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1 Introduction

The aim of this report is the study of dispersive equations, with low regularity
hypothesis on the initial data. This work is based on the article of Nicolas
Burq and Nikolay Tzvetkov ”Probabilistic well-posedness for the cubic wave
equation” published in December 2011. I have done my internship with Mr.
Nicola Visciglia, professor of mathematics at the University of Pisa.

For the redaction of this report, we assume that the reader is aware of the
definitions of the Sobolev spaces and the basic theory of PDE.

2 Preliminaries

This section will gather some results that we will need in some proofs. These
results are very classics and their proofs can be found almost everywhere in the
mathematics literature, so I chose not to prove them and just enounce them.
One can read the Brezis’ book for more results [2]

2.1 Sobolev embeddings

2.1.1 Continuous embeddings

Theorem 2.1.1. (Morrey) Let p > N , then

W1,p(RN ) ⊂ L∞(RN )

with continuous embedding.

Corollary 2.1.1. Let m > 1 an integer and 1 6 p <∞, then

• if 1
p −

m
N > 0 then Wm,p(RN ) ⊂ Lq(RN ) where 1

q = 1
p −

m
N ,

• if 1
p −

m
N = 0 then Wm,p(RN ) ⊂ Lq(RN ) ∀q ∈ [p,+∞[,

• if 1
p −

m
N < 0 then Wm,p(RN ) ⊂ L∞(RN ),

with continuous embeddings.

These results can also be applied to a compact manifold, like for example
the torus T3

2.1.2 Compact embeddings

Theorem 2.1.2. (Rellich Kondrachov)

• if p < 3 then W1,p(T3) ⊂ Lq(T3), ∀q ∈ [p, p∗[ where 1
p∗ = 1

p −
1
3

• if p = 3 then W1,p(T3) ⊂ Lq(T3), ∀q ∈ [p,+∞[

• if p > 3 then W1,p(T3) ⊂ C(T3)

with compact embeddings.
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2.2 Notations

Notation 2.2.1. • 〈x〉 := (1 + |x|2)
1
2 ,

• We will denote by S(t)(v0, v1) the free evolution of the system at the time
t for the initial data (v0, v1),

• We will denote by ΠN (u) the troncature of the Fourier serie of u :

u = a+
∑
n∈Z3

∗

(bncos(n · x) + cnsin(n · x))

ΠN (u) = a+
∑
|n|6N

(bncos(n · x) + cnsin(n · x))

• ΠN := (Id−ΠN )
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3 Randomization

Let T3 be the torus in dimension 3. During all this report we will study the
cubic defocusing wave equation

∂2
t u−∆u+ u3 = 0, u : R× T→ R,

u|t=0 = u0, ∂tu|t=0 = u1, (u0, u1) ∈ Hs(T3) := Hs(T3)×Hs−1(T3)
(3.1)

where Hs(T3) denotes the classical Sobolev space on T3 and s ∈ [0, 1].
The issue raised in the studied article is that the Cauchy problem (3.1) is not

locally well-posed in Hs for s < 1
2 . The case s > 1

2 can be proved by invoking
the Strichartz estimates for the wave equation, but this is not the topic of the
report.

This report shows that a sort of well-posedness for (3.1) still exists, if we
randomize the initial data.

3.1 Principle of randomization

Let us now explain how to randomize initial data. Let (u0, u1) ∈ Hs be the
initial data, they are given by their Fourier series

uj = aj +
∑
n∈Z3

∗

(bn,j cos(n ·x) + cn,j sin(n ·x)), j ∈ {0, 1},Z3
∗ = Z3\{(0, 0, 0)}

Let now (αj(ω), βn,j(ω), γn,j(ω)), n ∈ Z3
∗, j = 0, 1 be a sequence of real random

variables on a probability space (Ω,F ,P).
We can define

uωj = αj(ω)aj +
∑
n∈Z3

∗

(βn,j(ω)bn,j cos(n · x) + γn,j(ω)cn,j sin(n · x)) (3.2)

We however assume that the random variables (αj , βn,j , γn,j)n∈Z3
∗,j=0,1 are

independent identically distributed real random Gaussian variables with a joint
distribution θ.

Thanks to the Gaussian randomization, we obtain a dense set in Hs via the
map

ω ∈ Ω 7→ (uω0 , u
ω
1 ) ∈ Hs (3.3)

for many (u0, u1) ∈ Hs.

Definition 3.1.1. For fixed (u0, u1) ∈ Hs, we define the probability measure
µ(u0, u1) by

∀A ⊂ H0, µ(u0,u1)(A) = P({w ∈ Ω : (uω0 , u
ω
1 ) ∈ A}).

We can notice that this definition makes sense because the map (3.3) endows
the space H0(T3) with a probability measure which is the direct image of P
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Notation 3.1.1.
Ms :=

⋃
(u0,u1)∈Hs

{µ(u0,u1)}.

Now that we have define the measures which will be used, let us see some
results linked to them and some properties of them.

3.2 Random series

3.2.1 Basic large deviation estimates

In this subsection, we will only give an idea of the proof of the first result,
because it is a quite simple proof and because it can be found quite easily in
the literature. The results which follow it are quite direct once one knows the
first result.

Now we can enounce our first proposition.

Proposition 3.2.1. Fix µ ∈ Ms =
⋃

(u0,u1)∈Hs{µ(u0, u1)}, s ∈ [0, 1), and

suppose that µ is induced via the map (3.3) from the couple (u0, u1). Then there
exists C > 0 such that ∀2 6 p1, p2 6 q < +∞,∀δ > 1

p1

µ
(
{(v0, v1) ∈ Hs : ‖〈t〉−δΠ0S(t)(v0, v1)‖Lp1 (Rt;Lp2 (T3)) > λ}

)
6

(
C

√
q‖(u0, u1)‖H0(T3)(δp1 − 1)−

1
p1

λ

)q
(3.4)

Proof. To prove this proposition, we use the definition of µ and we then decom-
pose Π0S(t)(uω0 , u

ω
1 ) in Fourier serie. Then we use some triangle inequalities, to

rewrite the problem, which allow us to use a lemma from an article written by
Kakutani [3]. We conclude with the generalized Tchebychev inequality.

