]). The irreducible real representations of a torus T are the trivial representation and the two dimensional given by

$$
\left[x_{1}, \ldots, x_{n}\right] \mapsto\left(\begin{array}{cc}
\cos (2 \pi \alpha(x)) & \sin (2 \pi \alpha(x)) \\
-\sin (2 \pi \alpha(x)) & \cos (2 \pi \alpha(x))
\end{array}\right), \alpha \in\left(\mathbb{R}^{n}\right)^{*}
$$

where we see T as $\mathbb{R}^{n} / \mathbb{Z}^{n}$.
4.2. Lie algebra of a maximal torus. Consider a maximal torus T of a Lie group G, and \mathfrak{t} and \mathfrak{g} their respective Lie algebras.

Remark 4.12. The exponential map restricted to \mathfrak{t}, $\exp : \mathfrak{t} \rightarrow T$ is surjective since we can see T as $\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$.

Proposition 4.13. The Lie algebra \mathfrak{t} is commutative $([X, Y]=0, \forall X, Y \in \mathfrak{t})$ and is a maximal commutative subalgebra of \mathfrak{g}.

Proof. The commutativity comes from the commutativity of T : the morphism $\left.c(h)\right|_{T}$ is the identity for all $h \in T$, and therefore $\left.A d\right|_{T}$ is trivial and so is ad $\left.\right|_{\mathrm{t}}$. The maximality is due to the surjectivity of exp.

Definition 4.14. A regular element of \mathfrak{t} is an element H_{0} whose $\operatorname{Ad}(G)$-centralizer $\left\{g \in G \mid \operatorname{Ad}(g) H_{0}=H_{0}\right\}$ is T.

Proposition 4.15. Any element H_{0} such that $\exp \left(H_{0}\right)$ is generic is a regular element. Hence, by the surjectivity of exp, a regular element always exists.

5. De Rham cohomology

All this part comes from [8]. In this section, let x_{1}, \ldots, x_{n} be the canonical coordinates of \mathbb{R}^{n}

5.1. De Rham cohomology on \mathbb{R}^{n}.

Definition 5.1 (differential form). We define Ω^{*} to be the exterior algebra generated by the elements $d x_{1}, \ldots, d x_{n}$. The differential forms on \mathbb{R}^{n} are the elements of the graded algebra

$$
\Omega^{*}\left(\mathbb{R}^{n}\right)=\mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right) \otimes \Omega^{*}
$$

Then a differential form is a sum of elements of the form $f d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ where f is in $\mathcal{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, that we may write $f d x_{I}$, we will also forget the sign \wedge in the following. We denote the grading by $\Omega^{*}\left(R^{n}\right)=\bigoplus_{k=0}^{n} \Omega^{k}\left(\mathbb{R}^{n}\right)$.

Definition 5.2 (differential operator). We extend d to a linear map, the differential operator $d: \Omega^{*}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{*}\left(\mathbb{R}^{n}\right)$ by :
i. $d(f)=\sum_{k} \frac{\partial f}{\partial x_{k}} d x_{k}$
ii. $d\left(f d x_{I}\right)=d f d x_{I}$.

One can check that it does extend d and that $d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{n}\right)$. Therefore we have the De Rham complex :

$$
\{0\} \xrightarrow{d=0} \Omega^{0}\left(\mathbb{R}^{n}\right) \xrightarrow{d} \Omega^{1}\left(\mathbb{R}^{n}\right) \xrightarrow{d} \cdots \cdots \xrightarrow{d} \Omega^{n-1}\left(\mathbb{R}^{n}\right) \xrightarrow{d} \Omega^{n}\left(\mathbb{R}^{n}\right) \xrightarrow{d}\{0\} .
$$

Proposition 5.3 ([8, Proposition 1.4]). We have $d^{2}=0$.
Definition 5.4 (De Rham cohomology). By the former proposition, we have $\operatorname{Im}(d$: $\left.\Omega^{k-1}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k}\left(\mathbb{R}^{n}\right)\right) \subset \operatorname{Ker}\left(d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{n}\right)\right)$ as vector subspaces in $\Omega^{k}\left(\mathbb{R}^{n}\right)$, so we may consider the vector space

$$
H^{k}\left(\mathbb{R}^{n}\right)=\operatorname{Ker}\left(d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{n}\right)\right) / \operatorname{Im}\left(d: \Omega^{k-1}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k}\left(\mathbb{R}^{n}\right)\right)
$$

called the k-th De Rham cohomology of \mathbb{R}^{n}. The De Rham cohomology of \mathbb{R}^{n} is the graded algebra $H\left(\mathbb{R}^{n}\right):=\bigoplus_{k=0}^{n} H^{k}\left(\mathbb{R}^{n}\right)$. For $\omega \in \operatorname{Ker}(d)$, we denote $[\omega] \in$ $\operatorname{Ker}(d) / \operatorname{Im}(d)$ the cohomology class of ω.

Definition 5.5. For an open subset $U \subset \mathbb{R}^{n}$, defining $\Omega^{*}(U)=\mathcal{C}^{\infty}(U, \mathbb{R}) \otimes \Omega^{*}$, we have in the same way $H^{k}(U)$, the k-th De Rham cohomology of U and the De Rham cohomology of U, the graded algebra $H(U):=\bigoplus_{k=0}^{n} H^{k}(U)$.
Definition 5.6 (pullback map). A smooth map $f: R^{m} \rightarrow \mathbb{R}^{n}$ induces a pullback map

$$
f^{*}: \begin{array}{clc}
C^{\infty}\left(R^{n}, \mathbb{R}\right) & \rightarrow & \mathcal{C}^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}\right) \\
g & \mapsto & g \circ f
\end{array}
$$

The following proposition extends it to $\Omega^{*}\left(\mathbb{R}^{n}\right)$:
Proposition 5.7 ([8, Proposition 2.1]). For any f in $\mathcal{C}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$, there exists a unique map $f^{*}: \Omega^{*}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{*}\left(\mathbb{R}^{m}\right)$ which extends f^{*} and commutes with d. This map is called the pullback map and is defined by:

$$
f^{*}\left(g d x_{i_{1}} \ldots d x_{i_{k}}\right)=(g \circ f) d\left(x_{i_{1}} \circ f\right) \ldots d\left(x_{i_{k}} \circ f\right)=(g \circ f) d f_{i_{1}} \ldots d f_{i_{k}}
$$

where f_{j} is the j-th component of f. The following diagram commutes :

Proposition 5.8 ([8, Corollary 2.1]). The De Rham complex is independent of the coordinate system, i.e. if u_{1}, \ldots, u_{n} is a new coordinate system, then $d\left(g d u_{i_{1}} \ldots d u_{i_{k}}\right)=$ $d g d u_{i_{1}} \ldots d u_{i_{k}}$.

5.2. De Rham cohomology on a manifold.

Definition 5.9 (differential form). Let M be a n-dimensional manifold with an atlas $\left(U_{\alpha}, \phi_{\alpha}\right)_{\alpha \in A}$. A differential form ω on M is a collection of differential forms $\left(\omega_{\alpha}\right)_{\alpha}$ (where U_{α} is seen as an open subset of \mathbb{R}^{n}, and we may choose a coordinate system $\left.u_{1}=x_{1} \circ \phi_{\alpha}, \ldots, u_{n}=x_{n} \circ \phi_{\alpha}\right)$ which agree on $U_{\alpha} \cap U_{\beta}$ for all $\alpha, \beta \in A$ in the sense that if $i_{\alpha}: U_{\alpha} \cap U_{\beta} \rightarrow U_{\alpha}$ and $i_{\beta}: U_{\alpha} \cap U_{\beta} \rightarrow U_{\beta}$ are the canonical inclusions, then $i_{\alpha}^{*} \omega_{\alpha}=i_{\beta}^{*} \omega_{\beta}$ in $\Omega^{*}\left(U_{\alpha} \cap U_{\beta}\right)$. The graded algebra of differential forms on M is denoted $\Omega^{*}(M)=\bigoplus_{k=0}^{n} \Omega^{k}(M)$.