Then, for fixed p1,p2 we can optimize the estimate by taking

C

√
q‖(u0, u1)‖H0(T3)

λ
=

1

2
⇐⇒ q =

λ2‖(u0, u1)‖−2
H0(T3)

4C2
(3.5)

and we obtain

Corollary 3.2.1. There exist C, c > 0 such that under the assumptions of the
proposition 3.2.1, ∀λ > 0

µ({(v0, v1) ∈ Hs : ‖〈t〉−δΠ0S(t)(v0, v1)‖Lp1 (Rt;Lp2 (T3)) > λ}
)

6 C exp

(
− cλ2

‖(u0, u1)‖2H0(T3)

)
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Remark 3.2.1. We can notice that the measure µ can be seen as a tensor
product of the two probability measures µN and µN defined on the images of the
projectors ΠN and ΠN respectively.

Thus we can apply the previous corollary to µN , and we get ∀λ > 0

µ
(
{(v0, v1) ∈Hs : ‖〈t〉−δΠNS(t)(v0, v1)‖Lp1 (Rt;Lp2 (T3)) > λ}

)
= µN

(
{(v0, v1) ∈ ΠN (Hs) : ‖〈t〉−δS(t)(vN0 , v

N
1 )‖Lp1 (Rt;Lp2 (T3)) > λ}

)
6 C exp

(
− cλ2

‖ΠN (u0, u1)‖2H0(T3)

)

6 C exp

(
− cλ2

N−2s‖ΠN (u0, u1)‖2Hs(T3)

)
.

(3.6)

Corollary 3.2.2. Fix µ ∈Ms =
⋃

(u0,u1)∈Hs{µ(u0, u1)}, s ∈ [0, 1), and suppose

that µ is induced via the map (3.3) from (u0, u1) ∈ Hs. Fix also 2 6 p1,
p2 < +∞ and δ > 1 + 1

p1
.

Then there exists a positive constant C such that ∀λ > 0

µ
(
{(v0, v1) ∈ Hs : ‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt;Lp2 (T3)) > λ}

)
6 C exp

(
− cλ2

‖(u0, u1)‖2H0(T3)

)
.

Finally, if we use the Sobolev embeddings Wσ,p(T3) ⊂ L∞(T3), σ > 3
p we

can obtain the following statement.

Corollary 3.2.3. Fix s > 0 and µ ∈ Ms. Let 0 < σ 6 s and suppose that µ
is induced via (3.3) from (u0, u1) ∈ Hs. Fix also 2 6 p1 < +∞, 2 6 p2 6 +∞
and δ > 1 + 1

p1
.

Then there exists a positive constant C such that ∀λ > 0

µ
(
{(v0, v1) ∈ Hs : ‖〈t〉−δS(t)(v0, v1)‖Lp1 (Rt;Lp2 (T3)) > λ}

)
6 C exp

(
− cλ2

‖(u0, u1)‖2Hσ(T3)

)

Remark 3.2.2. We can also show ( same reasonment as in 3.2.1) that for every
2 6 p < +∞ and s > 0 there exists C, c > 0 such that under the assumption of
the proposition 3.2.1 defining µ, for every λ > 0 and an integer N > 0

µ
(
{(v0, v1) ∈ Hs : ‖ΠNv0‖Lp(T3) > λ}

)
6 C exp

(
− cλ2

‖(u0, u1)‖2H0(T3)

)
(3.7)

µ
(
{(v0, v1) ∈ Hs : ‖(v0, v1)‖Hs(T3) > λ}

)
6 C exp

(
− cλ2

‖(u0, u1)‖2Hs(T3)

)
(3.8)

All these results will be useful in several proofs of the article.
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3.2.2 Conditionned large deviation estimates

The purpose of this paragraph is to deduce the following conditionned versions
of our previous large deviation estimates.

Proposition 3.2.2. Let µ ∈ Ms =
⋃

(u0,u1)∈Hs{µ(u0, u1)}, s ∈ (0, 1) and sup-
pose that the real random variable with distribution θ, involved in the definition
of µ, is symmetric. Then for 2 6 p1 < +∞, 2 6 p2 6 +∞ and δ > 1 + 1

p1
there

exists positive constants c, C such that ∀ε, λ,Λ, A > 0

µ⊗ µ
(
{
(
(v0, v1), (v′0, v

′
1)
)
∈ Hs ×Hs : ‖〈t〉−δS(t)(v0 − v′0, v1 − v′1)‖Lp1 (Rt;Lp2 (T3)) > λ

or‖〈t〉−δS(t)(v0 + v′0, v1 + v′1)‖Lp1 (Rt;Lp2 (T3)) > Λ

| ‖(v0 − v′0, v1 − v′1)‖Hs 6 ε, ‖(v0 + v′0, v1 + v′1)‖Hs 6 A}
)

6 C
(
e−

cλ2

ε2 + e−
cΛ2

A2

)
(3.9)

We can deduce this result directly from the large deviation estimates of the
previous section. However we will need some lemmas.

Lemma 3.2.1. Let E1,E2 be two Banach spaces endowed with measure µ1,µ2

respectively. Let f : (E1, E2) → C, g1, g2 : E2 → C be three measurable func-
tions. Then

µ1 ⊗ µ2

(
{(x0, x1) ∈ E1 × E2 :|f(x1, x2)| > λ | |g1(x2)| 6 ε, |g2(x2)| 6 A}

)
6 sup
x2∈E2,|g1(x2)|6ε,|g2(x2)|6A

µ1 ({x1 ∈ E1 : |f(x1, x2)| > λ})

Proof.∫
E1

1
(
{|f(x1, x2)| > λ}

)
1
(
{|g1(x2)| 6 ε}

)
1
(
{|g2(x2)| 6 A}

)
dµ1(x1)

6
(

sup
X2∈E2,|g1(X2)|6ε,
|g2(X2)|6A

µ1 ({x1 ∈ E1 : |f(x1, X2)| > λ})
)
1
(
{|g1(x2)| 6 ε}

)
1
(
{|g2(x2)| 6 A}

)
(3.10)

for almost every x2 ∈ E2, where by 1(·) we denote the characteristic function of
the corresponding set. Now we just integrate (3.10) over x2 ∈ E2 with respect
to µ2 to achieve the claimed bound.

Lemma 3.2.2. Let g1,g2 be two independent identically distributed real random
variables with symmetric distributions.

Then g1 ± g2 have symmetric distributions. Besides, if h is a Bernoulli
random variable independent of g1, then hg1 has the same distribution as g1.

Proof. The proof is clear.
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Now let us prove the proposition.

Proof. Define E := R × RZ3
∗ × RZ3

∗ equipped with the natural Banach space
structure from the l∞ norm.

We endow E with a probability measure µ0 defined via the map

ω 7→
(
k0(ω),

(
ln(ω)

)
n∈Z3

∗
,
(
hn(ω)

)
n∈Z3

∗

)
where (k0, ln, hn) is a system of independent Bernoulli variables.

We define the operation � by

h =
(
x, (yn)n∈Z3

∗
, (zn)n∈Z3

∗

)
u(x) = a+

∑
n∈Z3

∗

(
bn cos(n · x) + cn sin(n · x)

)
h� u := ax+

∑
n∈Z3

∗

(
bnyn cos(n · x) + cnzN sin(n · x)

)
First of all we are going to evaluate

µ⊗ µ
(
{
(
(v0, v1), (v′0, v

′
1)
)
∈ Hs ×Hs : ‖〈t〉−δS(t)(v0 − v′0, v1 − v′1)‖Lp1 (Rt;Lp2 (T3)) > λ

| ‖(v0 − v′0, v1 − v′1)‖Hs 6 ε, ‖(v0 + v′0, v1 + v′1)‖Hs 6 A}
)

(3.11)

Thanks to 3.2.2 we can tell that this quantity equals

µ⊗ µ⊗ µ0 ⊗ µ0

(
{
(
(v0, v1), (v′0, v

′
1), (h0, h1)

)
∈ Hs ×Hs × E :

‖〈t〉−δS(t)
(
h0�(v0 − v′0), h1 � (v1 − v′1)

)
‖Lp1 (Rt;Lp2 (T3)) > λ

| ‖
(
h0 � (v0 − v′0), h1 � (v1 − v′1)

)
‖Hs 6 ε, ‖

(
h0 � (v0 + v′0), h1 � (v1 + v′1)

)
‖Hs 6 A}

)
(3.12)

Then we use the fact that the Hs norm of a function depends only on the
absolute value of its Fourier coefficients, and we get

(3.12) = µ⊗ µ⊗ µ0 ⊗ µ0

(
{
(
(v0, v1), (v′0, v

′
1), (h0, h1)

)
∈ Hs ×Hs × E :

‖〈t〉−δS(t)
(
h0�(v0 − v′0), h1 � (v1 − v′1)

)
‖Lp1 (Rt;Lp2 (T3)) > λ

| ‖(v0 − v′0, v1 − v′1)‖Hs 6 ε, ‖(v0 + v′0, v1 + v′1)‖Hs 6 A}
) (3.13)

And thanks to the lemma 3.2.2 with µ1 = µ0 ⊗ µ0, µ2 = µ⊗ µ we find :

(3.13) 6 sup
‖(v0−v′0,v1−v′1)‖Hs6ε

µ0 ⊗ µ0

(
{(h0, h1) ∈ E :

‖〈t〉−δS(t)
(
h0 � (v0 − v′0), h1 � (v1 − v′1)

)
‖Lp1 (Rt;Lp2 (T3)) > λ}

)
(3.14)

9



Now, using the last corollary of the previous part we get the bound

(3.13) 6 Csup‖(v0−v′0,v1−v′1)‖Hs6ε

(
− cλ2

‖
(
h0 � (v0 − v′0), h1 � (v1 − v′1)

)
‖2Hs

)

= Csup‖(v0−v′0,v1−v′1)‖Hs6ε

(
− cλ2

‖(v0 − v′0, v1 − v′1)‖2Hs

)
6 C exp(−cλ

2

ε2
)

We use a very similar argument to prove that the other part is bounded by

C exp(−cΛ2

A2 ) and we get the bound that we first wanted.

Thus we have obtained some inequalities that will be useful later. But now
let us explain some properties of the constructed measures.

3.3 Properties of the measures

Thanks to the decompostion in Fourier series, we can identify (u0, u1) ∈ Hs
with

(
a0, (bn,0, cn,0)n∈Z3

∗
, a1, (bn,1, cn,1)n∈Z3

∗

)
∈ (R× RZ3

∗ × RZ3
∗)2

Thus we can see the measure µ(u0,u1) as an infinite tensor product of mea-

sures on (R× RZ3
∗ × RZ3

∗)2.

µ ∼ µ(0,0) ⊗
⊗
n∈Z3

∗

µ(n,0,b) ⊗
⊗
n∈Z3

∗

µ(n,0,c) ⊗ µ(0,1) ⊗
⊗
n∈Z3

∗

µ(n,1,b) ⊗
⊗
n∈Z3

∗

µ(n,1,c)

where all the µ(·) are the distributions of the corresponding random variables
of the randomized Fourier serie.

Now we can apply the followng result proved by Kakutani.

Theorem 3.3.1. (Kakutani) Consider the infinite tensor product of probability
measure on RN:

µi =
⊗
RN

µn,i i = 1, 2

Then the measures µ1 and µ2 on RN endowed with its cylindrical Borel σ-algebra
are absolutely continuous with respect to each other if and only if

1. ∀n ∈ N, µn,1 and µn,2 are absolutely continuous with respect to each other:
∃gn ∈ L1(R, dµn,2), kn ∈ L1(R, dµn,1) such that

dµn,1 = gndµn,2 dµn,1 = gndµn,2

2. the functions gn are such that∏
n∈N

∫
R
g

1
2
n dµn,2 =

∏
n∈N

∫
R

√
dµn,1

√
dµn,2 (3.15)

is convergent.
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Furthermore, if any of these conditions above is not satisfied then the two mea-
sures are mutually singular : ∃A ∈ RN such that

µ1(A) = 1, µ2(A) = 0

We admit this theorem. This result implies the following statement con-
cerning the measures that we are studying in the context of the cubic wave
equation.