Remark 5.10. Given $\omega \in \Omega *(M)$ and $x \in M$, we can consider ω_{x} the differential form at point x since all differential forms ω_{α} defined on a neighbourhood of x have to agree on a smaller neighbourhood of x.
Definition 5.11. We can define in the same way than before $H(M)=\bigoplus_{k=0}^{n} H^{k}(M)$, the De Rham cohomology of M, and a pullback map $f^{*}: \Omega^{*}(N) \rightarrow \Omega^{*}(M)$ from a map $f: M \rightarrow N$.

Proposition 5.12 ([8, Example 2.6]). The De Rham cohomology of the circle is

$$
H^{k}\left(\mathbb{S}^{1}\right)= \begin{cases}\mathbb{R} & k=0 \\ \mathbb{R} & k=1\end{cases}
$$

Theorem 5.13 (Künneth Formula, [8, Equation (5.9)]). For any pair of manifolds M, N, we have

$$
H(M \times N)=H(M) \otimes_{G} H(N)
$$

Corollary 5.14. Let $T=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$ be the n-torus. Then $H(T)=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] / I$ where I is the ideal generated by X_{i}^{2} and $X_{i} X_{j}+X_{j} X_{i}$ for $1 \leq i, j \leq n$.

Proof. According to 5.12, $H\left(\mathbb{S}^{1}\right)$ can be seen as $\left.\mathbb{R}[X] /<X^{2}\right\rangle$. Therefore, the previous theorem and the definition 2.6 gives us the result.

6. Proof of the theorem

We now give the proof of theorem 1.1 following the ideas of [9].
6.1. Root theory. Let G be a compact connected Lie group, \mathfrak{g} its Lie algebra, T a maximal torus of G and \mathfrak{t} its Lie algebra. With respect to the scalar product of 3.29 let \mathfrak{m} be the orthogonal complement of $\mathfrak{t}: \mathfrak{g}=\mathfrak{t} \oplus^{\perp} \mathfrak{m}$. We denote $l:=\operatorname{dim}(\mathfrak{t})$ and $2 v:=\operatorname{dim}(\mathfrak{m})$ since we will see that \mathfrak{m} is even dimensional.

Proposition 6.1. There exists an orthogonal decomposition $\mathfrak{m}=\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{v}$ of \mathfrak{m} into irreducible under the action of $\operatorname{Ad}(T)$ two dimensional subspaces.

Proof. Since the scalar product is $\operatorname{Ad}(G)$-invariant, $\operatorname{Ad}(G)$ and therefore $\operatorname{Ad}(T)$ acts on \mathfrak{m}, then \mathfrak{m} is a representation of the torus T. Since \mathfrak{t} is a maximal commutative subalgebra of \mathfrak{g}, there is no nonzero vector in \mathfrak{m} that verifies $[H, X]=0, \forall X \in \mathfrak{t}$. Hence, $\operatorname{Ad}(T)$ has no nonzero invariant vectors in \mathfrak{m}, and there cannot be an irreducible trivial representation of T in \mathfrak{m}. Therefore, by 4.11, all irreducible subspaces of \mathfrak{m} are two dimensional. By induction, we get the decomposition.

According to 4.11, for each $1 \leq j \leq v$, there exists α_{j} in \mathfrak{t}^{*} such that for $H \in \mathfrak{t}$, the eigenvalues of $\operatorname{Ad} \exp (H)$ on \mathfrak{m}_{j} are $\exp \left(\pm i \alpha_{j}(H)\right)$. We choose the sign of the α_{j} as follows : take H_{0} a regular element, as a consequence of the definition, no α_{j} is zero valued on H_{0}. Then the positive root is the one such that $\alpha_{j}\left(H_{0}\right)>0$.
Definition 6.2 (positive roots). The linear forms defined in the preceding discussion are called positive roots and their set is denoted Δ^{+}. We also denote Δ the set $\left\{ \pm \alpha, \alpha \in \Delta^{+}\right\}$, whose elements are called roots.
Proposition 6.3 ([9, (2.3)]). The action of W on \mathfrak{t} is generated by orthogonal reflections about the kernels of the positive roots, denoted $s_{\alpha}, \alpha \in \Delta^{+}$.
Remark 6.4. All \mathfrak{m}_{j} are also preserved by $\operatorname{ad}(\mathfrak{t})$, then we can choose an orthogonal basis $\left\{X_{j}, X_{j+v}\right\}$ for \mathfrak{m}_{j} such that the matrix of $\left.\operatorname{ad}(H)\right|_{\mathfrak{m}_{j}}$ in this basis is

$$
\left(\begin{array}{cc}
0 & \alpha(H) \\
-\alpha(H) & 0
\end{array}\right)
$$

We have, by skew-symmetricity, for all $1 \leq i \leq v$, all $1 \leq j \leq 2 v$, all $H \in \mathfrak{t}$,

$$
<H,\left[X_{i}, X_{j}\right]>=<\left[H, X_{i}\right], X_{j}>=-\alpha_{i}(H)<X_{i+v}, X_{j}>
$$

The last term is nonzero if and only if $j=i+v$ so if $j \neq i+v,\left[X_{i}, X_{j}\right] \in \mathfrak{m}$. We have the same result if $i>v$ and $j \neq i-v$.

For each $1 \leq i \leq l$, define $H_{i}:=\left[X_{i}, X_{i+v}\right]$. This is $\operatorname{Ad}(T)$-invariant, indeed, we want to prove that $\operatorname{Ad}(t) H_{i}=H_{i}$ for t in T, this is equivalent to prove that $\operatorname{ad}(Y) H_{i}=0$ for Y in \mathfrak{t}, and the later holds because $\left[Y, H_{i}\right]=\left[Y,\left[X_{i}, X_{i+v}\right]\right]=$ $\left[X_{i+v},\left[X_{i}, Y\right]\right]+\left[\left[X_{i+v}, Y\right], X_{i}\right]=-\alpha(Y)\left[X_{i+v}, X_{i+v}\right]+\alpha(Y)\left[X_{i}, X_{i}\right]=0$. Then we have that H_{i} belongs in \mathfrak{t}, hence $\operatorname{ad}\left(H_{i}\right) m_{i} \subseteq m_{i}$. Therefore, the span of X_{i}, X_{i+v} and H_{i} is a Lie subalgebra \mathfrak{g}_{i} of \mathfrak{g}.
6.2. Invariant theory. See [5].

Notation. We denote $\mathscr{S}=\bigoplus_{k \geq 0} \mathscr{S}^{k}:=S\left(\mathfrak{t}^{*}\right)$ the symmetric algebra of \mathfrak{t}^{*} and $\Lambda=\bigoplus_{k=0}^{l} \Lambda^{k}:=\Lambda\left(\mathfrak{t}^{*}\right)$ the exterior algebra of \mathfrak{t}^{*}.

Remark 6.5. If x_{1}, \ldots, x_{l} is a basis of $\mathfrak{t}, \mathscr{S}$ can be seen as the polynomial ring $\mathbb{R}\left[x_{1}, \ldots, x_{l}\right]$, and Λ as the set of differential forms $\omega=\sum_{i_{1} \leq \cdots \leq i_{k}} a_{i_{1}, \ldots, i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ where $d x_{i}$ is the canonical form associated to x_{i}.