Proposition 3.3.1. Assume that the random variables (αj , βn,j , γn,j), j = 0, 1, n ∈
Z3
∗ used to obtain the randomization are independent centered Gaussian random

variables. Let

uj(x) = a0,j +
∑
n∈Z3

∗

(
bn,j cos(n · x) + cn,j sin(n · x)

)
, j = 0, 1

ũj(x) = ã0,j +
∑
n∈Z3

∗

(
b̃n,j cos(n · x) + c̃n,j sin(n · x)

)
, j = 0, 1

Then the measures µ(u0,u1) and µ(ũ0,ũ1) are absolutely continuous with respect
to each other if and only if neither of the coefficients of the Fouriers series above
vanishes ( or then they vanish simultaneously ) and

1∑
j=0

(∣∣ ã0,j

a0,j

∣∣− 1

)2

+
∑
n∈Z3

∗

(∣∣ b̃n,j
bn,j

∣∣− 1

)2

+
∑
n∈Z3

∗

(∣∣ c̃n,j
cn,j

∣∣− 1

)2
 < +∞

Furthermore, if this condition is not satisfied, then the two measures are mutu-
ally singular.

Proof. It is well known that if g is a normalized Gaussian random variable, the
random variable αg is a Gaussian random variable centered, with variance α2.
In this case, if we eliminate the trivial contributions when the coefficents vanish
simultaneously, the result amounts to proving that if µi =

⊗
n∈N µn,i where µn,i

are Gaussian distributions of variance x2
n,i, xn,i > 0, then the measures µ1 and

µ2 are absolutely continuous with respect to each other if and only if

∑
n

(
xn,1
xn,2

− 1

)2

< +∞

and here we have

dµn,i =
1

xn,i
√

2π
e−t

2/2x2
n,idt

and
gn =

xn,2
xn,1

et
2/2x2

n,2−t
2/2x2

n,1

11



Thus we have :∫
R
g1/2
n dµn,2 =

∫
R

1√
2πxn,1xn,2

e−t
2/4x2

n,2−t
2/4x2

n,1dt

=

(
2xn,1xn,2
x2
n,1 + x2

n,2

)1/2

=

(
xn,1/xn,2 + xn,2/xn,1

2

)−1/2

(3.16)

and we deduce that if the infinite product (3.15) is convergent then necessarily
the quotients xn,1/xn,2 tend to 1. Now, if we define εn := xn,2/xn,1− 1, we can
use a classic Taylor expansion and we get :(

2xn,1xn,2
x2
n,1 + x2

n,2

)1/2

= 1− 1

4
ε2
n +O(ε3

n)

Finally, by taking the logarithm, we conclude that (3.15) is convergent if and
only if ∑

n

ε2
n < +∞

Then we have a last proposition.

Proposition 3.3.2. If (u0, u1) ∈ Hs have all their Fourier coefficients different
from zero and if the measure θ charges all open sets of Rthen the support of
µ(u0,u1) is Hs. In other words, under these assumptions, for any (w0, w1) ∈ Hs
and any ε > 0

µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖(w0, w1)− (v0, v1)‖Hs < ε}

)
> 0 (3.17)

or, again in other words, the intersection of any set of µ(u0,u1)-measure 1 with
any (non trivial) ball in Hs is non-empty.

Proof. According of the fact that ΠN is the orthogonal projection to the space
of functions having Fourier modes n ∈ Z3

∗ such that |n| 6 N and ΠN = Id−ΠN ,
we have for fixed < ε > 0

µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖(w0, w1)− (v0, v1)‖Hs < ε}

)
> µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN

(
(w0, w1)− (v0, v1)

)
‖Hs < ε/2 and

‖ΠN
(
(w0, w1)− (v0, v1)

)
‖Hs < ε/2}

)
(3.18)
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and since the two events are independent (because the random variables of the
randomization are independent) we deduce

µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖(w0, w1)− (v0, v1)‖Hs < ε}

)
> µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN

(
(w0, w1)− (v0, v1)

)
‖Hs < ε/2}

)
× µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN

(
(w0, w1)− (v0, v1)

)
‖Hs < ε/2}

)
> µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN

(
(w0, w1)− (v0, v1)

)
‖Hs < ε/2}

)
× µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN (w0, w1)‖Hs < ε/4 and ‖ΠN (v0, v1)‖Hs < ε/4}

)
(3.19)

Then we use

lim
N→∞

‖ΠN (u0, u1)‖Hs = lim
N→∞

‖ΠN (w0, w1)‖Hs = 0

and we apply (3.8) to ΠN (v0, v1) to obtain

µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN (v0, v1)‖Hs > ε/4}

)
6 Ce−cε

2/‖ΠN (u0,u1)‖2Hs → 0 as N →∞

Thus we deduce that for N big enough (depending on ε > 0 and (u0, u1), (w0, w1)),

µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN (w0, w1)‖Hs < ε/4 and ‖ΠN (v0, v1)‖Hs < ε/4}

)
> 1/2.

Now taking such N we obtain

µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖(w0, w1)− (v0, v1)‖Hs < ε}

)
>

1

2
µ(u0,u1)

(
{(v0, v1) ∈ Hs : ‖ΠN

(
(w0, w1)− (v0, v1)

)
‖Hs < ε/2}

)
(3.20)

We have now reduced the study to a finite-dimensional problem. Because of
the assumptions of all Fourier modes of (u0, u1) are non-vanishing and the dis-
tribution θ of our random variables charges all open sets of R, (3.17) follows
easily.

Now that we have these results and properties from the measures of
Ms =

⋃
(u0,u1)∈Hs{µ(u0, u1)}, we can use them to work on the initial prob-

lem (3.1). Let us enounce our first theorem about it.