Definition 6.6 (action of W). W acts on \mathfrak{t}^{*} by $w \cdot \alpha: x \mapsto \alpha\left(w^{-1} \cdot x\right)$. It naturally induces an action of W on \mathscr{S} and Λ.
Notation. If W acts on a space \mathscr{A}, then we denote \mathscr{A}^{W} the space of all elements of \mathscr{A} that are invariant under the action of W.

We now proceed the proof of Chevalley's theorem 6.14 as made in [6].
Notation. We denote $\left(\mathscr{S}^{W}\right)_{+}$the ideal of S^{W} consisting of elements of constant term (whose in zero degree) equals to zero.

Proposition 6.7 ([6, Proposition (3.1)]). The field of fractions of \mathscr{S}^{W} has transcendence degree l over \mathbb{R}.
Definition 6.8. For any polynomial f in \mathscr{S}, we define \widehat{f} with :

$$
\widehat{f}=\frac{1}{|W|} \sum_{w \in W} w \cdot f
$$

Remark 6.9. We note that the map $f \mapsto \widehat{f}$ is a linear map from \mathscr{S} to \mathscr{S}^{W}, which is the identity on \mathscr{S}^{W}, and that preserves degrees. We also see that if $p \in \mathscr{S}$ and $q \in \mathscr{S}^{W}$,

$$
\begin{equation*}
\widehat{p q}=\widehat{p} q . \tag{2}
\end{equation*}
$$

Proposition 6.10. Let \mathscr{K} be the ideal in \mathscr{S} generated by $\left(\mathscr{S}^{W}\right)_{+}$. If F_{1}, \ldots, F_{n} are homogeneous elements of $\left(\mathscr{S}^{W}\right)_{+}$which generate the ideal \mathscr{K}, then \mathscr{S}^{W} is generated as an algebra by $1, F_{1}, \ldots, F_{n}$.

Proof. We have to show that every element f of \mathscr{S}^{W} is a polynomial in F_{1}, \ldots, F_{n}. It suffices to prove it for homogeneous elements, and we proceed by induction on $\operatorname{deg}(f)$. The case $\operatorname{deg}(f)=0$ is trivial, so we take $f \in \mathscr{S}^{W}$ with $\operatorname{deg}(f)>0$. We have since f is homogeneous that $f \in \mathscr{K}$ so there exists $g_{i} \in \mathscr{S}$ such that

$$
\begin{equation*}
f=g_{1} F_{1}+\cdots+g_{n} F_{n} \tag{3}
\end{equation*}
$$

We may assume (after simplifications) that all g_{i} are homogeneous of degree $\operatorname{deg}(f)$ $\operatorname{deg}\left(F_{i}\right)$. Now we apply ${ }^{\text {a }}$ and use (2) to get

$$
\begin{equation*}
f=\widehat{g_{1}} F_{1}+\cdots+\widehat{g_{n}} F_{n} . \tag{4}
\end{equation*}
$$

But \widehat{g}_{i} is an homogeneous element of \mathscr{S}^{W} of degree lower than f, so we may conclude by induction.

Lemma 6.11. Let g be a homogeneous polynomial of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree one. If the polynomial f vanishes at all zeros of g, then g divides f in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Proof. We can assume, without loss of generality, that g is of degree one in x_{n}. Now, with euclidean division in $\mathbb{R}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$, we get $r \in \mathbb{R}\left[x_{1}, \ldots, x_{n-1}\right]$ such that

$$
f=g q+r
$$

But if r is nonzero, take $\left(a_{1}, \ldots, a_{n-1}\right)$ such that $r\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$. Resolving a linear equation, we can find a_{n} such that $g\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0$, therefore, by hypothesis, we get $f\left(a_{1}, \ldots, a_{n}\right)=0$, and a contradiction.
Lemma 6.12. Suppose that f_{1}, \ldots, f_{r} are elements of \mathscr{S}^{W} and that f_{1} is not in the ideal of \mathscr{S}^{W} generated by f_{2}, \ldots, f_{r}. If g_{1}, \ldots, g_{r} are homogeneous elements of \mathscr{S} verifying

$$
\begin{equation*}
g_{1} f_{1}+\cdots+g_{r} f_{r}=0 \tag{5}
\end{equation*}
$$

then $g_{1} \in \mathscr{K}$.
Proof. We first note that f_{1} is not in the ideal of \mathscr{S} generated by f_{2}, \ldots, f_{r}. Indeed, otherwise we would have

$$
f_{1}=q_{2} f_{2}+\cdots+q_{r} f_{r}
$$

for q_{i} in \mathscr{S} and we would apply ${ }^{\wedge}$ to obtain

$$
f_{1}=\widehat{q_{2}} f_{2}+\cdots+\widehat{q_{r}} f_{r}
$$

which would contradict the hypothesis that f_{1} is not in the ideal of \mathscr{S}^{W} generated by f_{2}, \ldots, f_{r}.

We now proceed by induction on $\operatorname{deg}\left(g_{1}\right)$. If g_{1} is of degree zero, it must be zero, because otherwise f_{1} would be in the ideal of \mathscr{S} generated by f_{2}, \ldots, f_{r}.

Now, if $\operatorname{deg}\left(g_{1}\right)>0$, take $s:=s_{\alpha} \in W$ a simple reflection, and denote $H:=H_{\alpha}$ the corresponding hyperplane. We consider g a linear polynomial whose zero set is exactly H. Now $s \cdot g_{i}-g_{i}$ is zero on all H since s is the identity on H, hence, by 6.11, we get h_{i} such that

$$
\begin{equation*}
s \cdot g_{i}-g_{i}=g h_{i} . \tag{6}
\end{equation*}
$$

Since g, g_{i} and therefore $s \cdot g_{i}$ are homogeneous, h_{i} is also homogeneous, of degree $\operatorname{deg}\left(h_{i}\right)=\operatorname{deg}\left(g_{i}\right)-1$. Now we apply s to equation (5), subtract it to (5), and finally use (6) to obtain :

$$
\begin{equation*}
g \cdot\left(f_{1} h_{1}+\cdots+f_{r} h_{r}\right)=0 \tag{7}
\end{equation*}
$$

and then, since g is nonzero,

$$
\begin{equation*}
f_{1} h_{1}+\cdots+f_{r} h_{r}=0 \tag{8}
\end{equation*}
$$

By induction, we hence have $h_{1} \in \mathscr{K}$, so $s \cdot g_{1}-g_{1} \in \mathscr{K}$, that is to say, $s \cdot g_{1}=g_{1}$ $\bmod \mathscr{K}$. By its action on \mathscr{S} and because W stabilizes $\left(\mathscr{S}^{W}\right)_{+}$and so \mathscr{K}, W acts naturally on $\mathscr{S} / \mathscr{K}$. Now, since we have just shown that $s \cdot g_{1}=g_{1} \bmod \mathscr{K}$ for every simple reflection s in W, we get that for all elements w of W, $w \cdot g_{1}=g_{1}$ $\bmod \mathscr{K}$, and therefore, $\widehat{g_{1}}=g_{1} \bmod \mathscr{K}$. But $\widehat{g_{1}}$ is in $\left(\mathscr{S}^{W}\right)_{+}$because $\operatorname{deg}\left(g_{1}\right)>0$, $\widehat{g_{1}} \in \mathscr{S}^{W}$ and ${ }^{\wedge}$ preserves degrees. Therefore $\widehat{g_{1}}$ belongs in \mathscr{K}, and so does g_{1}, concluding the proof.

Proposition 6.13 (Euler formula, [6, Chap. 3, Equation (10)]). Given a homogeneous polynomial $f\left(x_{1}, \ldots, x_{n}\right)$, we have the formula

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=\operatorname{deg}(f) f \tag{9}
\end{equation*}
$$

Theorem 6.14 (Chevalley). The algebra \mathscr{S}^{W} is generated as an algebra by l homogeneous algebraically independent elements F_{1}, \ldots, F_{l} of positive degree:

$$
\mathscr{S}^{W}=\mathbb{R}\left[F_{1}, \ldots, F_{l}\right]
$$

The degrees d_{1}, \ldots, d_{l}, unique up to order, are supposed to be numbered so that $d_{1} \leq$ $\cdots \leq d_{l}$.

Proof. Hilbert's basis theorem gives n homogeneous invariants of positive degree F_{1}, \ldots, F_{n} which generate \mathscr{K}. It follows from 6.10 that $1, F_{1}, \ldots, F_{n}$ generate \mathscr{S}^{W} as an algebra. It remains to show that they are algebraically independent, and we will deduce from 6.7 that $n=l$.

Suppose that the elements are dependent, thus there exists a nonzero polynomial $h\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\begin{equation*}
h\left(F_{1}, \ldots, F_{n}\right)=0 \tag{10}
\end{equation*}
$$

We want to analyse the expression of h and simplify it : take $a x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ a monomial in h. Then, if $d_{i}:=\operatorname{deg}\left(F_{i}\right), a F_{1}^{e_{1}} \cdots F_{n}^{e_{n}}$ has degree $d:=\sum_{i} d_{i} e_{i}$. It is clear that all monomials of degree d after being evaluate in F_{1}, \ldots, F_{n} sum up to zero. We will then keep only this monomials in h.

We now differentiate with respect to x_{k} for each k :

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}}\left(F_{1}, \ldots, F_{n}\right) \frac{\partial F_{i}}{\partial x_{k}}=0 \tag{11}
\end{equation*}
$$

We denote $h_{i}:=\frac{\partial h}{\partial x_{i}}\left(F_{1}, \ldots, F_{n}\right)$. We have that h_{i} is an homogeneous element of \mathscr{S}^{W} and $\frac{\partial F_{i}}{\partial x_{k}}$ is an homogeneous element of \mathscr{S}, so we would like to apply 6.12 , but h_{i} may
not verify the hypothesis. We renumbered h_{i} so that $h_{i}, 1 \leq i \leq m$ is a minimal set of generators for the ideal of \mathscr{S}^{W} generated by $h_{i}, 1 \leq i \leq n$, so we may write

$$
\begin{equation*}
h_{i}=\sum_{j=1}^{m} g_{j}^{i} h_{j} \tag{12}
\end{equation*}
$$

for $i>m$, with $g_{j}^{i} \in \mathscr{S}^{W}$. Since h_{i} is of degree $d-d_{i}$, if we discard redundant terms, we can assume that g_{j}^{i} is of degree $\operatorname{deg}\left(h_{i}\right)-\operatorname{deg}\left(h_{j}\right)=d_{j}-d_{i}$. Now, for each k, we put (12) into (11) to obtain

$$
\begin{equation*}
\sum_{i=1}^{m} h_{i}\left(\frac{\partial F_{i}}{\partial x_{k}}+\sum_{j=m+1}^{n} g_{j}^{i} \frac{\partial F_{j}}{\partial x_{k}}\right)=0 \tag{13}
\end{equation*}
$$

We write p_{i} for the term in parenthesis, which is an homogeneous polynomial of degree $d_{i}-1$, and get by lemma 6.12 that $p_{1} \in \mathscr{K}$. Therefore, we have,

$$
\begin{equation*}
\frac{\partial F_{1}}{\partial x_{k}}+\sum_{j=m+1}^{n} g_{j}^{1} \frac{\partial F_{j}}{\partial x_{k}}=\sum_{i=1}^{n} q_{i} F_{i} \tag{14}
\end{equation*}
$$

with $q_{i} \in \mathscr{S}$. Now, we multiply (13) by x_{k} and sum over k :

$$
\sum_{k=1}^{n} x_{k} \frac{\partial F_{1}}{\partial x_{k}}+\sum_{k=1}^{n} x_{k} \sum_{j=m+1}^{n} g_{j}^{1} \frac{\partial F_{j}}{\partial x_{k}}=\sum_{k=1}^{n} x_{k} \sum_{i=1}^{n} q_{i} F_{i}
$$

thus,

$$
\sum_{k=1}^{n} x_{k} \frac{\partial F_{1}}{\partial x_{k}}+\sum_{j=m+1}^{n} g_{j}^{1} \sum_{k=1}^{n} x_{k} \frac{\partial F_{j}}{\partial x_{k}}=\sum_{i=1}^{n}\left(\sum_{k=1}^{n} x_{k} q_{i}\right) F_{i}
$$

therefore we have, using (9) :

$$
\begin{equation*}
d_{1} F_{1}+\sum_{j=m+1}^{n} d_{j} g_{j}^{1} F_{j}=\sum_{i=1}^{n} r_{i} F_{i} . \tag{15}
\end{equation*}
$$

But now $\operatorname{deg}\left(r_{i}\right)>0$, and we see that the left side of (15) is of degree d_{1}, so the term $r_{1} F_{1}$ on the right side must simplify with the other terms of degree different from d_{1}. With this simplification, we see that (15) expresses F_{1} as an element of the ideal in \mathscr{S} generated by F_{2}, \ldots, F_{n}, contrary to the hypothesis made about F_{1}, \ldots, F_{n}.

Definition 6.15 (exponents). The exponents of W acting on \mathscr{S} are defined as $m_{i}=d_{i}-1$ for $1 \leq i \leq l$.

Proposition 6.16 ([6, Theorem 3.9]). We have $m_{1}+\cdots+m_{l}=v$ and $\left(m_{1}+\right.$ 1) $\cdots\left(m_{l}+1\right)=d_{1} \cdots d_{l}=|W|$.

Definition 6.17. We set \mathscr{D} to be the set of constant coefficient differential operators on S. Such an operator is a functional on S of the form $\sum_{I} s_{I} \frac{\partial^{j_{1}}}{\partial x_{1}^{j_{1}}} \cdots \frac{\partial^{j_{l}}}{\partial x_{l}^{j_{l}}}$ where $s_{I} \in \mathscr{S}^{0}$ and $\frac{\partial^{j_{1}}}{\partial x_{i}^{j_{i}}}$ is the classical partial derivative on a polynomial.
Definition 6.18. For each $H \in \mathfrak{t}$, define a functional $D_{H}: \mathscr{S} \rightarrow \mathscr{S}$ as the derivation extending the evaluation map $H: \mathfrak{t}^{*} \rightarrow \mathbb{R}$. With this identification, we consider $S(\mathfrak{t})$ to be the symmetric algebra of the vector space of maps $D_{H}, H \in \mathfrak{t}$. We should denote D_{a} the map $\mathscr{S} \rightarrow \mathscr{S}$ corresponding to $a \in S(\mathfrak{t})$.