3.4 Theorem

Theorem 3.4.1. Fix µ ∈ Ms, 0 6 s < 1. Then there exists a full µ-measure
set Σ ⊂ Hs(T3) such that for every (v0, v1) ∈ Σ there exists a unique global
solution v of the non-linear wave equation

∂2
t v −∆v = −v3

(
v(0), ∂tv(0)

)
= (v0, v1)

13



satisfying(
v(t), ∂tv(t)

)
∈
(
S(t)(v0, v1), ∂tS(t)(v0, v1)

)
+ C

(
Rt, H1(T3)× L2(T3)

)
.

Furthermore, if we denote by φ(t)(v0, v1) :=
(
v(t), ∂tv(t)

)
the flow thus de-

fined, the set Σ is invariant under the map φ(t), that is

∀t ∈ R, φ(t)(Σ) = Σ.

Finally, for any ε > 0 there exists C, δ > 0 such that for µ-almost every
(v0, v1) ∈ Hs, there exists M > 0 such that the global solution previously con-
structed satisfies

v(t) = S(t)Π0(v0, v1) + w(t)

with
‖
(
w(t), ∂tw(t)

)
‖H1(T3) 6 C(m+ |t|)(1−s)/s+ε if s > 0 (3.21)

‖
(
w(t), ∂tw(t)

)
‖H1(T3) 6 CeC(t+M)2

if s = 0 (3.22)

and
µ
(
{(v0, v1) ∈ Hs : M > λ}

)
6 Ce−λ

δ

This theorem will be proved, in the case s¿0, in the following sections.

4 Resolution of the problem in the case s > 0

4.1 Existence and unicity

Proposition 4.1.1. Consider the problem

∂2
t v −∆v = −(f + v)3 (4.1)

(here f is the linear evolution of the problem).There exists a constant C such that
for every time interval I = [a, b] of size 1, every Λ > 1, and every (v0, v1, f) ∈
H1 × L2 × L3(I, L6) satisfying

‖v0‖H1 + ‖v1‖L2 + ‖f‖3L3(I,L6) 6 Λ

there exists an unique solution of (4.1) on the time interval [a, a + Λ−2] with
initial data

v(a, x) = v0(x), ∂tv(a, x) = v1(x)

Moreover the solution satisfies ‖(v, ∂tv)‖
L∞([a,a+Λ−2],H1× L2

)
6 CΛ, (v, ∂tv)

is unique in the class L∞([a, a+ Λ−2], H1 ×  L2) and the dependence in time is
conitnuous.
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Proof. By translation, we can assume that I = [0, 1]. Now to define S(t)(v0, v1)
we study the problem

∂2
t v −∆v = 0

and we rewrite it with Fourier to obtain

∂2
t v̂ − |ξ|2v̂ = 0

which is a classic ODE with solution

v̂(t, ξ) = v̂0(ξ) cos(t|ξ|) + v̂1
sin(t|ξ|
|ξ|

Now we just have to apply the inverse Fourier transformation to have v.

Property 4.1.1. Let m(ξ) be a Fourier multiplicator, then the operator T :

f 7→ F−1(ξ 7→ m(ξ)f̂(ξ)) can be written as f 7→ m(
√
−∆)(f).

This property is admitted.
Thus we can define the free evolution by

S(t)(v0, v1) := cos(t
√
−∆)(v0) +

sin(t
√
−∆)√
−∆

(v1). (4.2)

According to Duhamel, we can rewrite the probem as

v(t) = S(t)(v0, v1)−
∫ 1

0

sin((t− τ)
√
−∆)√

−∆

(
(f(τ) + v(τ))3

)
dτ (4.3)

To prove it, we use Fourier again, the problem becomes

ŵ′′ + |ξ|2ŵ = (f̂ + w)3 ŵ(0) = ŵ′(0) = 0

and we know thanks to the Cauchy theory that there exists a unique solution.
Now define

û(t, ξ) := −
∫ t

0

sin((t− τ)|ξ|)
|ξ|

(
( ̂f(τ) + w(τ))3

)
dτ

and let us show that it is a solution.

• û(0, ξ) = 0

• û′(t, ξ) =
∫ t

0
cos
(
(t− s)|ξ|

)( ̂f(s) + w(s)
)3
ds⇒ û′(0, ξ) = 0

• û′′(t, ξ) = −
(
f̂(t) + ŵ(t)

)3
+ |ξ|

∫ t
0

sin
(
(t− s)|ξ|

)( ̂f(s) + w(s)
)3
ds

It is now clear that we have

û′′ + |ξ|2û = −
(
f̂ + w

)3
15



Let us now set

φu0,u1,f (v) = S(t)(v0, v1)−
∫ 1

0

sin((t− τ)
√
−∆)√

−∆

(
(f(τ) + v(τ))3

)
dτ

We can use , for T ∈ (01] the Sobolev embedding H1(T3) ⊂  L6(T3) to
get (S(t) is bilinear and continuous and the functions in the sum are bounded
because T3 is compact) :

φu0,u1,f (v) 6 C
(
‖v0‖H1 + ‖v1‖L2 + T sup

τ∈[0,T ]

‖f(τ) + v(τ)‖3L6

)
6 C

(
‖v0‖H1 + ‖v1‖L2 + sup

τ∈[0,T ]

‖f(τ)‖3L6

)
+ CT‖v‖3L∞([0,T ];H1)

)
This estimates gives us that for T ≈ Λ−2 the map φu0,u1,f sends the ball {v :
‖v‖3L∞([0,T ];H1) 6 CΛ} onto itself. A similar argument can show that this is a
contraction of the same ball and thus we only have to apply the Picard theorem.
We can get the estimate of ‖∂tv‖L2 by differentiating in t the Duhamel formula
(4.3).

Proposition 4.1.2. Assume that s > 0 and fix µ ∈ Ms. Then for µ-almost
every (v0, v1) ∈ Hs(T3), there exists a unique global solution(

v(t), ∂tv(t)
)
∈
(
S(t)(v0, v1), ∂tS(t)(v0, v1)

)
+ C

(
Rt, H1(T3)× L2(T3)

)
of the non-linear wave equation

(∂t −∆)v + v3 = 0

with initial data
v(0, x) = v0(x) ∂tv(0, x) = v1(x)

Proof. We look for v in the form v(t) = S(t)(v0, v1) + w(t). Then w solves

(∂2
t −∆)w +

(
S(t)(v0, v1) + w

)3
= 0, w

∣∣
t=0

, ∂tw
∣∣
t=0

= 0 (4.4)

Then thanks to Corollary 3.2.2 gives us that if δ > 1 = 1
p , then µ-almost surely

‖〈t〉−δS(t)(v0, v1)‖Lp(Rt;Ws,p(T3)) <∞.

Let us take p big enough such as 3
p < s, thus 1

p −
s
3 < 0. Then thanks to

corollary 2.1.1 we know that Ws,p(T3) ⊂ L∞(T3).
Now let us set

f(t) = ‖S(t)(v0, v1)‖L∞(T3), g(t) = ‖S(t)(v0, v1)‖3L6(T3)

Then thanks to the previous Sobolev embedding, we get∫ T

0

‖S(t)(v0, v1)‖pL∞(T3)dt 6
∫ T

0

‖S(t)(v0, v1)‖pWs,p(T3)dt <∞
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(notice that here we use the fact that 〈t〉−δ is not important because [0, T ] is
compact). Thus we deduce that f ∈ Lploc(Rt) ⊂ L1

loc(Rt) (T3 is a compact
variety). Besides we just have to notice that g(t) 6 f(t)3 to get

f(t) = ‖S(t)(v0, v1)‖L∞(T3) ∈ L1
loc(Rt), g(t) = ‖S(t)(v0, v1)‖3L6(T3) ∈ L

1
loc(Rt).

(4.5)
Thus we have the local existence thanks to propostion 4.1.1 and the second
estimate of (4.5). We also deduce that as long as the H1×L2 norm of (w, ∂tw)
remains bounded, the solution w of (4.4) exists.

Set

E(w(t)) =
1

2

∫
T3

(
(∂tw)2 + |∇xw|2 +

1

2
w4
)
dx.

We can derive in the sum because of the boundedness of the H1×L2 norm and
we get

d

dt
E(w(t)) =

∫
T3

(
∂tw∂

2
tw +∇x∂tw · ∇xw + ∂tww

3
)
dx

=

∫
T3

∂tw(∂2
tw −∆w + w3)dx

=

∫
T3

∂tw
(
w3 − (S(t)(v0, v1) + w)3

)
dx

And thanks to Cauchy-Schwarz and Hölder inequalities :

d

dt
E(w(t)) 6 C

(
E(w(t))

)1/2‖w3 −
(
S(t)(v0, v1) + w

)3‖L2(T3)

6C
(
E(w(t))

)1/2(‖S(t)(v0, v1)‖3L6(T3) + ‖S(t)(v0, v1)‖L∞(T3)‖w2‖L2(T3)

)
6C
(
E(w(t))

)1/2(
g(t) + f(t)(E(w(t)))1/2

)
Thus, according to the Gronwall lemma and (4.5), w exists globally in time.

4.2 Construction of an invariant set

The previous section has shown the existence on a set of full µ-measure. However
we may have a dynamics which sends for some t 6= 0 this set of full measure,
where the global existence holds, to a set of small measure.

The aim is now to establish a global dynamics on an invariant set of full
measure in the context of the argument of the previous section.

Definition 4.2.1.

Θ := {(v0, v1) ∈ Hs :‖S(t)(v0, v1)‖3L6(T3) ∈ L
1
loc(Rt),

‖S(t)(v0, v1)‖L∞(T3) ∈ L1
loc(Rt)}

and Σ := Θ +H1.
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Notice that Σ is of full µ-measure for every µ ∈Ms =
⋃

(u0,u1)∈Hs{µ(u0, u1)}
since so is Θ.

Proposition 4.2.1. Assume that s > 0 and fix µ ∈ Ms. Then, for every
(v0, v1) ∈ Σ, there exists a unique global solution(

v(t), ∂tv(t)
)
∈
(
S(t)(v0, v1), ∂tS(t)(v0, v1)

)
+ C

(
Rt, H1(T3)× L2(T3)

)
of the non-linear wave equation

(∂2
t v −∆)v + v3 = 0,

(
v(0, x), ∂tv(0, x)

)
=
(
v0(x), v1(x)

)
. (4.6)

Moreover, (v(t), ∂tv(t)) ∈ Σ for every t ∈ R, and thus by time reversibility Σ is
invariant under the flow of (4.6).

Proof. By assumption, we can write (v0, v1) = (ṽ0, ṽ1)+(w0, w1) with (ṽ0, ṽ1) ∈
Θ and (w0, w1) ∈ H1. We look for v in the form v(t) = S(t)(ṽ0, ṽ1) + w(t).
Then w solves

(∂2
t v −∆)w + (S(t)(ṽ0, ṽ1) + w(t))3 = 0, w

∣∣
t=0

= w0, ∂tw
∣∣
t=0

= w1.

Now, exactly as in the proof of proposition 4.1.2, we obtain

d

dt
E(w(t)) 6 C

(
E(w(t))

)1/2(
g(t) + f(t)(E(w(t)))1/2

)
where

f(t) = ‖S(t)(ṽ0, ṽ1)‖L∞(T3), g(t) = ‖S(t)(ṽ0, ṽ1)‖3L6(T3)

Therefore thanks to the Gronwall lemma and using that E(w(0)) is well-defined,
we obtain the global existence for w. Thus the solution of (4.6) can be written
as

v(t) = S(t)(ṽ0, ṽ1) + w(t), (w, ∂tw) ∈ C(R;H1).

Besides, coming back to the definition of Θ, we observe that

S(t)(Θ) = Θ.