Remark 6.19. We should explicit the map $D_{H_{1} \cdots H_{k}}=D_{H_{1}} \cdots D_{H_{k}}$: for $k=1$, we have for example $D_{H}\left(\alpha_{1} \alpha_{2}\right)=\alpha_{1}(H) \alpha_{2}+\alpha_{1} \alpha_{2}(H)$, and $D_{H_{1}} \cdots D_{H_{k}}\left(\alpha_{1} \alpha_{2}\right)=$ $D_{H_{1}} \cdots D_{H_{k}-1}\left(D_{H_{k}}\left(\alpha_{1} \alpha_{2}\right)\right)$. Then we easily get :

$$
\begin{equation*}
D_{H_{1}} \cdots D_{H_{k}}\left(\alpha_{1} \cdots \alpha_{k}\right)=\sum_{\sigma \in S_{k}} \alpha_{1}\left(H_{\sigma(1)}\right) \cdots \alpha_{k}\left(H_{\sigma(k)}\right) \tag{16}
\end{equation*}
$$

Remark 6.20. We can identify \mathscr{D} to be $S(\mathfrak{t})$ as defined, and we shall use the most appropriate definition when needed.
Definition 6.21. The action of W on $\mathscr{D}=S(\mathfrak{t})$ is natural, and we define the harmonic polynomials, the polynomials f in \mathscr{S} that are annihilated by all the functionals in \mathscr{D} that are invariant under the action of W. The algebra of all harmonic polynomials is denoted \mathscr{H} so we have

$$
\mathscr{H}=\left\{f \in \mathscr{S} \mid \mathscr{D}^{W} f=0\right\} .
$$

Proposition 6.22. We have $\mathscr{H}=\bigoplus_{k} \mathscr{H}^{k}$ where $\mathscr{H}^{k}:=\mathscr{H} \cap \mathscr{S}^{k}$. Furthermore, \mathscr{H} is invariant under the action of W on \mathscr{S}.

Proof. To prove that $\mathscr{H}=\bigoplus_{k} \mathscr{H}^{k}$ it remains to show that $\mathscr{H} \subset \sum_{k} \mathscr{H}^{k}$. Take $f=\sum_{i} f_{i}$ in \mathscr{H}. We want to show that $f_{i} \in \mathscr{H}$, so choose $p \in \mathscr{D}^{W}$. An element in $\mathscr{D}=S(\mathfrak{t})$ is W-invariant if and only if each of its homogeneous components is W-invariant (since the degree is invariant under the action of W), so we can suppose that p is homogeneous. Then p reduce the degree of each homogeneous component of f by the same integer, so if $p(f)=0$, then $p\left(f_{i}\right)=0$ for all i.

To see the second statement, take $w \in W, f \in \mathscr{H}, p \in \mathscr{D}^{W}$, and note that $p(w \cdot f)=(w \cdot p)(f)=p(f)=0$ since $p \in \mathscr{D}^{W}$.
Proposition 6.23 ([5, Ch. III, Theorem 3.4]). We denote \mathscr{I} the ideal of \mathscr{S} generated by the homogeneous elements of \mathscr{S}^{W} of positive degree. Then we have

$$
\begin{equation*}
\mathscr{S}=\mathscr{H} \oplus \mathscr{I} . \tag{17}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\mathscr{S} \mid \mathscr{I} \cong \mathscr{H} \tag{18}
\end{equation*}
$$

Theorem 6.24 ([5], Ch. III, Theorem 3.4]). Let $\phi: \mathscr{H} \otimes \mathscr{S}^{W} \rightarrow \mathscr{S}$ be the linear map extending the map $\phi: f \otimes g \mapsto f g$. Then ϕ is a linear isomorphism :

$$
\begin{equation*}
\mathscr{S} \cong \mathscr{H} \otimes \mathscr{S}^{W} \tag{19}
\end{equation*}
$$

That is to say, every element s in \mathscr{S} can be written uniquely as $s=\sum_{i} h_{i} g_{i}$ where h_{i} is harmonic and g_{i} is W-invariant.

Corollary 6.25. We have the identity

$$
\begin{equation*}
\sum_{k \geq 0}\left(\operatorname{dim} \mathscr{H}^{k}\right) t^{k}=\prod_{j=1}^{l}\left(1+t+t^{2}+\cdots+t^{m_{j}}\right) \tag{20}
\end{equation*}
$$

Therefore, $\operatorname{dim} \mathscr{H}^{v}=1, \mathscr{H}^{k}=0$ for $k>v$ and $\operatorname{dim} \mathscr{H}=|W|$.
Proof. We shall prove the very last statement $\operatorname{dim} \mathscr{H}=|W|$, since it is not made in the reference and it is not obvious. The dimension of \mathscr{H} is the sum of all the coefficient of the polynomial given by (20). But by the presentation of it, this sum is exactly $\left(1+m_{1}\right) \cdots\left(1+m_{l}\right)=|W|$.
Definition 6.26. We set the primordial harmonic polynomial $\Pi \in \mathscr{S}^{v}$ to be :

$$
\begin{equation*}
\Pi:=\prod_{\alpha \in \Delta^{+}} \alpha \tag{21}
\end{equation*}
$$

Proposition 6.27 ([6, p.69]). Any polynomial $f \in \mathscr{S}$ verifying $w \cdot f=\operatorname{det}(w) f$ is divisible by Π.

Remark 6.28. We have for example, and it is used in the proof, $w \cdot \Pi=\operatorname{det}(w) \Pi$ for all $w \in W$. Indeed, since W is generated by simple reflections, we have to prove that $s_{\alpha_{j}} \cdot \Pi=-\Pi$ for $1 \leq j \leq l$. This statement holds because $s_{\alpha_{j}}$ is a permutation of $\Delta^{+} \backslash\left\{\alpha_{j}\right\}$ and $s_{\alpha_{j}}\left(\alpha_{j}\right)=-\alpha_{j}$.
Corollary 6.29. The polynomial Π is harmonic, therefore Π spans \mathscr{H}^{v} because of 6.25.

Proof. Take $D_{a} \in \mathscr{D}^{W}, a \in S(\mathfrak{t})^{W}$. We want to show that $D_{a}(\Pi)=0$. We have, for $w \in W$:

$$
\left.w \cdot D_{a}(\Pi)=D_{w \cdot a}(w \cdot \Pi)=\operatorname{det}(w) D_{(} a\right)(\Pi)
$$

Therefore, by the preceding proposition, $D_{a}(\Pi)$ is divisible by Π. But $D_{a}(\Pi)$ has smaller degree than Π, hence is zero.

Definition 6.30. For a polynomial $F \in \mathscr{S}$, define $d F \in \mathscr{S} \otimes \Lambda^{1}$ to be the classical differential :

$$
d F=\sum_{i} \frac{\partial F}{\partial x_{i}} d x_{i}
$$

Theorem 6.31 (Solomon). The space $(\mathscr{S} \otimes \Lambda)^{W}$ is a free \mathscr{S}^{W}-module with basis

$$
\left\{d F_{i_{1}} \wedge \cdots \wedge d F_{i_{q}}, 1 \leq i_{1}<\cdots<i_{q} \leq l\right\} .
$$