By this we mean

{(S(t)(v0, v1), ∂tS(t)(v0, v1)) : (v0, v1) ∈ Θ} = Θ

In other words, if one wants to explain it heuristically : if we take at first
(v0, v1) ∈ Θ as initial data, and then we stop at time t, we obtain (S(t)(v0, v1), ∂tS(t)(v0, v1)).
Now if we take (S(t)(v0, v1), ∂tS(t)(v0, v1)) as initial data, they are still in Θ, it
is a kind of invariance by translation.
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4.3 Bounds on the growth of the Sobolev norm

We follow the high-low decomposition method of Bourgain [1] in this section.

Proposition 4.3.1. Let 1 > s > 0 and µ ∈ Ms. Consider the flow of (4.6)
established in the previous section.

Then, for any ε > 0 there exist C, δ > 0 such that for every (v0, v1) ∈ Σ,
there exists M > 0 such that the global solution of (4.6) satisfies :

v(t) = S(t)(v0, v1) + w(t), ‖(w(t), ∂tw(t))‖H1(T3) 6 C(M + |t|)(1−s)/s+ε

with µ(M > λ) 6 Ce−λ
δ

.

Proof. We only give a proof for positive times, the analysis for negativee times
being analogous. Let be ε > 0, δ > 1

2 , δ̃ >
1
3 . Now we introduce the sets

• FN := {(v0, v1) ∈ Σ : ‖ΠN (v0, v1)‖Hs 6 N1−s+ε}

• GN := {(v0, v1) ∈ Σ : ‖ΠN (v0)‖L4(T”) 6 Nε}

• HN := {(v0, v1) ∈ Σ : ‖〈t〉−δS(t)(ΠN (v0, v1))‖L2(Rt;L4(T3)) 6 Nε−s}

• KN := {(v0, v1) ∈ Σ : ‖〈t〉−δ̃S(t)(ΠN (v0, v1))‖L3(Rt;L6(T3)) 6 Nε−s}

Lemma 4.3.1. Let δ > 1 and δ̃ > 1. There exists ε0 > 0 such that for any
0 < ε 6 ε0, there exist C, c > 0 such that ∀N > 1,

µ(F cN ) 6 Ce−cN
2ε

, µ(GcN ) 6 Ce−cN
2ε

, µ(Hc
N ) 6 Ce−cN

2ε

, µ(Kc
N ) 6 Ce−cN

2ε

Proof. For (u0, u1) ∈ Hs(T3), we have

‖ΠN (u0, u1)‖H1 6 CN1−s‖(u0, u1)‖Hs ,

‖ΠN (u0, u1)‖H0 6 CN−s‖(u0, u1)‖Hs .

Indeed

N−2‖ΠN (u0)‖2H1 =
∑
|n|6N

|n|
N2
|an|2

6
∑
|n|6N

(
|n|
N2

)
|an|2 (

|n|
N2

6 1, s ∈ (0, 1))

6 CN−2s‖(u0, u1)‖Hs

and so come these inequalities.
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Then, according to (3.8) and the first inequality we get

µ(F cN ) 6 µ
(
{(v0, v1) ∈ Hs : CN1−s‖(v0, v1)‖Hs > N1−s+ε}

)
= µ

(
{(v0, v1) ∈ Hs : ‖(v0, v1)‖ > Nε

C
}
)

6 C1 exp

(
− cN2ε

C2‖(u0, u1)‖2Hs(T3)

)
= C̃e−cN

2ε

ad we use (3.7) to obtain

µ
(
{(v0, v1) ∈ Hs : ‖ΠN (v0)‖L4 > Nε}

)
6 Ce−cN

2ε

.

Then notice that we have the Sobolev embedding H1 ⊂  L4 because we can write
H1 =W1,2 and 1

2 −
1
3 > 0.

Thus we use the other inequality, remark 3.2.1 and corollary 3.2.3 to get

µ(Kc
N ) 6 C exp

(
− cN2(ε−s)

N−2s‖ΠN (u0, u1)‖Hs

)
= C̃e−cN

2ε

This completes the proof of Lemma 4.3.1.

Now let N ∈ N∗. We define

EN := FN ∩GN ∩HN ∩KN .

According to the precedent lemma we have

µ(EcN ) 6 e−cN
κ

, κ > 0.

We now fix ε1 > 0, and then ε > 0 small enough such that

1− s+ ε

s− 2ε
6

1− s
s

+ ε1 and ε <
s

2
(4.7)

We finally fix δ > 1
2 ,δ̃ > 1

3 such that

(δ − 1

2
)s < 2δε, and δ̃ < 1 (4.8)

Lemma 4.3.2. For every c > 0 there exists C > 0 such that for every t > 1
and every N ∈ N∗ such that t 6 cNs−2ε, and every (v0, v1) ∈ EN the solution
of (4.6) with data (v0, v1) satisfies :

‖v(t)− S(t)Π0(v0, v1)‖H1(T3) 6 CN1−s+ε.

In particular, thanks to (4.7), if t ≈ Ns−2ε then

‖v(t)− S(t)Π0(v0, v1)‖H1(T3) 6 t(1−s)/s+ε1
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Proof. For (v0, v1) ∈ EN we can decompose (v0, v1) = ΠN (v0, v1) + ΠN (v0, v1)
and thus the solution of (4.6) can be written as

v(t) = S(t)ΠN (v0, v1) + wN

where wN solves :

(∂2
t −∆)wN +

(
wN − S(t)ΠN (v0, v1)

)3
= 0,

(
w(0), ∂tw(0)

)
= ΠN (v0, v1).

(4.9)
We use the energy estimates of the previous sections to get

d

dt
E(wN (t)) 6 C

(
E(wN (t))

)1/2(
gN (t) + fN (t)

(
E(wN (t))

)1/2)
(4.10)

where

fN (t) = ‖S(t)ΠN (v0, v1)‖L∞(T3), gN (t) = ‖S(t)ΠN (v0, v1)‖3L6(T3)

Notice that (4.10) can be written as

d

dt

(
E(wN (t))1/2

)
6 C

(
gN (t) + fN (t)

(
E(wN (t))

)1/2)
.

Now by integrating (4.10) we know that E(wN (t))1/2 will be smaller than the
solution of the problem

u′ = C(fNu+ gN ).