Where the F_{i} are the homogeneous generators defined in 6.14.
Lemma 6.32. We have,

$$
d F_{1} \wedge \cdots \wedge d F_{l}=c \Pi d x_{1} \wedge \cdots \wedge d x_{l}
$$

for a nonzero real number c.
Proof. Because of the homogeneousness of the F_{i} and the sum formula about their degrees, we have :

$$
d F_{1} \wedge \cdots \wedge d F_{l}=J d x_{1} \wedge \cdots \wedge d x_{l}
$$

for a polynomial J of degree $m_{1}+\cdots+m_{l}=v$. The left-hand side is W-invariant and $d x_{1} \wedge \cdots \wedge d x_{l}$ verifies $w \cdot f=\operatorname{det}(w) f$, therefore so does J. Hence, because J and Π are the same degree and with 6.27 :

$$
d F_{1} \wedge \cdots \wedge d F_{l}=c \Pi d x_{1} \wedge \cdots \wedge d x_{l}
$$

for a real number c.
We now show that c is nonzero. For $1 \leq i \leq l$, because of the independence of the F_{i} and the dimension of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, the polynomials $x_{i}, F_{1}, \ldots, F_{l}$ are algebraically dependent. Let $Q_{i}\left(x_{i}, z_{1}, \ldots, z_{l}\right)$ be a polynomial of minimal degree in x_{i} such that

$$
Q_{i}\left(x_{i}, F_{1}, \ldots, F_{l}\right)=0
$$

We now take the partial derivative over x_{j} of this expression, for $1 \leq j \leq l$ to obtain

$$
\sum_{k=1}^{l} \frac{\partial Q_{i}}{\partial z_{k}}\left(x_{i}, F_{1}, \ldots, F_{l}\right) \frac{\partial F_{k}}{\partial x_{j}}+\delta_{i}^{j} \frac{\partial Q_{i}}{\partial x_{j}}\left(x_{i}, F_{1}, \ldots, F_{l}\right)=0
$$

We write this set of equalities with matrices : $A B=-C$ where $A=\left(\frac{\partial Q_{i}}{\partial z_{j}}\left(x_{i}, F_{1}, \ldots, F_{l}\right)\right)_{i, j}$, $B=\left(\frac{\partial F_{i}}{\partial x_{j}}\right)_{i, j}$ and C is the diagonal matrix $C=\left(\frac{\partial Q_{i}}{\partial x_{i}}\left(x_{i}, F_{1}, \ldots, F_{l}\right)\right)_{i}$. Now, since $\operatorname{deg}_{x_{i}}\left(\frac{\partial Q_{i}}{\partial x_{i}}\right)<\operatorname{deg}_{x_{i}}\left(Q_{i}\right)$, by minimality $\frac{\partial Q_{i}}{\partial x_{i}}\left(x_{i}, F_{1}, \ldots, F_{l}\right)$ is nonzero, hence $\operatorname{det}(C) \neq$ 0 and then $\operatorname{det}(B) \neq 0$. This proves that the form $d F_{1} \wedge \cdots \wedge d F_{l}$ is nonzero and therefore $c \neq 0$.

Proof. (theorem 6.31) Let k be the quotient field of \mathscr{S}. For a sequence $I=i_{1}<$ $\cdots<i_{q}$, we denote $d F_{I}=d F_{i_{1}} \wedge \cdots \wedge d F_{i_{q}}$ and I^{\prime} the increasing sequence of $\{1, \ldots, l\} \backslash\left\{i_{1}, \ldots, i_{q}\right\}$. We now show that the elements of $\left\{d F_{i_{1}} \wedge \cdots \wedge d F_{i_{q}}, 1 \leq\right.$ $\left.i_{1}<\cdots<i_{q} \leq l\right\}$ form a k-basis of $k \otimes \Lambda$, hence they are linearly independent over \mathscr{S}^{W}, and we will also deduce that they are generators of $(\mathscr{S} \otimes \Lambda)^{W}$.

Suppose that there exists a collection $f_{I} \in k$ such that $\sum_{I} f_{I} d F_{I}=0$. For any sequence I, we multiply by $d F_{I^{\prime}}$, which kills all the terms but the one in I because of the alternating product. We now have

$$
\pm c f_{I} \Pi d x_{1} \wedge \cdots \wedge d x_{l}=0
$$

and then $f_{I}=0$. We have the independence of the $d F_{I}$, but because there are the same number as the dimension over k of $k \otimes \Lambda$, they form a k-basis of $k \otimes \Lambda$.

Now, take $\omega \in(\mathscr{S} \otimes \Lambda)^{W} \subset k \otimes \Lambda$. There exists some $g_{I} \in k$ such that $\omega=$ $\sum_{I} g_{I} d F_{I}$. Again, we multiply by $d F_{I^{\prime}}$ to obtain for each I,

$$
\omega \wedge d F_{I^{\prime}}= \pm c g_{I} \Pi d x_{1} \wedge \cdots \wedge d x_{l}
$$

But since both $\omega \wedge d F_{I^{\prime}}$ and $\Pi d x_{1} \wedge \cdots \wedge d x_{l}$ are in $(\mathscr{S} \otimes \Lambda)^{W}$, they are W-invariant and polynomial, and g_{I} has to be W-invariant and polynomial. This conclude the proof.
Definition 6.33. For $\omega \in \mathscr{S} \otimes \Lambda$, we define $\omega^{\prime} \in \mathscr{S} / \mathscr{I} \otimes \Lambda$ obtained by reducing the coefficients of ω modulo \mathscr{I}.
Corollary 6.34. $(\mathscr{S} / \mathscr{T} \otimes \Lambda)^{W}$ is an exterior algebra generated by

$$
d F_{i}^{\prime} \in\left[(\mathscr{S} / \mathscr{T})^{m_{i}} \otimes \Lambda^{1}\right]^{W}
$$

for $1 \leq i \leq l$.
Definition 6.35. The q-th elementary symmetric polynomial in l variables is the polynomial

$$
s_{q}\left(x_{1}, \ldots, x_{l}\right)=\sum_{1 \leq i_{1}<\cdots<i_{q} \leq l} x_{i_{1}} \cdots x_{i_{q}} .
$$

Corollary 6.36. We have :

$$
\sum_{k=1}^{v} \operatorname{dim} \operatorname{Hom}_{W}\left(\Lambda^{q}, \mathscr{H}^{k}\right) u^{k}=s_{q}\left(u^{m_{1}}, \ldots, u^{m_{l}}\right)
$$

6.3. Invariant differential forms. The elements presented in this section can be found in [2].

In this part, we consider a transitive action of a compact Lie group G on a manifold M, and we denote τ_{g} the diffeomorphism of M corresponding to $g \in G$. It will be used later in the cases $M=G$ and $M=G / T$.

Definition 6.37. A differential form $\omega \in \Omega^{p}(M)$ is said to be G-invariant if for all $g \in G, \tau_{g}^{*} \omega=\omega$.

Remark 6.38. An invariant differential form is then determined by its value at any one point of M.
Proposition 6.39 ([9, (4.1)]). Any De Rham cohomology class is represented by a G-invariant differential form and the subcomplex of invariant differential forms is preserved by the differential operator.

Remark 6.40. Taking $x \in M$, and considering $K:=K_{x}:=\{g \in G \mid g \cdot x=x\}$ the stabilizer of x, we have the identification $M=G / K$ via the map $g \mapsto g \cdot x$, surjective by transitivity and with kernel K. We define $\mathfrak{r}:=L K$ and \mathfrak{n} its orthogonal complement in \mathfrak{g}. Note that this decomposition $\mathfrak{g}=\mathfrak{n} \oplus \mathfrak{r}$ is preserved by $\operatorname{Ad}(K)$.

Differentiating at x the map introduced before, we identify \mathfrak{n} and $T_{x}(M)$. The two particular cases given before give $K=1, \mathfrak{n}=\mathfrak{g}$ and $K=T, \mathfrak{n}=\mathfrak{m}$.

Proposition 6.41. We may identify the G-invariant p-forms on M with the space $\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K}$.

Proof. With the identification between \mathfrak{n} and $T_{x}(M)$ and the fact that an invariant differential form is determined by its value at x, any form $\widetilde{\omega} \in \Omega^{p}(M)$ is determined by the skew-symmetric multilinear map

$$
\omega=\widetilde{\omega}_{x}: \mathfrak{n} \times \cdots \times \mathfrak{n} \rightarrow \mathbb{R} \in \Lambda^{p} \mathfrak{n}^{*}
$$

ω is K-invariant because $\widetilde{\omega}$ is G-invariant, hence K-invariant.
On the other hand, given $\omega \in\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K}$, we can define a G-invariant differential form $\widetilde{\omega}$ on M with

$$
\widetilde{\omega}_{g \cdot x}\left(T_{x} \tau_{g}\left(X_{1}\right), \ldots, T_{x} \tau_{g}\left(X_{p}\right)\right)=\omega\left(X_{1}, \ldots, X_{p}\right) .
$$

Proposition 6.42 ([2], p. 97]). In the identification of the previous proposition, the differential operator becomes the map $\delta:\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K} \rightarrow\left(\Lambda^{p+1} \mathfrak{n}^{*}\right)^{K}$ given by

$$
\delta \omega\left(X_{0}, \ldots, X_{p}\right):=\frac{1}{p+1} \sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right]_{\mathfrak{n}}, X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{p}\right)
$$

where ^ means that the term is omitted and $\left[X_{i}, X_{j}\right]_{\mathfrak{n}}$ denote the projection of $\left[X_{i}, X_{j}\right]$ into \mathfrak{n} along \mathfrak{r}.

Corollary 6.43. The propositions 6.39, 6.41 and 6.42 show that the De Rham cohomology of M is computed by the complex $\left\{\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K}, \delta\right\}$.

In the following, we consider the case $M=G$. In this case, there is also the action of right multiplication in G, so we may consider bi-invariant differential forms, differential forms that are invariant under the action of both left and right multiplication.

Proposition 6.44 ([9, (4.1)]). Any De Rham cohomology class is represented by a G-bi-invariant differential form.

Proposition 6.45. We have

$$
H(G) \cong\left(\Lambda \mathfrak{g}^{*}\right)^{G}
$$

Proof. The value at the identity of a bi-invariant differential form is $\operatorname{Ad}(G)$-invariant, i.e. for such a differential form ω, for all g in G, for all X_{1}, \ldots, X_{p} in \mathfrak{g},

$$
\omega\left(\operatorname{Ad}(g) X_{1}, \ldots, \operatorname{Ad}(g) X_{p}\right)=\omega\left(X_{1}, \ldots, X_{p}\right) .
$$

In particular, for all X in \mathfrak{g},

$$
\omega\left(\operatorname{Ad}(\exp (t X)) X_{1}, \ldots, \operatorname{Ad}(\exp (t X)) X_{p}\right)=\omega\left(X_{1}, \ldots, X_{p}\right)
$$

Differentiating at the identity we get,

$$
\omega\left(\left[X, X_{1}\right], \ldots, X_{p}\right)+\cdots+\omega\left(X_{1}, \ldots,\left[X, X_{p}\right]\right)=0
$$

The previous equation shows that if ω is bi-invariant, $\delta(\omega)=0$, and it gives the result.

6.4. Main theorems.

Proposition 6.46. There is an isomorphism of graded ring

$$
\begin{equation*}
H(T) \cong \Lambda \tag{22}
\end{equation*}
$$

Proof. The presentation of $H(T)$ given by 5.14 is exactly the presentation of Λ, hence there exists an isomorphism between the two graded rings.
Proposition 6.47 ([9, (5.3)]). We have, as modules,

$$
\begin{equation*}
H(G / T) \cong \mathbb{R}[W] \tag{23}
\end{equation*}
$$

where $\mathbb{R}[W]$ is the group ring of W. We say that $H(G / T)$ is the regular representation of W.

Theorem 6.48 (Borel). There exists a degree doubling W-equivariant rings isomorphism

$$
c: \mathscr{S} / \mathscr{T} \rightarrow H(G / T)
$$

Therefore, recalling that $\mathscr{S} / \mathscr{T} \cong \mathscr{H}$, if $\mathscr{H}_{(2)}$ is \mathscr{H} with the degrees doubled then $\mathscr{H}_{(2)} \cong H(G / T)$.

Proof. To define the morphism c, we start by setting its image on $\lambda \in \mathfrak{t}^{*}$. For $\lambda \in \mathfrak{t}^{*}$, we extend it on all \mathfrak{g} by making it zero on \mathfrak{m}, and we define $\omega_{\lambda} \operatorname{ard}(T)$-invariant two-form on \mathfrak{m} given by

$$
\begin{equation*}
\forall X, Y \in \mathfrak{m}, \omega_{\lambda}(X, Y):=\lambda([X, Y]) \tag{24}
\end{equation*}
$$

The Jacobi identity gives $\delta \omega_{\lambda}=0$. Then we use 6.43 in the case $K=T$ and $M=G / T$ to identify $\omega_{\lambda} \in\left(\Lambda \mathfrak{m}^{*}\right)^{T}$ with $\tilde{\omega}_{\lambda} \in \Omega(G / T)$. Hence we can define $c(\lambda):=\left[\tilde{\omega}_{\lambda}\right] \in H^{2}(G / T)$ the cohomology class of $\tilde{\omega}_{\lambda}$. We extend this to a degree doubling rings homomorphism $c: \mathscr{S} \rightarrow H(G / T)$.

The group W acts on \mathfrak{t}^{*} naturally, and on $\Omega(G / T)$ by its action on G / T. Then one can note that we have for all w in $W, w^{*} \omega_{\lambda}=\omega_{w \cdot \lambda}$. Therefore, we have for $\lambda \in \mathfrak{t}^{*}, w^{*} c(\lambda)=c(w \cdot \lambda)$, and it still holds in $\mathscr{S}: c$ preserves the action of W. Since, (23), $H(G / T)$ is the regular representation of W, the W-invariants are copies of the trivial representation. Yet, we know by 2.13 that the regular representation contains each irreducible representation with multiplicity equals to its dimension. But there is already a copy of the trivial representation in $H^{0}(G / T)$, hence all W-invariants lie in $H^{0}(G / T)$. Now, take λ in \mathscr{I} the ideal of \mathscr{S} generated by W-invariant polynomials of positive degree. As told before, we have for w in $W, w^{*} c(\lambda)=c(w \cdot \lambda)=c(\lambda)$ so $c(\lambda)$ is W-invariant, and generates a W-invariant, therefore lie in $H^{0}(G / T)$. But on the other hand, by degree preserving, $c(\lambda)$ is of positive degree, and therefore $c(\lambda)=0$. We have $\mathscr{I} \subseteq \operatorname{Ker}(c)$. In the following, we show that they are equal. Recalling (17) : $\mathscr{S}=\mathscr{H} \oplus \mathscr{I}$, we prove that c is injective on \mathscr{H}. We use the grading structure on \mathscr{H}, we first prove that c is injective on \mathscr{H}^{v} and then proceed by decreasing induction.