And thanks to the Duhamel formula we obtain

E(wN (t))1/2 6 CeC
∫ t
0
fN (s)ds

(
E(wN (0))1/2 +

∫ t

0

gN (s)ds

)
(4.11)

We now observe that for (v0, v1) ∈ EN∣∣∣ ∫ t

0

gN (s)ds
∣∣∣ =

∣∣∣ ∫ t

0

‖S(s)ΠN (v0, v1)‖3L6(T3)ds
∣∣∣

6
∫ t

0

C‖〈s〉−δ̃S(s)ΠN (v0, v1)‖3L3(Rt;L6(T3))〈s〉
3δ̃ds(

(v0, v1) ∈ EN
)

6 CN3(ε−s)〈t〉3δ̃(
t ≈ Ns−2ε

)
6 CN3(ε−s+δ̃(s−2ε))

6 C

provided ε− s+ δ̃(s− 2ε) 6 0, which is true because of the hypothesis δ̃ > 1.
Let us now prove the following statement :

‖〈s〉δ‖L2([0,t]) 6 〈t〉δ+1/2
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Indeed we have :

‖〈s〉δ‖L2([0,t]) =

(∫ t

0

(1 + |s|)2δds

) 1
2

6

(
1

2δ + 1
(1 + |t|)2δ+1

) 1
2

6 (1 + |t|)δ+ 1
2 = 〈t〉δ+ 1

2

Next we have (using the Cauchy-Schwarz inequality in time) that for
(v0, v1) ∈ EN ∣∣∣ ∫ t

0

fN (s)ds
∣∣∣ =

∣∣∣ ∫ t

0

〈s〉−δfN (s)〈s〉δds
∣∣∣

6 ‖〈s〉−δfN‖L2([0,t])‖〈s〉δ‖L2([0,t])

6 ‖〈s〉−δfN‖L2(R)〈t〉δ

((v0, v1) ∈ EN ) 6 CN−s+ε〈t〉δ

6 CN−s+ε+(δ+1/2)(s−2ε)

6 C

provided −s + ε + (δ + 1/2)(s − 2ε) 6 0, which is satisfied because of the
hypothesis on δ.

For (v0, v1) ∈ EN we have

E(wN (0))1/2 = E
(
ΠN (v0)

)1/2
=

(∫
T3

ΠN (v1)2 + |∇xΠN (v0)|2 +
1

2
ΠN (v0)4dx

) 1
2

6 C
(
‖ΠN (v0, v1)‖H1 + ‖ΠN (v0)‖2L4

6 CN1−s+ε

Thus coming back to (4.11) we obtain(
E(wN (t))

)1/2
6 CeC(CN1−s+ε + C) 6 CN1−s+ε.

Recall that

v(t) = wN (t) + S(t)ΠN (v0, v1) = S(t)Π0(v0, v1) + wN (t)− S(t)ΠNΠ0(v0, v1).

We find that the linear energy ‖∇xu‖2L2(T3) + ‖∂tu‖2L2(T3) of a solution to the

linear wave equation is independant of time, and if (u, ∂tu) = Π0(u, ∂tu) (i.e
(u, ∂tu) is orthogonal to constants) then this energy controls the H1(T3) norm.
We deduce that for (v0, v1) ∈ EN ⊂ FN :

‖S(t)ΠNΠ0(v0, v1)‖H1(T3) 6 CN1−s+ε
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and therefore
‖v(t)− S(t)Π0(v0, v1)‖H1(T3) 6 CN1−s+ε

and this completes the proof of the lemma.

Now let us end the proof of the proposition.
We set

EN =
⋂

M>N

EM

where the intersection is taken over the dyadic values of M, i.e M = 2j with
j ∈ N. Then

∀M,µ(EcM ) 6 Ce−cM
κ

−→
M→∞

0

=⇒ µ((EN )c) −→
N→∞

0

=⇒ µ(EN ) −→
N→∞

1

We use the lemma 4.3.2 to conclude that there exists C > 0 such that for every
t > 1, every N , and every (v0, v1) ∈ EN

‖v(t)− S(t)Π0(v0, v1)‖H1(T3) 6 C(N1−s+ε + t
1−s
s +ε1).

Finally we set

E =

∞⋃
N=1

EN .

We have thus shown µ-almost sur bounds on the possible growth of the
Sobolev norms of the solutions established in the previous section for data in E,
which is of full µ-measure.

This completes the proof of the proposition.
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5 Probabilistic continuity of the flow

In this section we will see an interesting result about the continuity of the flow.
Indeed it is possible to show that we don’t have the deterministic continuity of
the flow. However, we are able to prove that it is still continuous in probability.
Consequently the Cauchy problem (3.1) is globally well posed in the following
Hadamard-probabilistic sense.

Theorem 5.0.1. Fix s ∈ (0, 1), let A > 0, let BA := {V ∈ Hs : ‖V ‖Hs 6 A}
and let T > 0. Let µ ∈Ms =

⋃
(u0,u1)∈Hs{µ(u0, u1)} and suppose that the joint

distribution θ is symmetric. Let φ(t) be the flow of the cubic wave equations
defined µ-almost everywhere in the theorem 3.4.1.

Then, for η, ε > 0, we have :

µ⊗ µ
(
{(V, V ′) ∈Hs ×Hs : ‖φ(t)(V )− φ(t)(V ′)‖XT > ε

∣∣
‖V − V ′‖Hs < η and (V, V ′) ∈ BA ×BA}

)
6 g(ε, η),

(5.1)

where XT :=
(
C([0, T ];Hs)∩L4([0, T ]×T3

)
×C([0, T ];Hs−1) and g(ε, η) is such

that
∀ε > 0, lim

η→0
g(ε, η) = 0.

Moreover, if in addition the support of µ is the whole Hs (which is true iff
in the definition of µ we have ai, bn,i, cn,i 6= 0 for all n ∈ Z3 and the support of
the distribution function of the random variables is R), then there exists ε > 0
such that the left-handed side in (5.1) is positive.

This theorem shows that as soon as η � ε , among the initial data which are
η-close to each other, the probability of finding two for which the coresponding
solutions to (3.1) do not remain ε-close to each other, is very small.
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