We start by showing that $c(\Pi) \neq 0$, where we recall that Π is the primordial harmonic polynomials given by (21) which spans \mathscr{H}^{v}. We use part 6.1: consider $\Delta^{+}=\left\{\alpha_{1}, \ldots, \alpha_{v}\right\}$ the set of positive roots, the decomposition $\mathfrak{m}=\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{v}$ with basis $\left\{X_{i}, X_{i+v}\right\}$ for \mathfrak{m}_{i} and relations given in 6.4. We denote $\omega_{i}:=\omega_{\alpha_{i}}$, so $c(\Pi)=\left[\tilde{\omega}_{1} \wedge \cdots \wedge \tilde{\omega}_{v}\right]$. We want to evaluate $c(\Pi)$ on the given basis of \mathfrak{m}, we have :

$$
\begin{aligned}
& \omega_{1} \wedge \cdots \wedge \omega_{v}\left(X_{1}, X_{1+v}, \ldots, X_{v}, X_{2 v}\right) \\
= & \frac{1}{(2 v)!} \sum_{\sigma \in S_{2 v}} \operatorname{sgn}(\sigma) \omega_{1}\left(X_{\sigma(1)}, X_{\sigma(1+v)}\right) \cdots \omega_{v}\left(X_{\sigma(v)}, X_{\sigma(2 v)}\right) \\
= & \frac{1}{(2 v)!} \sum_{\sigma \in S_{2 v}} \operatorname{sgn}(\sigma) \alpha_{1}\left(\left[X_{\sigma(1)}, X_{\sigma(1+v)}\right]\right) \cdots \alpha_{v}\left(\left[X_{\sigma(v)}, X_{\sigma(2 v)}\right]\right)
\end{aligned}
$$

where $S_{2 v}$ is the symmetric group and $\operatorname{sgn}(\sigma)$ is the sign of the permutation σ. Recall that α_{i} is zero on \mathfrak{m}, so the term corresponding to α is nonzero only if σ permutes the pairs $\pi_{i}=\{i, i+v\}$ and switches members of each pair. Taking σ_{0}
that only permutes pairs, and σ that permutes pairs the same way than σ_{0} but also switches some members of each pair, we have that the terms corresponding to σ_{0} and σ are equal, because of the skew-symmetricity of the bracket and the fact that sgn corresponds to the number of switches minus one. Since permutations that only permutes pairs are even we have, according to (16) :

$$
\begin{aligned}
& \omega_{1} \wedge \cdots \wedge \omega_{v}\left(X_{1}, X_{1+v}, \ldots, X_{v}, X_{2 v}\right) \\
= & \frac{2^{v}}{(2 v)!} \sum_{\sigma \in S_{v}} \alpha_{1}\left(\left[X_{\sigma(1)}, X_{\sigma(1)+v}\right]\right) \cdots \alpha_{v}\left(\left[X_{\sigma(v)}, X_{\sigma(v)+v}\right]\right) \\
= & \frac{2^{v}}{(2 v)!} \sum_{\sigma \in S_{v}} \alpha_{1}\left(H_{\sigma(1)}\right) \cdots \alpha_{v}\left(H_{\sigma(v)}\right) \\
= & \frac{2^{v}}{(2 v)!} D_{1} \cdots D_{v} \Pi
\end{aligned}
$$

where $D_{i}:=D_{H_{i}} \in \mathscr{D}$ is the functional on \mathscr{S} as defined in 6.18. We now use the following lemma too conclude.

Lemma 6.49 ([9, (5.4)]). We have $D_{1} \cdots D_{v} \Pi \neq 0$.
The form $\omega_{1} \wedge \cdots \wedge \omega_{v}$ is nonzero, and thus neither is $c(\Pi)$.
We know proceed by induction : suppose that $c: \mathscr{H}^{k} \rightarrow H^{2 k}(G / T)$ is injective for a given $k \leq v$, and let $V:=\mathscr{H}^{k-1} \cap \operatorname{Ker}(c)$. By W-equivariance $(c(w f)=w c(f)), V$ is preserved by W. There exists a positive root α such that s_{α} does not act by $-I$ on V. Indeed, if this was not the case, then the action of W on V would be given by the determinant action : $w \cdot f=\operatorname{det}(w) f$, but this is impossible because of 6.27 and the degree of polynomials in V. Then we decompose $V=V_{+} \oplus V_{-}$according to the eigenspaces of s_{α}. If $V \neq 0$, then $V_{+} \neq 0$, so take f in V_{+}nonzero. We have $c(\alpha f)=c(\alpha) c(f)=0$ and therefore $\alpha f \in \mathscr{I}$ by induction and because of its degree. Now, take $h_{1}, \ldots, h_{|W|}$ to be a basis of \mathscr{H}, where h_{1}, dots, h_{r} are s_{α}-skew and the rest is invariant. By Chevalley's theorem 6.14 and theorem 6.24, we write $\alpha f=\sum_{i} h_{i} \sigma_{i}$ where σ_{i} are W-invariant of positive degree. The polynomial α is skew and f is invariant, so αf is skew, and then the sum ends at r. By hypothesis, for $i \leq r, h_{i}$ must vanish on $\operatorname{Ker}(\alpha)$, hence be written $h_{i}=\alpha h_{i}^{\prime}$ for $h_{i}^{\prime} \in \mathscr{S}$. We then have $f=\sum_{i} h_{i}^{\prime} \sigma_{i} \in \mathscr{I}$. Therefore, $f \in \mathscr{H} \cap \mathscr{I}=0$ and $c: \mathscr{H}^{k} \rightarrow H^{2 k}(G / T)$ is injective. By induction, we have proved that c is injective on H.

The surjectivity is then clear by dimension : we have proven in 6.25 that $\operatorname{dim} \mathscr{H}=$ $|W|$, and by $(23) H(G / T)$ is of the same dimension.

Theorem 6.50 ([9, Proposition (6.1)]). The pullback map Ψ^{*} associated to Ψ is an isomorphism of graded rings

$$
\begin{equation*}
\Psi^{*}: H(G) \xrightarrow{\cong}[H(G / T) \otimes H(T)]^{W} . \tag{25}
\end{equation*}
$$

Theorem 6.51. The cohomology ring $H(G)$ is an exterior graded algebra with generators of degree $\left(2 m_{i}, 1\right)$, for $1 \leq i \leq l$.

Proof. We know from (25) that

$$
H(G) \cong[H(G / T) \otimes H(T)]^{W}
$$

Therefore, using (22) and 6.48 we obtain

$$
H(G) \cong\left[\mathscr{H}_{(2)} \otimes \Lambda\right]^{W} .
$$

We conclude with 6.34: $H(G)$ is an exterior algebra with generators of degree $\left(2 m_{i}, 1\right)$, for $1 \leq i \leq l$.

References

[1] Nicolas Bourbaki. Algèbre : Chapitres 1 à 3. Eléments de mathématique [2.1]. Springer, 2006.
[2] Samuel Eilenberg Claude Chevalley. Cohomology theory of lie groups and lie algebras. Trans. Amer. Math. Soc. 63 (1948), 85-124.
[3] Brian Hall. Lie groups, Lie algebras, and representations : an elementary introduction. Graduate texts in mathematics 222. Springer, 2ed. edition, 2015.
[4] William Fulton; Joe Harris. Representation theory : a first course. Graduate texts in mathematics, 129.; Graduate texts in mathematics., Readings in mathematics. Springer-Verlag, 1991.
[5] Sigurdur Helgason. Groups and Geometric Analysis. Pure and Applied Mathematics Academic Pr. Academic Press, 1984.
[6] James E. Humphreys. Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1992.
[7] Serge Lang. Algebra. Springer, 2002.
[8] Loring W. Tu Raoul Bott. Differential forms in algebraic topology. Graduate texts in mathematics 082. Springer, 1982.
[9] Mark Reeder. On the cohomology of compact lie groups. L'enseignement mathématiques, 1995.
[10] Tammo Tom Dieck Theodor Brocker. Representations of Compact Lie Groups. Graduate Texts in Mathematics. Springer-Verlag, corr. 2nd print edition, 1985.
[11] Frank W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics. Springer, 1st ed. 1971. 2nd printing edition, 2010.

